
Formalizing Sample Transformation Plans
Daniel Bryce† and Robert P. Goldman† and Jacob Beal‡

Ugur Kuter† and Alexander F. Plotnick† and Matthew DeHaven† and Christopher W. Geib†
Nicholas Roehner‡ and Bryan Bartley‡

†SIFT, LLC
Minneapolis, MN, USA

{dbryce, rpgoldman, ukuter, mdehaven, aplotnick, cgeib}@sift.net
‡Raytheon BBN Technologies

Cambridge, MA, USA
jacob.beal@ieee.org, nicholas.roehner@raytheon.com, bryan.a.bartley@raytheon.com

Abstract

Experimental protocols are typically represented in either a
natural language that is hard to replicate or compare, or in
procedural languages that are difficult to automatically syn-
thesize, detach from a specific experimental design for reuse,
or analyze. We introduce a new approach based on tech-
niques from automated planning. We describe how to rep-
resent transformation operators that manipulate samples in
terms of applying conditions to samples. We define the se-
mantics of this representation. We also present a simplified
version of the notation that removes much of the model-
ing burden required of scientists. The resulting representation
supports automated planning, provides sample provenance
and metadata tracking at no cost by virtue of a plan’s causal
structure, and separates protocol specification from experi-
mental design.

Introduction
Synthetic biology experiments involve preparing and then
measuring samples under a number of conditions. In this
work, we formalize sample preparation as reasoning about
plans. Our contributions are to: 1) decouple experimental de-
sign from experimental protocols, and 2) simplify the speci-
fication of experimental protocols. Separating the design of
experiments consideration of what samples to measure from
how to create those samples supports reuse of costly-to-
develop experimental protocols. Simplifying experimental
protocol specifications enables scientists to rapidly develop
new experiments. We focus upon using planning representa-
tions to structure experiment specifications, but also briefly
discuss how automated planning engines can use these rep-
resentations to search alternative protocol instantiations and
steps.

Two of the representational challenges for applying plan-
ning to reasoning about samples are: 1) capturing informa-
tion about the conditions applied to each sample, 2) describ-
ing how protocol operators apply conditions to samples. We
must describe the conditions applied to each sample so that
we can ensure that the protocol constructs the correct set of
samples specified by the experimental design. Protocol oper-
ators may apply to only some samples, and apply only some

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

conditions. There can be many combinations of condition-
value pairs, making them hard to manually enumerate. Fur-
thermore, manually enumerating these condition-value pairs
couples the protocol with the experimental design.

Prior work has described experimental protocols with ei-
ther procedural (Klavins 2018) or low-level declarative (Au-
toprotocol 2018) languages. While these works can offer
the convenience and power of general purpose programming
languges, they are not immediately amenable to automated
search, require custom implementations of protocol opera-
tors, and do not inherently track sample provenance. Au-
tomating search to construct a protocol in a general purpose
language can amount to the notoriously difficult problem of
program synthesis. Using custom implementations of op-
erators does not necessarily enforce operator structure that
generalizes to a common condition-application semantics.
Procedural protocol descriptions require protocol develop-
ers to adopt a custom provenance tracking methodology that
is otherwise readily available in the causal structure of plans.

We introduce a semantics for sample transformation op-
erators that involves three main conventions: 1) disjunc-
tive preconditions that specify condition-values that samples
must satisfy to be transformed by an operator, 2) disjunctive
effects that specify condition-values to associate with alter-
native output samples based upon input samples, and 3) a
way to distinguish between conditions assigned versus ap-
plied to samples. We then present a simplified representa-
tion of the operators that effectively distributes disjunction
in preconditions and effects from a disjunctive normal form
into a conjunctive normal form. The simplified form: 1) de-
couples operator specifications from a specific experimental
design, 2) is more compact, and 3) applies the experimen-
tal design with the operator specification to compute sample
transformations. We illustrate several operators that use our
formalization in two genetic circuit characterizations, pro-
tein design, and riboswitch characterization. We also discuss
how the automated planner XPlan uses these operators to
construct experimental plans.

Background
An experimental design is a set D of samples. Each sample
s ∈ D is a set of condition-value pairs of the form (c, v).
For example, one of our circuit characterization problems

includes a design of the form:

{{(strain,UWBF 6389), (replicate, 0), (media,m4),

(OD, 0.003), (timepoint, 1)},
{(strain, UWBF 6390), (replicate, 0), (media,m4),

(OD, 0.003), (timepoint, 1)},
{(strain,UWBF 6391), (replicate, 0), (media,m4),

(OD, 0.003), (timepoint, 1)},
{(strain,UWBF 6388), (replicate, 0), (media,m4),

(OD, 0.003), (timepoint, 1)},
. . .

}
where there are a number of conditions such as strains, repli-
cates, media, target optical densities, and timepoints (in a
time series).

For the purpose of this discussion, let C be a finite set
of conditions. We also assume a given sample transforma-
tion plan O that corresponds to an experimental protocol. A
transformation plan O = (o1, . . . , on) is a sequence of oper-
ators o. For example, we use the following plan in our circuit
characterization problem:

(streak, incubate, pick, incubate, spectrophotometry, dilute,
incubate, transfer,mix, spectrophotometry,flow cytometry)

where we include streak, incubate, spectrophotometry, mix,
and flow cytometry for the sake of completeness but these
operators do not transform samples in the sense described
here.

An experiment is a tuple (SI , O,D) where SI is an ini-
tial set of samples, O is the operator sequence, and D is
the experimental design. An experiment satisfies the ex-
perimental design if it produces a set of samples SG =
transform(SI , O) so that SG satisfies D. In the following
sections, we define two ways to compute SG that use alter-
native representations of the transformation operators O. In
both cases, the result of transforming a sample set SI by a
sequence of operators O = (o1, . . . , on) is

S′
G = transform(S,O)

= transform(. . . transform(SI , o1) . . . , on)

where the difference is in how we define the transformation
transform(S, o) involving a single operator o.

Semantics of Sample Transformation Plans
We define the semantics of a sample transformation plan
as a sequence of operators (o1, . . . , on) that either assign or
apply conditions c ⊆ C to a set of initial samples SI to pro-
duce a set of goal samples SG. We distinguish assignment
from application to capture plans that pre-allocate identical
samples to different physical containers prior to applying a
condition that distinguishes the samples.

Each condition c ∈ C can take on a value v ∈ V (c)
where V is the domain of values. Each sample s is a set
of condition-value-applied triples (c, v, a), where c ∈ C,
v ∈ V (c), and a is a boolean (i.e., a ∈ B = {>,⊥}). For ex-
ample, a triple (c1, v1,⊥) denotes that the sample has been

assigned condition c1 with value v1. The triple (c2, v2,>)
represents that we’ve applied condition c2 with value v2. For
example, in our circuit characterization experiment, SI con-
tains samples of the form:

{(strain,UWBF 6390,>)}

where we start the experiment with samples where the strain
has been applied.

Each operator o ∈ O defines a disjunctive set of precon-
dition sets Pre(o). Each pre(o) ∈ Pre(o) is a conjunctive
set of triples so that pre(o) ⊆ C × V × B. An operator o is
applicable to a sample s iff s satisfies at least one pre(o) ∈
Pre(o) (i.e., pre(o) ⊆ s). In the following, we will assume
that each pair of precondition sets pre(o), pre′(o) ∈ Pre(o)
is mutually exclusive. For example, Pre(pick) defines which
strains to pick from a culture and inoculate a resulting sam-
ple:

{{(strain,UWBF 6389,>)},
{(strain,UWBF 6390,>)},
{(strain,UWBF 6391,>)},
{(strain,UWBF 6388,>)},
. . .}

Each operator o ∈ O also defines a disjunctive set of ef-
fect sets Eff(o). Each eff(o) ∈ Eff(o) is a conjunctive set
of triples so that eff(o) ⊆ C×V ×B. Unlike the traditional
interpretation that disjunctive effects are non-deterministic,
we use the disjunction to signify “splitting” an input sam-
ple into output samples. Each output sample is consistent
with an alternative disjunct. For example, Eff(pick) defines
which media and replicate id to apply to each input sample:

{{(media,m4,>), (replicate, 1,>)},
{(media,m4,>), (replicate, 2,>)},
{(media,m4,>), (replicate, 3,>)},
{(media,m4,>), (replicate, 4,>)},
. . .}

If we apply operator o ∈ O to a sample set S, then we
will create sample set S′, defined as follows. The resulting
sample set S′ is the union of transforming each sample in S:

S′ = transform(S, o) =
⋃
s∈S

transform(s, o)

If a sample s satisfies the precondition (i.e., ∃pre(o) ∈
Pre(o).pre(o) ⊆ s), then we transform it with all possible
effect sets:

transform(s, o) = {transform(s, eff(o))|eff(o) ∈ Eff(o)}

otherwise samples not satisfying the precondition de-
fine transform(s, o) = {s} (a frame axiom). Trans-
forming a sample s with a single effect set eff(o) =
{(c1, v1, a1), . . . , (ck, vk, ak)} will result in a sample s′ de-
fined by

s′ = transform(s, eff(o))

= transform(. . . transform(s, (ck, vk, ak)) . . . , (c1, v1, a1))

where s′ = s if eff(o) = {}. Transforming a sample s by a
single triple (c, v, a) defines a sample s′ as

s′ = transform(s, (c, v, a))

= s\{(c, v′, a′)|(c, v′, a′) ∈ s} ∪ {(c, v, a)}

which removes any triples referring to the same condition c
and adds the new triple. For example, if we transform the
sample set S:

{{(strain,UWBF 6389,>)},
{(strain,UWBF 6390,>)},
{(strain,UWBF 6391,>)},
{(strain,UWBF 6388,>)},
. . .}

with the pick operator, then we will create the sample set S′:

{{(strain,UWBF 6389,>), (media,m4,>), (replicate, 1,>)},
{(strain,UWBF 6390,>), (media,m4,>), (replicate, 1,>)},
{(strain,UWBF 6391,>), (media,m4,>), (replicate, 1,>)},
{(strain,UWBF 6388,>), (media,m4,>), (replicate, 1,>)},
{(strain,UWBF 6389,>), (media,m4,>), (replicate, 2,>)},
{(strain,UWBF 6390,>), (media,m4,>), (replicate, 2,>)},
{(strain,UWBF 6391,>), (media,m4,>), (replicate, 2,>)},
{(strain,UWBF 6388,>), (media,m4,>), (replicate, 2,>)},
. . .}

A plan satisfies the experimental design if SG satisfies D.
That is, ∀s ∈ D.∃s′ ∈ SG.∀(c, v) ∈ s.∃(c, v,>) ∈ s′.

Simplified Transformations
The Pre(o) and Eff(o) sets can be quite large, and are spe-
cific to a given domain V of values for each condition. Fur-
thermore, for a given operator sequence O = (o1, . . . , on)
this presumes a fixed experimental design that (implicitly)
prescribes which samples to produce. In order to improve the
reuse of operators for a variety of experiments, we present
a domain agnostic language for specifying transformations.
However, what we gain in simplicity, we give up in precision
– the language assumes that all values in the domain V (c)
apply to every transformation for a given condition c. To re-
gain the lost precision, we assume an experimental design D
that culls undesirable condition values.

We define simplified preconditions pre(o) =
{(c1, V1, a1), . . . , (ck, Vk, ak)} and effects eff(o) =
{(c1, V1, a1), . . . , (ck, Vk, ak)} for each operator. Each
set of values Vi ⊆ V (ci) specifies the possible values for
condition ci. We interpret Vi = {} to mean that all values
in V (ci) are allowed, which allows us (in this case) to
decouple the operator description from any specific domain
V (ci). (Tuples of the form (c, {}, a) would otherwise assert
that the condition must hold no value, which doesn’t bear
meaning for us.) For example, the pick operator from the
previous section defines pre(pick) as:

{(strain, {},>)}

and eff(pick) as:

{(media, {},>), (replicate, {},>)}

We can convert from the simplified format to the
original format by distributing the disjunction so that if
pre(o) = {(c1, V1, a1), . . . , (ck, Vk, ak)}, then for each
{v1, . . . , vk} ∈ V1×. . .×Vk there exists a pre(o) ∈ Pre(o)
where pre(o) = {(c1, v1, a1), . . . , (ck, vk, ak)}. For exam-
ple, if we have the following condition value domains:

V (strain) = {UWBF 6389,
UWBF 6390,
UWBF 6391,
UWBF 6388}

V (media) = {m1,m2,m3,m4}
V (replicate) = {1, 2, 3, 4, 5, 6}

we can covert our pick operator in the simplified represen-
tation to the original representation, as listed in the previous
section.

Under the simplified model, we define transformations
differently. As before, if we apply a simplified operator
o ∈ O to a sample set S, then we will create sample set
S′, where S′ is the union of transforming each sample in S:

S′ = transform(S, o) =
⋃
s∈S

transform(s, o)

If a sample s satisfies the simplified precondition (i.e.,
∀(c, V, a) ∈ pre(o)∃(c, v, a) ∈ s.v ∈ V ∨ V = {}), then
we transform it with eff(o), so that transform(s, o) =
transform(s, eff(o)) is defined as:

transform(s, eff(o)) =

transform(. . . transform(s, (ck, Vk, ak)) . . . , (c1, V1, a1))

otherwise samples not satisfying the precondition define
transform(s, o) = {s}. Transforming a sample s with a
triple (c, V, a) will result in a set of samples defined by

transform(s, (c, V, a)) = {sv|sv = transform(s, (c, v, a)),

consistent(sv, D),

v ∈ V }

where transform(s, (c, v, a)) is defined as in the previous
section. The consistent check is defined as:

consistent(s,D) = ∃s′ ∈ D.∀(c, v, a) ∈ s.(c, v) ∈ s′

We require the extra consistent check on all intermediate
samples because of the effect independence introduced by
the simplification. Otherwise, it is possible construct sam-
ples that are inconsistent with the experimental design D.
To see this, consider a hypothetical effect set Eff(o) defined
as:

{{(c1, v11, a1), (c2, v12, a2)},
{(c1, v21, a1), (c2, v22, a2)},
{(c1, v11, a1), (c2, v22, a2)}}

Samples S

Precondition
pre(o)

Experiment Design
Samples D

Effect
eff(o)

transformation
operator

Input
Samples

Output
Samples

Precondition
pre(o)

Experiment Design
Samples D

Effect
eff(o)

transformation
operator

s1: strain1
s2: media1

precondition: strain

s3: strain2

Samples:

Operator: pick

effect: replicate, media

sA: strain1, media1, rep1, od1
sB: strain1, media1, rep2,od2
sC: strain2, media1, rep1,od1

Experimental Design:

s1_1: strain1, media1, rep1
s1_2: strain1, media1, rep2
s2_1: strain2, media1, rep1
s2_2: strain2, media1, rep2

Effect:

precondition: strain, rep1
Operator: dilute

effect: od

s1_1_1: strain1, media1, rep1, od1
s1_1_2: strain1, media1, rep1, od2
s2_1_1: strain2, media1, rep1, od1
s2_1_2: strain2, media1, rep1, od2

Effect:

Measure: s1_1: strain1, media1, rep1
s1_2: strain1, media1, rep2
s2_1: strain2, media1, rep1

Measure: s1_1_1: strain1, media1, rep1, od1
s2_1_1: strain2, media1, rep1, od1

Not
Consistent
with Exp.
Design Precondition

Not Met

Precondition
Not Met

From Experimental
Design and Protocol

Figure 1: Each transformation operator applies to samples satisfying its precondition, and creates samples consistent with its
effect. The simplified representation relies upon target samples to restrict the set of samples produced by each operator.

where we have purposely omitted the effect:

{(c1, v21, a1), (c2, v12, a2)}

Under the simplified representation we would have the fol-
lowing condition-value domains and effect eff(o):

V (c1) = {v11, v21},
V (c2) = {v12, v22},
eff(o) = {(c1, V (c1), a1), (c2, V (c2), a2}

which could produce samples:

{{(c1, v11, a1), (c2, v12, a2)},
{(c1, v21, a1), (c2, v22, a2)},
{(c1, v11, a1), (c2, v22, a2)},
{(c1, v21, a1), (c2, v12, a2)}}

However, if we assume that the experimental design D de-
fines:

{{(c1, v11), (c2, v12)},
{(c1, v21), (c2, v22},
{(c1, v11), (c2, v22)}}

then the sample

{(c1, v21, a1), (c2, v12, a2)}

would not be consistent with D and removed from the result.

Example: Figure 1 illustrates two steps of a sample trans-
formation plan. The Venn diagrams at the top conceptual-
ize transformation operators in the simplified format. The
input to a transformation operator is intersection of a cur-
rent sample set S with the operator precondition pre(o).
The operator produces samples that are consistent with its
effect eff(o), which are intersected with the experimental
design D. This continues with the second operator in a sim-
ilar fashion. The lower part of the figure illustrates a toy ex-
ample where we begin with samples {s1, s2, s3} and trans-
form them with the pick operator. We use a shortened nota-
tion where, for example, strain1 is equivalent to a condition-
value triple (strain, 1,>). The pick operator requires that
input samples have a strain, and has the effect of applying
replicate and media conditions. Not all output samples are
consistent with the experimental design, so those with a line
through them are removed. We also illustrate the dilute op-
erator, which applies only to samples with a condition-value
tripe (replicate, 1,>) as denoted by the shortened notation
rep1. The example illustrates how both preconditions and
the experimental design reduce the possible samples pro-
duced by the effects.

Discussion:The simplified representation decouples the ex-
perimental design from the experiment protocol. This allows
us to use the same operators across multiple experimental
designs, which is not possible with the original representa-
tion. We also have the added benefit that the simplified op-
erator specification is much more compact, making it easier

to engineer and maintain. This division between experimen-
tal design and experimental protocol also follows how most
scientists conceptualize experiments – separating the “what”
and the “how”. Finally, we provide a formal semantics for
the simplified representation by connecting it to the seman-
tics of the original representation.

Transformation Operators
In this section, we discuss several examples of other trans-
formation operators used across several distinct experi-
ments. We introduce a simple syntax to describe the oper-
ators, that resembles the Planning Domain Definition Lan-
guage (PDDL) (Ghallab et al. 1998). Each operator consists
of a name, a precondition list, and an effect list. Each ele-
ment of a precondition and effect list is a condition-value
tuple, as defined by the previous section.

The pick operator models inoculating a sample in media
from a colony. It requires that the sample has a strain, and
associates a media and replicate condition-value triple with
each output sample:

(pick
:precondition ((strain nil t))
:effect ((media nil t)

(replicate nil t)))

Experiments use the pick operator to inoculate wells in a
container (e.g., 96-well plate) from another container (e.g.,
a YPAD plate).

The dilute operator models diluting a sample so that it
reaches a specified optical density:

(dilute
:precondition ((strain nil t))
:effect ((od nil t)))

In our gate characterization experiments, the dilute opera-
tor follows a pick operator. At that step in the experiment,
the samples have a number of condition-values applied to
them. The dilute operator illustrates the common benefit of
action languages – it specifies a complex transition function
in terms of a local updates to a few conditions.

In another gate characterization experiment, we use the
transfer operator to create multiple samples (filling a 96-well
plate):

(transfer
:precondition ((strain nil t))
:effect ((control (nil) t)

(replicate nil t)
(input nil nil)
(media nil t)))

The transfer operator applies to all samples with a strain
condition-value. It creates samples that are not controls (the
values for the condition ‘control’ are logical false, i.e., (nil)).
It creates replicates of each input sample. It assigns the in-
put condition to each sample without applying it. A later
operator applies the input condition (i.e., introduces small
molecules that signal the gate inputs). Rather than prepare a
large volume of sample for all possible input conditions, the
experiment prepares a small volume for each input a priori.

Finally, the transfer operator also applies the media condi-
tion by combining the strains with media.

The facs-seq-round-1 operator, in a protein design experi-
ment, illustrates a case where the set of values for a condition
are partially decoupled from the experimental design.

(facs-seq-round-1
:precondition ((library nil t))
:effect ((round (1) t)

(treatment nil t)
(concentration nil t)))

The operator requires protein library samples as inputs, and
associates a (round, 1, >) condition-value triple with each
output sample. It also associates condition-value triples for
treatment and concentration conditions. The operator refers
to a specific value for round because it might otherwise pro-
duce samples for later rounds, which are part of the experi-
mental design. It does, however, decouple the treatment and
concentration associated with each sample from the exper-
imental design. In the fashion, the operator is able to hold
certain conditions constant and allows others to be free (up
to the freedom specified in the experimental design).

Each of these transformation operators illustrates a dif-
ferent feature of our simplified transformation language.
Across four experimental plans developed as part of our
work, we required 4, 5, 5, and 20 transformation operators
per plan. These respective plans involved transforming 3,
5, 192, and 9 input samples into a total of 34, 298, 2706,
and 1573 respective samples. The third plan, a riboswitches
characterization experiment, required a small amound of
knowledge engineering, but involved transforming the most
samples. We anticipate that our representation will lead to
more efficient modeling and experiment planning due to its
simplicity.

XPlan
Synthetic biology is the systematic engineering of living or-
ganisms to perform desired functions. For example, biolog-
ical sensors have applications in sensing pathogens or bio-
logical, chemical, and radioactive weapons; effectors have
applications in chemical synthesis and cleanup, and in tar-
geted medical therapies. Because existing models for ge-
netic structures, assembly, and expression are still relatively
weak, however, synthetic biology necessarily involves both
design and experimentation to assess the success of designs
and identify factors responsible for success and failure.

DARPA’s Synergistic Discovery and Design (SD2) pro-
gram seeks to speed scientific and design processes through
automated support for experiment planning, automated ex-
ecution of experimental protocols across laboratories, and
high-speed, large-scale exploratory data analysis. In SD2,
our XPlan planner (Kuter et al. 2018) uses the simplified
transformation operator language and semantics to construct
experimental plans. Figure 2 shows a high-level XPlan ar-
chitecture diagram, cf. (Kuter et al. 2018). XPlan is built on
SHOP2 (Nau et al. 2003), a hierarchical task network (HTN)
planner. XPlan uses HTN methods to structure experimen-
tal plans and search for operator sequences (o1, . . . , on). In-
stead of computing the sample transformations as PDDL-

Decision-Theoretic Hierarchical Planner

Domain-
Agnostic

Experimental
Strategies

Automation-Assisted
Laboratory

Synthetic Biology
Engineer

Data Storage &
Analysis

Experiment Parameterization

Experimental Plan

Ex
pe

rim
en

t

Value of
Information

Alternative Parameterizations

Experiment Request

Strategies

Experimental Plan

Experiment ProjectionExperiment Initial
State

Possible Projected States State Clusters

Info Gain

Experimental
Data

Experiment
Request

Incomplete Models

XPlan

Processed Data,
Designs, Models

Figure 2: XPlan combines domain-agnostic strategies and
domain-specific knowledge to expand experiment requests
into executable plans, which are then parameterized and pro-
jected for VOI analysis. Plans are given to laboratories to
execute, producing data that results in updated models and
designs and new experiment requests.

like operators, XPlan applies the sample transformations
described herein to simplify the model development. De-
scribing sample transformations as PDDL operators would
require a complex and difficult to maintain set of condi-
tional effects (similar to the original representation) or an
ADL (Pednault 1989) operator with conditional effects and
quantified variables.

Related Work and Discussion

Sample transformation plans implicitly represent a sample
transformation graph that links samples to their predeces-
sors and ancestors. This sample transformation graph is in
correspondence with the causal structure of the plan. In or-
der to construct this sample transformation graph, the trans-
formation operators require condition-value triples that de-
scribe the input samples. These triples are similar in nature
and mechanism to premises in truth maintenance systems
(de Kleer 1986). They prescribe the conditions under which
it is possible to deduce a sample.

Our language for sample transformation planning is dif-
ferent from existing languages for experimental protocol
specification such as Trident (Klavins 2018) and Autoproto-
col (Autoprotocol 2018). Trident provides scripting support
for automating experiments, but is based upon a high-level
procedural programming language (Python). Autoprotocol
is a low-level execution language that omits much of the
provenance and rationale for the experiment operators, in fa-
vor of prescribing unambiguous execution steps. The impact
of these differences are that the languages do not natively de-
scribe the semantics of experiment steps for automating rea-
soning with a planner. These languages are similar to plan
execution languages, such as PLEXIL (Verma et al. 2005),
which the automated planning community has embraced as
targets for plan compilation, but not plan synthesis.

Conclusion
We have described a semantics and simplified language for
sample transformation planning that decouples experimen-
tal design from experimental protocol specification. The lan-
guage captures common operators across four unique chal-
lenge problems in synthetic biology and protein design. The
sample transformation plans encode sample provenance and
sample attributes as part of the causal structure of the plan,
encoding metadata that enables both machine learning ap-
plied to experimental data, but also experiment replicability.
We have described how to reason about a single sequence of
operators, but the language supports automated plan search
and optimization. This semantics and language are the basis
of the XPlan planner (based upon SHOP2 (Nau et al. 2003)),
developed as part of the DARPA SD2 program.

References
Autoprotocol. 2018. Autoprotocol: An open standard for
life science experimental design and automation. http:
//autoprotocol.org (accessed August 1, 2018).
de Kleer, J. 1986. An assumption-based TMS. Artificial
Intelligence 28(2):127–162.
Ghallab, M.; Howe, A.; Knoblock, C.; Mcdermott, D.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL—
The Planning Domain Definition Language.
Klavins, E. 2018. Trident: The Aquarium API. http:
//klavinslab.org/trident/ (accessed August 1,
2018).
Kuter, U.; Goldman, R. P.; Bryce, D.; Beal, J.; Dehaven, M.;
Geib, C. S.; Plotnick, A. F.; Nguyen, T.; and Roehner, N.
2018. Xplan: Experiment planning for synthetic biology. In
Proceedings of the ICAPS’18 Hierarchical Planning Work-
shop.
Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, W.;
Wu, D.; and F.Yaman. 2003. Shop2: An htn planning sys-
tem. JAIR 20:379–404.
Pednault, E. P. D. 1989. Adl: Exploring the middle ground
between strips and the situation calculus. In Proceedings of
the First International Conference on Principles of Knowl-
edge Representation and Reasoning, 324–332. San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc.
Verma, V.; Estlin, T.; Jónsson, A.; Pasareanu, C.; Simmons,
R.; and Tso, K. 2005. Plan execution interchange language
(PLEXIL) for executable plans and command sequences. In
International Symposium on Artificial Intelligence, Robotics
and Automation in Space (iSAIRAS).

