
1 ShortBOL: A Language for Scripting Designs for Engineered
2 Biological Systems Using Synthetic Biology Open Language (SBOL)
3 Matthew Crowther,∥ Lewis Grozinger,∥ Matthew Pocock,∥ Christopher P. D. Taylor,∥

4 James A. McLaughlin, Göksel Misirli, Bryan Bartley, Jacob Beal, Angel Goñi-Moreno,* and Anil Wipat*

Cite This: https://dx.doi.org/10.1021/acssynbio.9b00470 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

5 ABSTRACT: The Synthetic Biology Open Language (SBOL) is
6 an emerging synthetic biology data exchange standard, designed
7 primarily for unambiguous and efficient machine-to-machine
8 communication. However, manual editing of SBOL is generally
9 difficult for nontrivial designs. Here, we describe ShortBOL, a
10 lightweight SBOL scripting language that bridges the gap between
11 manual editing, visual design tools, and direct programming.
12 ShortBOL is a shorthand textual language developed to enable
13 users to create SBOL designs quickly and easily, without requiring
14 strong programming skills or visual design tools.
15 KEYWORDS: programming language, biodesign, Synthetic Biology Open Language (SBOL), synthetic biology, RDF

16 Synthetic Biology Open Language (SBOL) version 2 has
17 emerged as a data standard for synthetic biology.1 SBOL
18 facilitates computational design, exchange, and reproducibility
19 of biological systems and is defined as a data model with an
20 RDF/XML serialization. While well-suited for precise machine
21 communication, SBOL RDF/XML is too verbose and complex
22 for humans to manually edit designs, particularly for those
23 involving many components and features.
24 Software tools and libraries have been developed to
25 manipulate SBOL. For example, libSBOLj2 and pySBOL3 can
26 be linked to other software, enabling them to read, write, and
27 manipulate SBOL data. While these libraries support tool
28 developers and others with strong programming skills, using
29 them presents an extremely challenging learning curve for most
30 synthetic biologists. Computer-aided Design (CAD) and
31 visualization tools have also been developed to visualize designs
32 and make the designs easier for humans to communicate.4−6

33 These visual design tools, however, are often limited in the
34 features of the representation that they can access and visual
35 editing is often a slow and rather manual process. Thus, there is a
36 need for a lightweight SBOL scripting language that bridges the
37 gap between manual editing, visual design, and direct use of
38 libraries.
39 Here, we describe such a language, ShortBOL (v.1.0), a
40 human readable/writable shorthand for describing biological
41 designs in SBOL. This language is developed for those who are
42 familiar with the SBOL data model but wish to rapidly sketch
43 synthetic biology designs using a simple, text-based scripting
44 language instead of writing code that utilizes the SBOL libraries.
45 Using this language, SBOL data can be generated easily and
46 quickly from simple textual descriptions. The utility of such

47domain-specific languages has long been recognized by the
48synthetic biology community, and languages such as the
49Genotype Specification Language7 and Eugene8 have previously
50been developed, in particular to enable automated assembly and
51the exploration of the synthetic biological design space.
52ShortBOL shares many design aims and characteristics with
53these languages. However, being an abstraction of SBOL data,
54ShortBOL inherits the richness of the SBOL data model and the
55ability to encapsulate design information on unique importance
56to synthetic biological constructs. Moreover, the ability to
57describe arbitrary RDF data in ShortBOL provides a flexibility
58and extensibility that will be important in producing ever greater
59abstraction, modularity, and concision.

60■ RESULTS
61ShortBOL v1.0 is designed to be easy to use for synthetic
62biologists who may not have much software development
63training but understand the fundamentals of the SBOL data
64model. Those with software development training can also find
65ShortBOL useful as a rapid method of producing SBOL more
66simply than by writing code that uses the SBOL libraries. The
67language is text-based, but has a simplified syntax that abstracts
68some of the more complex features of SBOL. Moreover, by
69following the tutorial, users who are new to the SBOL data

Received: November 22, 2019
Published: March 4, 2020

Technical Notepubs.acs.org/synthbio

© XXXX American Chemical Society
A

https://dx.doi.org/10.1021/acssynbio.9b00470
ACS Synth. Biol. XXXX, XXX, XXX−XXX

mec00 | ACSJCA | JCA11.2.5208/W Library-x64 | manuscript.3f (R5.0.i3:5004 | 2.1) 2020/02/05 13:43:00 | PROD-WS-118 | rq_1570526 | 3/11/2020 17:22:49 | 5 | JCA-DEFAULT

https://pubs.acs.org/action/showCitFormats?doi=10.1021/acssynbio.9b00470&ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acssynbio.9b00470?ref=pdf
https://pubs.acs.org/synthbio?ref=pdf
https://pubs.acs.org/synthbio?ref=pdf

70 model can gain exposure to the terminology and approach
71 without having to work with the SBOL code libraries.
72 ShortBOL is currently built around a minimal selection of
73 language constructs. A typical shorthand document is a list of
74 imports, variable assignments, and template statements to be
75 expanded. A standard template library is provided with
76 ShortBOL, which allows different aspects of genetic designs to
77 be generated using the SBOL data model in response to

f1 78 keywords in the ShortBOL language (Figure 1).
79 The standard library templates themselves are also written in
80 shorthand, in the same way that a user might create their own
81 template libraries to capture abstractions common within their
82 designs or the synthetic biology domain. These new templates
83 may extend any number of existing templates, or be built from
84 scratch. Furthermore, if libraries are shared, they can then be
85 imported, used, and extended by others.
86 Custom templates can be used to provide simple aliases,
87 application-specific syntax, access to common terminologies,
88 and can even be used to model complex parametrized
89 multicomponent designs. Variable assignments, on the other
90 hand, associate a value with an identifier, using the equals (=)
91 operator. For example, repressor = tetR associates the value tetR

92with the identifier repressor. This can be used to set up aliases to
93provide more natural local names for remotely defined terms
94and design components.
95ShortBOL Usage. ShortBOL can be used from both the
96command line and from a custom Web application (http://
97 f2shortbol.org/) (Figure 2). The ShortBOL repository on GitHub
98includes documentation on how to compile ShortBOL text files
99to SBOL XML files using the supplied Python software at the
100command line. The web application allows ShortBOL docu-
101ments to be written in the web-based editor and automatically
102compiled to an SBOL RDF/XML file, which the user can then
103download. A tutorial describing how to use ShortBOL is also
104provided, which also introduces features of the SBOL data
105model. When ShortBOL code is executed via the command line
106or web application, the output is validated for compliance with
107the SBOL specification, ensuring ShortBOL output will
108interoperate with other SBOL tooling.
109Implementation. SBOL entities are created within the
110shorthand by using the (is a) operator to expand a template
111 f3(Figure 3A). For example, lacI_cds is a CDS introduces a new
112identifier lacI_cds whose properties will be set according to the
113pattern described by the CDS template. In this particular case,

Figure 1. An example of a ShortBOL template for a promoter. Here, a promoter is defined from a DnaComponent which is, in turn, defined using a
ComponentDefinition. Users can define templates to create specialized representations of design patterns used in their SBOL designs.

Figure 2. Screenshot of the ShortBOL Web application showing the built-in editor and output window.

ACS Synthetic Biology pubs.acs.org/synthbio Technical Note

https://dx.doi.org/10.1021/acssynbio.9b00470
ACS Synth. Biol. XXXX, XXX, XXX−XXX

B

http://shortbol.org/
http://shortbol.org/
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://dx.doi.org/10.1021/acssynbio.9b00470?ref=pdf

114 the CDS template further expands to a SBOL:ComponentDe-
115 finition template, which sets the type property to the DnaRegion
116 BioPAX term and role property to the CDS (SO:000316)
117 Sequence Ontology term, as recommended in the SBOL best
118 practices for encoding a CDS using SBOL (Figure 3B).
119 Templates can also be parametrized by one or more arguments.
120 For example, the DNASequence template expects a single
121 argument, containing a DNA string. When the template is
122 expanded, the elements property of the resulting SBOL:Se-
123 quence is set to be equal to the supplied argument. This
124 mechanism allows common design and composition patterns to
125 be captured relatively easily within templates, without requiring
126 a full programming language. In combination with the recursive
127 expansion of templates, this can allow collections of specialized,
128 domain-specific templates to be composed from generic ones.
129 Template expansions can also contain a block of ShortBOL
130 expressions. These are used to declare additional properties and
131 their values. For example, the template application lacI_cds is a
132 CDS may be followed by a bracketed block containing the
133 property assignment description = “The lacI CDS”.
134 Interpretation. The statements contained in shorthand
135 documents are interpreted sequentially, and from each template
136 expansion statement a RDF graph is generated. The union of

137these graphs is then serialized as RDF/XML to produce a valid
138SBOL document.
139The steps involved in interpreting a shorthand statement
140depend on the type of that statement:
141• Import statements: Import URIs are resolved to
142ShortBOL documents. These are then interpreted and
143the declared assignments and templates made available to
144the current shorthand script.
145• Variable assignment: Assigned values are associated with
146their alias, and made available for value substitution in all
147subsequent statements.
148• Template declaration: Templates are associated with
149their identifier, and made available for future expansion.
150• Template expansion: If the name of a template
151application matches a registered template, expand that
152template and set all the nested properties.

153■ DISCUSSION
154ShortBOL v1.0 fulfills the need for an SBOL shorthand. This
155version is designed to be true to the SBOL data model, allowing
156synthetic biologists to read and write SBOL, and for the rapid
157creation and exchange of synthetic biology designs without

Figure 3. Rendering SBOL documents using ShortBOL. A genetic circuit representation in ShortBOL is recursively rendered using templates until
standard SBOL documents are produced. (A) Shorthand representation of a CDS component. (B) This shorthand representation is recursively
expanded into a version that includes no reference to a template. (C) Standard SBOL representation of the same component is produced.

ACS Synthetic Biology pubs.acs.org/synthbio Technical Note

https://dx.doi.org/10.1021/acssynbio.9b00470
ACS Synth. Biol. XXXX, XXX, XXX−XXX

C

https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://dx.doi.org/10.1021/acssynbio.9b00470?ref=pdf

158 complex computational tools or the need for a mediating GUI.
159 ShortBOL comes with a formal syntax and semantics, and so is
160 also suitable for machine exchange. ShortBOL is not intended to
161 replace SBOL, however, which can represent additional complex
162 design information, including material that is not textual or that
163 has user-defined semantics. Moreover, SBOL is based on RDF
164 and can benefit from existing SemanticWeb tooling. Instead, the
165 ShortBOL syntax simplifies the creation of SBOL documents. As
166 a textual language with a defined syntax, it has the advantage of
167 describing design information unambiguously for machines,
168 compared to visual languages, which are for human
169 consumption.
170 Following the syntax and approach of the SBOL model has
171 the advantage of making the ShortBOL syntax familiar to
172 developers but can be daunting to biologists not familiar with
173 SBOL terms and approaches. There is a further need for future
174 development of ShortBOL to abstract away the more complex
175 features of the SBOL data model and use a syntax that is more
176 commonplace in the synthetic biology community. The current
177 version of ShortBOL is centered around SBOL version 2.0,
178 which allows synthetic biology designs to be encoded. However,
179 subsequent SBOL versions also include features such as
180 capturing the lineage of designs, combinatorial assembly,
181 encoding parameters and measures, and recording experimental
182 data. Modifications and extensions to the standard library
183 included with ShortBOL will be required in order to support
184 these features of the data model.
185 Development of a new version that includes the newer
186 features above, together with a fully online editor and expansion
187 pipeline is ongoing, supporting while-you-type integration with
188 other SBOL tooling, including VisBOL.4 We hope that the open
189 nature of ShortBOL template libraries will support rapid
190 development of SBOL extensions and domain-specific design
191 terminologies. Moreover, we envisage community-driven
192 development of template libraries to intuitively design biological
193 systems according to the needs of different laboratories.

194 ■ ASSOCIATED CONTENT
195 *sı Supporting Information
196 The Supporting Information is available free of charge at
197 https://pubs.acs.org/doi/10.1021/acssynbio.9b00470.

198 The complete source code and examples from the
199 ShortBOL project presented in this paper (can also be
200 obtained from https://github.com/intbio-ncl/shortbol)
201 (ZIP)

202 ■ AUTHOR INFORMATION
203 Corresponding Authors
204 Angel Goñi-Moreno − School of Computing, Newcastle
205 University, Newcastle upon Tyne NE4 5TG, U.K.; orcid.org/
206 0000-0002-2097-2507; Email: angel.goni-moreno@ncl.ac.uk
207 Anil Wipat − School of Computing, Newcastle University,
208 Newcastle upon Tyne NE4 5TG, U.K.; orcid.org/0000-
209 0001-7310-4191; Email: anil.wipat@ncl.ac.uk

210 Authors
211 MatthewCrowther− School of Computing, Newcastle University,
212 Newcastle upon Tyne NE4 5TG, U.K.
213 Lewis Grozinger − School of Computing, Newcastle University,
214 Newcastle upon Tyne NE4 5TG, U.K.; orcid.org/0000-
215 0002-9024-701X

216Matthew Pocock − School of Computing, Newcastle University,
217Newcastle upon Tyne NE4 5TG, U.K.
218Christopher P. D. Taylor − School of Computing, Newcastle
219University, Newcastle upon Tyne NE4 5TG, U.K.
220James A. McLaughlin − School of Computing, Newcastle
221University, Newcastle upon Tyne NE4 5TG, U.K.
222Göksel Misirli − School of Computing and Mathematics, Keele
223University, Keele, Newcastle ST5 5BG, U.K.
224Bryan Bartley − Raytheon BBN Technologies, Cambridge,
225Massachusetts 02138, United States; orcid.org/0000-0002-
2261597-4022
227Jacob Beal − Raytheon BBN Technologies, Cambridge,
228Massachusetts 02138, United States

229Complete contact information is available at:
230https://pubs.acs.org/10.1021/acssynbio.9b00470

231Author Contributions
∥

232M.C., L.G., M.P., and C.T. contributed equally to the project.
233M.P., C.T., G.M., and J.A.M. designed the initial version of the
234ShortBOL language. M.P. and C.T. implemented the Scala
235proof-of-concept implementation. L.G. and M.C. developed the
236Python implementation described in this paper. M.P., G.M.,
237A.G.-M., J.B., B.B., and A.W. wrote the paper and tested the
238system. M.P., L.G., M.C., and A.W. wrote the documentation.
239A.W., M.P., and A.G.-M. supervised the project.
240Notes
241The authors declare no competing financial interest.

242■ ACKNOWLEDGMENTS
243The authors of this work are supported by The Engineering and
244Physical Sciences Research Council grants EP/J02175X/1, EP/
245R003629/1, EP/N031962/1 (J.A.M. and A.W.), and EP/
246R019002/1 (A.G.-M.), EPSRC studentship 34000024085
247(M.C.), and the European CSA 820699 (A.G.-M. and A.W.).
248J.B. and B.B. are supported in part by the Air Force Research
249Laboratory (AFRL) and DARPA under contract
250FA875017CO184. J.A.M. is supported by FUJIFILM DioSynth
251Biotechnologies and M.C. by Doulix Ltd. M.C. is supported by
252the EPS. Any opinions, findings, and conclusions or recom-
253mendations expressed in this material are those of the author(s)
254and do not necessarily reflect the views of the funding agencies.
255This document does not contain technology or technical data
256controlled under either the U.S. International Traffic in Arms
257Regulations or the U.S. Export Administration Regulations.

258■ REFERENCES
(1) 259Madsen, C., et al. (2019) Synthetic Biology Open Language

260(SBOL) Version 2.3. J. Integr. Bioinform. 16, 25.
(2) 261Zhang, Z., Nguyen, T., Roehner, N., Misirli, G., Pocock, M.,

262Oberortner, E., Samineni, M., Zundel, Z., Beal, J., Clancy, K., Wipat, A.,
263and Myers, C. J. (2015) libSBOLj 2.0: A Java Library to Support SBOL
2642.0. IEEE Life Sci. Lett. 1, 34−37.

(3) 265Bartley, B. A., Choi, K., Samineni, M., Zundel, Z., Nguyen, T.,
266Myers, C. J., and Sauro, H. M. (2019) pySBOL: A Python Package for
267Genetic Design Automation and Standardization. ACS Synth. Biol. 8,
2681515−1518.

(4) 269McLaughlin, J. A., Pocock, M., Misirli, G., Madsen, C., and Wipat,
270A. (2016) VisBOL: Web-based tools for synthetic biology design
271visualization. ACS Synth. Biol. 5, 874−876.

(5) 272McLaughlin, J. A., Misirli, G., Pocock, M., and Wipat, A. (2016)
273An Environment for Augmented Biodesign Using Integrated Data
274Resources. Proceedings of 8th International Workshop on Bio-Design
275Automation. Newcastle University.

ACS Synthetic Biology pubs.acs.org/synthbio Technical Note

https://dx.doi.org/10.1021/acssynbio.9b00470
ACS Synth. Biol. XXXX, XXX, XXX−XXX

D

https://pubs.acs.org/doi/10.1021/acssynbio.9b00470?goto=supporting-info
https://github.com/intbio-ncl/shortbol
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.9b00470/suppl_file/sb9b00470_si_001.zip
http://orcid.org/0000-0002-2097-2507
http://orcid.org/0000-0002-2097-2507
mailto:angel.goni-moreno@ncl.ac.uk
http://orcid.org/0000-0001-7310-4191
http://orcid.org/0000-0001-7310-4191
mailto:anil.wipat@ncl.ac.uk
http://orcid.org/0000-0002-9024-701X
http://orcid.org/0000-0002-9024-701X
http://orcid.org/0000-0002-1597-4022
http://orcid.org/0000-0002-1597-4022
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://dx.doi.org/10.1515/jib-2019-0025
https://dx.doi.org/10.1515/jib-2019-0025
https://dx.doi.org/10.1109/LLS.2016.2546546
https://dx.doi.org/10.1109/LLS.2016.2546546
https://dx.doi.org/10.1021/acssynbio.8b00336
https://dx.doi.org/10.1021/acssynbio.8b00336
https://dx.doi.org/10.1021/acssynbio.5b00244
https://dx.doi.org/10.1021/acssynbio.5b00244
pubs.acs.org/synthbio?ref=pdf
https://dx.doi.org/10.1021/acssynbio.9b00470?ref=pdf

(6)276 Zhang, M., McLaughlin, J. A., Wipat, A., and Myers, C. J. (2017)
277 SBOLDesigner 2: An Intuitive Tool for Structural Genetic Design. ACS
278 Synth. Biol. 6, 1150−1160.

(7)279 Wilson, E. H., Sagawa, S., Weis, J. W., Schubert, M. G., Bissell, M.,
280 Hawthorne, B., Reeves, C. D., Dean, J., and Platt, D. (2016) Genotype
281 Specification Language. ACS Synth. Biol. 5, 471−478.

(8)282 Bilitchenko, L., Liu, A., Cheung, S., Weeding, E., Xia, B., Leguia,
283 M., Anderson, J. C., and Densmore, D. (2011) Eugene − A Domain
284 Specific Language for Specifying and Constraining Synthetic Biological
285 Parts, Devices, and Systems. PLoS One 6, No. e18882.

ACS Synthetic Biology pubs.acs.org/synthbio Technical Note

https://dx.doi.org/10.1021/acssynbio.9b00470
ACS Synth. Biol. XXXX, XXX, XXX−XXX

E

https://dx.doi.org/10.1021/acssynbio.6b00275
https://dx.doi.org/10.1021/acssynbio.5b00194
https://dx.doi.org/10.1021/acssynbio.5b00194
https://dx.doi.org/10.1371/journal.pone.0018882
https://dx.doi.org/10.1371/journal.pone.0018882
https://dx.doi.org/10.1371/journal.pone.0018882
pubs.acs.org/synthbio?ref=pdf
https://dx.doi.org/10.1021/acssynbio.9b00470?ref=pdf

