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ABSTRACT: Synthetic biology is a complex discipline that
involves creating detailed, purpose-built designs from genetic
parts. This process is often phrased as a Design-Build-Test-Learn
loop, where iterative design improvements can be made,
implemented, measured, and analyzed. Automation can potentially
improve both the end-to-end duration of the process and the utility
of data produced by the process. One of the most important
considerations for the development of effective automation and
quality data is a rigorous description of implicit knowledge
encoded as a formal knowledge representation. The development
of knowledge representation for the process poses a number of challenges, including developing effective human−machine
interfaces, protecting against and repairing user error, providing flexibility for terminological mismatches, and supporting extensibility
to new experimental types. We address these challenges with the DARPA SD2 Round Trip software architecture. The Round Trip is
an open architecture that automates many of the key steps in the Test and Learn phases of a Design-Build-Test-Learn loop for high-
throughput laboratory science. The primary contribution of the Round Trip is to assist with and otherwise automate metadata
creation, curation, standardization, and linkage with experimental data. The Round Trip’s focus on metadata supports fast,
automated, and replicable analysis of experiments as well as experimental situational awareness and experimental interpretability. We
highlight the major software components and data representations that enable the Round Trip to speed up the design and analysis of
experiments by 2 orders of magnitude over prior ad hoc methods. These contributions support a number of experimental protocols
and experimental types, demonstrating the Round Trip’s breadth and extensibility. We describe both an illustrative use case using the
Round Trip for an on-the-loop experimental campaign and overall contributions to reducing experimental analysis time and
increasing data product volume in the SD2 program.
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1. INTRODUCTION

The lack of automated tools for experimental design,
execution, and analysis is a key barrier to quickly evaluating
biological designs. It is challenging to unambiguously describe
experimental plans in a format that laboratories can act upon.
Furthermore, it can be difficult to link experimental data to
metadata and experimental plans. The connection of
experimental intent to raw data to analyses is an expensive
(oftentimes manual) undertaking.1 Metadata describing the
contents, conditions, and context of experimental samples is
key to gaining insights from experimental data, but acquiring,
tracking, and maintaining metadata is tedious, expensive, and
error-prone.
The eradication of manual steps and human-mediated gaps

between experimental software components is formidable but
has the potential to improve both metadata reliability and the

speed of analysis through standardization and automation. We
have addressed this challenge by developing the Round Trip
(RT) architecture. The RT adopts “make metadata easy”
design principles, providing tools and representations to
automate tedious metadata design and encoding and react
and repair as needed.
We developed the RT as part of the Defense Advanced

Research Projects Agency (DARPA) Synergistic Discovery and
Design (SD2) project. The primary aim of SD2 is to help
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scientists and data scientists quickly develop a common
understanding of experiments. The SD2 project is structured
around several challenge problems and technology transition
demonstrations, many of which used the RT to conduct
experiments. SD2 involves approximately one hundred
researchers across multiple universities, companies, and
government laboratories. The organizations addressed the
five technical areas of the program as part of their
contributions to the challenge problems. The technical areas
include machine learning and data science for discovery,
experimental planning and design, experimental execution,
technology platform, and challenge problem formulation (in
the service of analyzing ad hoc socio-technical organizations).
The authors represent a cross-section of the organizations
addressing the technical areas as well as the challenge
problems. Within each challenge problem it addresses, the
RT helps connect scientists and data scientists by advancing
the metadata and automation needed to easily express and
quickly analyze experiments in so-called “AI-ready” data sets.
In doing so, the RT also enhances replicability through
automated experimental planning, robotic execution, versioned
data sets, and containerized analysis tools.
In the following, we describe the scope of experiments

addressed by the RT, related work, and an overview of the RT
elements.
1.1. Scope. We focus on high-throughput screening

experiments for synthetic biology that involve microbes, such
as bacteria or yeast, or cell-free systems. Each experiment
requires several measurements of the engineered strains or
biological materials, calibration samples, and controls under a
variety of conditions. The conditions include temperature,
media, and reagents (dyes, antibiotics, or inducers). The
measurements include plate readers (fluorescence and optical
density) and flow cytometry with an option for time series data
collection. The number of strains, conditions, and replicates

determines the number of samples. The number of samples
and measurements determines the number of data points. Each
experiment uses a protocol from a set of protocols described in
Section 4.2 to generate the data points. We address
experiments that include more samples than can be cultured
with a single microplate and, thus, require multiple runs of an
experimental protocol to generate the requisite data. These
data are aggregated together with metadata downstream of the
experimental process.
While we describe our work in the context of the scope

above, there are a number of ways that it can be adapted. High-
throughput screening usually involves microplate-based proto-
cols executed by robots, but our techniques have also been
applied to bench-scale protocols that replace the machine−
machine lab interface by a machine−human interface. The
supported reagents, containers, and measurements (and
resulting data types) have been extended to additional types
over the course of the SD2 project but do not require
architectural changes to the RT software. Likewise, the
addition of protocols may require extensions to experimental
descriptions but do not require architecture changes. We make
extensive use of the existing data formats, including SBOL2 to
describe strains and reagents, and formats such as FCS or CSV
for measurement data. We developed additional metadata
formats as part of the RT that are based on open formats and
that are readily extensible.

1.2. State of Practice. Figure 1 (top) illustrates the state
of practice encountered by the SD2 project at its inception.
This state of practice is illustrative of how scientists collaborate
outside of large industrial foundries (e.g., small to medium
sized academic laboratories) or across multiple institutions. In
this setting, several roles (which may be fulfilled by the same
person) must translate information between their respective
domains of expertise. In the SD2 program, each challenge
problem initially included 1−3 experimental designers, 2−3

Figure 1. Typical practice in biological collaboration (top) involves many iterations of communication between the collaborators dispersed across
multiple channels of communications, often leading to confusion, mistakes, and poor tracking of information about experiments (taking many
weeks). The RT (bottom) automates and provides structure to several human−human interactions required to plan and analyze experiments
(taking hours). The numbered stages constitute the major steps facilitated by the RT.
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laboratory technicians, and 4−5 data scientists (with 1−2
persons acting as both experimental designers and data
scientists). The process involves the following steps.

• The experimental designer must communicate their
experimental intent to a laboratory technician that
conducts the experiment (either at the bench or with
robotic automation). A new experiment typically takes
around 4 to 6 weeks to configure and send samples to
the laboratory, though the time may greatly depend on
the required materials and methods.

• The laboratory technician will gather raw data and
provide it to a data scientist. The execution of an
experiment will take as little as 1 day and up to many
weeks, depending on the details of the protocol and the
number of experimental runs required. Moderately sized
experiments typically require approximately 1 week,
though they may be much longer if the protocol requires
more than a few days to run.

• The data scientist develops a data set that describes the
raw data through a number of metadata attributes for
each measurement. He/she performs analysis and
develops a presentation of the data set. The process
often takes on the order of 4 to 8 weeks for analysis and
up to another week to develop the presentation materials
to ensure that the analysis accurately captures the
experiment.

Ambiguity and/or lack of structure to the information
exchanged by the roles complicates the development of the
final data set and analysis. Numerous interactions between the
roles (at the speed of human communication) will eventually
result in a suitable data set. In practice, the total process can
take weeks to months and is prone to confusion between
participants, mistakes in communication, and poor tracking of
information about the experiments. Moreover, attempts to
conduct similar experiments may need to repeat this process
and can result in data sets that are not directly comparable to
previous data sets.
In the following, we discuss how competing approaches have

developed experimental automation and data management
approaches for producing data sets from experimental
descriptions.
1.3. Comparison to State of the Art. Synthetic biologists

are increasingly attempting to improve the description of
experiments via various engineering methodologies often
structured around a Design-Build-Test-Learn (DBTL) loop.
While there have been many improvements, they have mainly
focused on the technical aspects of automation rather than
specifically addressing the challenges of collaborative science.
For example, much work on the test (i.e., experimentation)
phase includes automation in the form of Lab Inventory
Management System (LIMS) systems and laboratory robots
(e.g., Strateos,3 Aquarium,4 Emerald Cloud,5 and the
Edinburgh Foundry6). While being important for the
organization of repeatable experiments within a laboratory,
these improvements to the test phase do not specifically
address collaboration between stakeholders. The build phase
likewise includes automation at gene foundries such JGI7 and
MIT-Broad8 but similarly does not directly address collabo-
ration. Finally, some highly automated DBTL systems, such as
ESCALATE9 and the robot scientist,10 address specific
workflows (e.g., mapping a space of chemical reaction
parameters) and are able to achieve a tight integration of

each step in the loop. With a goal of moving toward this level
of integration and automation while also providing broad
support for many different forms of experiments and analyses,
it is difficult to fully remove humans from the loop. As we will
demonstrate, however, it is possible to accelerate experimenta-
tion by reducing the requirements on human participants.
In addition to these focused approaches, several companies

offer general data management systems for organizing
experimental data. The common theme among these offerings
is a consultation-driven adaptation of a propriety solution. For
example, these systems include Riffyn Nexus,11 Synthace,12

Benchling,13 and RadixBio.14 Riffyn Nexus is a process data
system that records and provides user and program access to
process data. Riffyn Nexus provides end-user development of
scientific workflow, analytical and manufacturing processes,
sample and material provenance, standardized data sets for
analysis, and data access control. The Synthace platform is a
cloud service that helps scientists describe and execute
experimental protocols as well as analyze and share their
data. Benchling is a cloud software service centered around
electronic lab notebooks that include not only experimental
protocols but also representations of biological designs,
inventory, scientific workflows, and analytics. Benchling also
provides tools for laboratory automation and data access
control. Radix Bio is a software platform for lab integration that
enables end-user development of automated protocols,
dynamic scheduling of protocols, equipment integration, and
experimental and data provenance.
Unlike the RT, these commercial solutions are closed-

source. The extension or migration of data and processes
between these services can be challenging or costly due to their
proprietary nature. The RT software components are free and
open source. The RT can, in principle, be extended to interface
with these commercial services and support the interchange of
data formats. For example, protocols described by such services
can be configured in the same manner that the RT configures
protocols. Forthcoming protocol interchange standards,15

developed as part of the SD2 project, are a possible avenue
for migration between the RT and other providers.

1.4. SD2 Round Trip. The RT is an open system that
connects experimental data and subsequent analyses with
deeply represented experimental constructs by resolving user-
friendly construct names. It focuses on helping experimental
designers specify the requested high-level data products and
then automating the selection of low-level details when
possible. The RT provides situational awareness of the
experimental process and monitors for errors, such as
mismatches between expected and actual data. It creates AI-
ready data sets that it automatically analyzes and presents.
Finally, the resulting data sets support reproducible analysis
through data-level aggregation (beyond just conclusion-level
aggregation).
The RT focuses upon the Test-Learn aspect of DBTL for

two main reasons. First, the Design-Build phases of DBTL are
frequently bespoke for a particular application, such as those
addressed by SD2 (genetic circuits in yeast, novel host
organisms, and cell-free riboswitches). However, these
applications share similar Test-Learn screening needs that
can be addressed by RT. Second, the RT developed out of an
effort to design robust genetic circuits. As part of assessing
robustness, it is necessary to selectively characterize the
operational envelope of a circuit by screening in a number of
experimental conditions. In order to cover the condition space,
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many Test-Learn “inner” loops within a single DBTL “outer”
loop are required. For these reasons, we have developed the
RT to be highly integrated for Test-Learn and have made it
extensible for easy incorporation within application-specific
DBTL loops. Furthermore, while our discussion is limited to
the types of experiments noted above, the RT is readily
adaptable to related experiments that include different types of
equipment, protocols, and organisms.
Figure 1 (bottom) illustrates the state of practice provided

by the RT and exercised by the SD2 project. This workflow is
similar in spirit to the proprietary solutions mentioned above
in that it seeks to simplify and automate as much of the
metadata collection and execution as possible. The stages
numbered from (1) the experimental inception to (11) the
presentation of the results remove the bottlenecks of the prior
state of practice. The RT helps to situate human interaction
where intuition and expertise are needed and automation
where tedium and the propensity for human error can arise.
Figure 2 illustrates the RT software architecture, also
numbered by stage (with relevant components illustrated in
a clockwise manner as the stages proceed). The pre-
experimental stages are implemented by components as they
proceed left-to-right on top, steps (1) to (5), to create an
automation-ready experiment, executed in step (6). The RT
attaches metadata to raw data as it returns through post-
experimental data processing components, steps (7) to (11).
The key steps are cross-referenced in Figures 1 and 2 and are
detailed in Section 2 section.
The RT has been developed over the course of three years

and has been applied to nearly one hundred experiments. Each
experiment produces hundreds to thousands of measurements,
often comprising many gigabytes of raw data. The resulting
inception-to-analysis latency of the RT is a few hours, not
including laboratory time. Figure 1 accounts for the
approximate time required by each RT processing stage,
which is approximately 8−10 h, not including a (typically) 1
week execution time at the laboratory. In contrast, prior to
developing the RT, the inception-to-analysis latency within
SD2 typically required several weeks or months. We attribute
this speed-up to automating some of the previously human-
intensive tasks. At the end of the SD2 program, we reduced the

number of experimental designers from one to three down to
one, the lab technicians from two to three down to one, and
the number of data scientists from four to five down to two to
three (with the experimental designer also acting as the data
scientist). This reduction from approximately ten persons to
three represents a significant labor savings that is also
multiplied across the reduced experimental cycle duration.
We attribute the staffing and workload differences to both
reduced complexity and automation.
Automation contributed to removing human−human

communication bottlenecks that arise from coordinating and
correcting ad hoc analogs of the steps automated by RT. For
example, a frequently observed issue in SD2 arose when the
experimental designer, laboratory technician, and data scientist
used different identifiers for strains. Without the RT, the
reconciliation of the discrepancies both before and after the
experiments were run involved: manually identifying the issue,
tracing through the experimental protocol, initiating several
correspondences between the stakeholders, and then institut-
ing a brittle identifier mapping in the analysis software.
Mistakes or other changes to the mappings necessitated
another manual repetition of the process. An important lesson
taught by this process is that more opportunities for manual
data entry equates to more data entry errors. With the RT, data
entry is the responsibility of one individual (the experimental
designer) and automation propagates updates throughout the
metadata. While human error can still play a role, automation
avoids inconsistent corrections, high communication latency,
and misunderstandings.
New RT users may access the RT by establishing an account

with the SD2 Enterprise organization, hosted by the Texas
Advanced Computing Center (TACC) (https://sd2e.org).
The components are also currently deployed at TACC as
containers and can be adapted to other container-based
deployments. The execution of experiments at Strateos also
requires one to establish an account with Strateos (https://
www.strateos.com). The SD2 project has open-sourced several
software components implementing the RT and will complete
the process for all components in late 2021 (https://github.
com/SD2E).

Figure 2. Round Trip architecture. The primary components include the Intent Parser,16 Data Dictionary,17 SynBioHub,18 the Structured Request
Generator, XPlan,19 Strateos,3 ETL and Data Repository (www.sd2e.org), Data Converge, Precomputed Data Table, Escalation,20 and a
Dashboard.
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In the remainder of the manuscript, we first describe the RT
data model and software architecture. We then demonstrate its
efficacy through the presentation of the empirical results of
applying the RT in the SD2 program over two years,
demonstrating 2 orders of magnitude improvement in time
from experimental design to completion of primary data
analysis. Finally, we conclude with a discussion of the results
and future directions.

2. RESULTS
Synthetic biology experiments can be complex, particularly
when high-throughput approaches are used. These high-
throughput experiments can involve many strains developed
from the modification of host organisms in a number of ways.
Furthermore, the experimental protocols can subject the
strains to various conditions and take measurements at several
times, possibly with different instruments. The analysis of the
data produced by the experiments requires not only the
context of each data point but also the relationships between
points. The capture, representation, and exploration of the
context (i.e., metadata) behind each data point are
considerable challenges, especially as the stakeholders
represent different organizations. Manual or ad hoc techniques
for representing metadata are prone to data entry errors,
human−human communication breakdowns and delays, and
costly error correction. The RT addresses these problems by
automating metadata construction, capture, and updates.
In the following, we use a running example of an experiment

called On-the-Loop Round 4.0 (abbreviated as Round 4.0).
The On-the-Loop of a multiple-round, screening-focused
experimental campaign was conducted with the RT. The
experiments sought to optimize the experimental conditions to
identify controllable sources of variation and to assess the
relative performance of various synthetic biology constructions.
We used 24 strains implementing six logic circuits in
Saccharomyces cerevisiae (yeast) using dCas9-Mxi1-based
NOR gates21 made from constitutively expressed short guide
RNA segments. Over five experimental rounds, we used a
configurable time series protocol to collect flow cytometry and
plate reader measurements and restricted our variable
conditions to four media types (standard, rich, slow growth,
and ethanol), two temperature conditions, and the timing of
sampling. We use this example to describe the RT data model,
software architecture, and results from using the RT in the SD2
Project.
2.1. Round Trip Data Model. We describe the RT data

model in terms of how it transforms its input, called an
Experiment Request (ER), to the output, which is a data set
containing both raw data and analyses annotated with strain
and experimental condition metadata. We use the Round 4.0
experiment to show how the RT makes this transformation.
Figure 3 illustrates the RT data flow from the ER to the data
set. The flow involves determining how the ER maps onto
multiple protocol launch runs, collecting and consolidating the
run data, and then producing a full data set that includes
analysis results.
The ER is a structured, natural language document

accessible to manual construction by an experimental designer
(Section S2 includes a full ER). The structured elements in the
ER (developed in RT steps 1−4) define a tuple (C, M, P)
where C is a set of controls, M is a set of measurements, and P
is a protocol. Each control c ∈ C identifies a measurement
m(c) ∈ M that will be used in the analysis, such as the

measurement characterizing the minimum or maximum green
fluorescent protein (GFP). The measurement set M, made of
both the controls and experimental samples, represents the
metadata describing the data points expected by the ER. The
protocol describes the method by which the ER will generate
the data points.

Tables 1, 2, and 4 illustrate excerpts from three structured
sections of an ER, respectively, corresponding to C, M, and P.
The contents of these tables include values from Round 4.0
(the final round) of the multiround experimental campaign to
screen yeast circuits.
The experimental designer will specify the control table

(Table 1) to label specific measurements with control type
labels. Downstream analysis tools may then use these labels to
configure their analyses. In the Round 4.0 experiment, the
controls are the reference high (logical true) and low (logical
false) output for the 24 strains implementing one of four truth
table rows of six logic circuits (e.g., that a strain implements the
NOR(true, true) = false rule of the NOR circuit). The controls
are denoted by two strain identifiers: W303, the low control
that is the wild-type background strain, and UWBF_6390, the
high control that is the same background strain with a
constitutively expressed GFP. The controls are measured while
grown in multiple different media and at different time points.
The control table identifies which time points are used for the
reference GFP values.
Table 1 is “Table 1” of several control tables (not shown)

that are cross-referenced in the first column of the measure-
ments table illustrated in Table 2. The control table maps
control type labels to measurements (by strain and

Figure 3. RT transforms an ER into a data set by creating and
merging multiple experimental runs and producing multiple analyses.
The numbers 1 to 11 reference the RT stages that process the
indicated data model elements.

Table 1. Round 4.0 Control Tablea

Table 1: Control

Control type Strains Channel Contents
Time point

(h)

EMPTY_VECTOR W303 SC
media

8

HIGH_FITC UWBF_6390 BL1-A SC
media

18

aEach control table in an ER identifies measurements that the RT will
annotate with control labels.
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conditions). That is, any measurement that is consistent with
the description of a control type label will receive the label.
The control table also identifies, in the case of flow cytometry
data, the channels that correspond to the control label (e.g., the
BL1-A channel corresponds to the HIGH_FITC label).
The control labels support downstream automated analysis.

For example, one RT-integrated analysis, called signal
prediction, uses control type labels for flow cytometry
measurements to identify training data and class labels. It
then learns a model to predict whether a flow cytometry event
corresponds to a low control (EMPTY_VECTOR) or a high
control (HIGH_FITC). With these predictions, the analysis
result can be used to calculate the quality of each logic circuit
in the Round 4.0 experiment (e.g., the proportion of events
reporting the correct circuit output).
The experimental designer will also specify a measurement

table (Table 2) to identify every measurement that the
experiment shall produce. In the Round 4.0 experiment, the
experimental designer requests measurements of three types of
media (possible sources of variation) with a plate reader (at
five time points) and flow cytometry (at four time points). The
measurements include both controls (six replicates) and the
strains (three replicates) implementing the logic circuits (e.g.,
the strains UWBF_6389, UWBF_7375, and UWBF_8825,
among a total of 24 strains).
Table 2 lists a “control” column, followed by several

metadata columns. The “control” column identifies which
control table will be used to label the measurements described
by a row in the measurement table because each row in the
measurement table corresponds to multiple measurements.
The measurements described by a row correspond to the
cross-product across columns within the row. For example, the
first row in Table 2 defines:

{ } × { _ } × { }

× { } × { _ }

× { } × { }

SC media PLATE READER CSV

1, 2, 3, 4, 5, 6 UWBF 6390, W303

0, 8, 12, 16, 18 30

where the low and high controls are grown in SC media and
measured by a plate reader at 0, 8, 12, 16, and 18 hours and at

30 °C. These 60 data points correspond to the rows of an
expanded table with one measurement per row, as in Table 3.
The protocol P defines a lab-specific identifier for the

protocol and a set of parameter−value pairs for the protocol.
The protocol identifier maps to an opaque protocol supported
by the laboratory. For example, the Round 4.0 experiment uses
the Strateos TimeSeries protocol to generate the plate reader
and flow cytometry measurements. Strateos provides a JSON-
based protocol schema that the RT planning component must
follow to launch an experimental run. The RT describes the
interface to each protocol schema with a number of common
terms for the parameters (resolved by its Data Dictionary).
Table 4 lists a subset of the common term parameter−value

pairs needed to configure the TimeSeries protocol. The RT
determines the remaining parameter−value pairs by planning
the experiment over a number of protocol runs. For example,
the measurements encoded by Table 2 must be generated by at
least three distinct protocol runs (at least one per media type).
Each run will extend the parameter table values with run-
specific parameter−value pairs that are determined by the RT
planner in step 5 of the RT process. For example, runs may use
one of the values {SC Media, rich_media, high_osm_media}
for the media parameter.
The lab will execute each protocol run and generate a set of

measurements in step 6 of the RT process. The lab will upload
the data and lab-specific metadata for a set of measurements to
the RT. In steps 7 to 9 of the RT process, the RT maps the
measurements produced by the lab to the measurements in M.
The RT will then process the measurements and produce a
data set. The data set includes many data products, which

Table 2. Round 4.0 Measurement Tablea

Control Media Measurement Type
Ffile
Type Replicate Strain

Time point
(h)

Temperature
(°C)

Table 1 SC media PLATE_READER CSV 6 UWBF_6390, W303 0, 8, 12, 16,
18

30

Table 4 SC media FLOW FCS 6 UWBF_6390, W303 8, 12, 16, 18 30
... ... ... ... ... ... ... ...

SC media, rich_media,
high_osm_ media

PLATE_READER CSV 3 UWBF_6389, UWBF_7375,
UWBF_8225, ...

0, 8, 12, 16,
18

30

SC media, rich_media,
high_osm_ media

FLOW FCS 3 UWBF_6389, UWBF_7375,
UWBF_8225, ...

8, 12, 16, 18 30

... ... ... ... ... ... ... ...
aEach row in the measurement table describes a set of expected measurements to be produced by the ER.

Table 3. Expansion of the Measurements Table in Table 2

Media Measurement Type File Type Replicate Strain Time point (h) Temperature (°C)

SC media PLATE_READER CSV 1 UWBF_6390 0 30
SC media PLATE_READER CSV 1 UWBF_6390 8 30
SC media PLATE_READER CSV 1 UWBF_6390 12 30
... ... ... ... ... ... ...

Table 4. Round 4.0 Parameters Tablea

Parameter Value

protocol TimeSeries
inoculation volume 10 μL
inoculation media volume 700 μL
... ...

aThe parameters table identifies the protocol id and several
parameter−value pairs used to configure the protocol.
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result from several processing stages. Most notably, the RT
produces a data table for each sample and measurement type.
For example, Table 5 lists raw optical density and fluorescence
measurements for samples in M. In steps 10 to 11 of the RT
process, the analysis tools consume the raw measurement
tables to produce additional analysis results. For example, the
growth curve analysis tool aggregates the optical density values
over the time points to calculate a growth rate. Its output is
another table that eliminates the time point column and adds a
growth rate column. The RT analyses either aggregate over
columns such as time points or reagent concentrations to
compute new columns containing their outputs or compute
per data point output values that extend the table columns.
2.2. Round Trip Software Architecture. The RT

automates metadata consolidation, experimental execution,
data tagging, and analysis. Its implementation comprises
several software components and intermediate data formats
needed to implement the process. The primary existing
software used by the RT includes SynBioHub,18 SBOL,2

TASBE,22 and the Strateos platform3 (many of which were
advanced as part of developing the RT). The remaining
components were developed as part of the SD2 project.
Due to the nature by which the components interact, we

describe the RT by the processing stages introduced in Figure
1. Figure 4 summarizes each stage. The following describes
each stage in detail, highlighting the behavior of each relevant
software component.

2.2.1. Inception. The inception stage is the experimental
designer-driven part of the scientific method that involves
generating a hypothesis and considering the experimental
method needed to validate the hypothesis. While potentially
capable of being extended to a closed-loop experimental tool,
the RT does not play a direct role in experimental inception.
Rather, the RT indirectly influences the inception through the
type and nature of the experiments made available to the
experimental designer. In particular, the RT implementation
reported here currently includes five configurable experimental
protocols, described in Section 4.2.
In the Round 4.0 experiment, the inception stage required

the experimental designers to consider their original intent to
identify sources of variation and the results from previous
rounds. Round 3.0, the previous round, demonstrated more
variation in strain behavior (circuit output signal) from time
point 12 to 24 h than from 24 to 36 to 48 h (separated by 12 h
intervals). The experimental designer developed Round 4.0 to
better characterize variation in the time to reach log phase
growth and peak expression by requesting finer time points
between 8 and 24 h (separated by 6 h intervals). The
experimental designer also omitted the slow_media type used
in Round 3.0 due to its relatively lower variation over this time
period. While our experiment was designed manually,
automated experimental design techniques (e.g., based upon
Bayesian optimization23) can use RT data sets to make similar
determinations about when to measure.

Table 5. Example Plate Reader Data Tablea

Media Replicate Strain Time point (h) Temperature (°C) Optical Density Fluorescence

SC media 1 UWBF_6390 0 30 0.258 20.491
SC media 1 UWBF_6390 8 30 0.260 26.066
SC media 1 UWBF_6390 12 30 0.373 38.534
... ... ... ... ... ... ...

aData tables combine measurement metadata with raw data to support analysis tools.

Figure 4. RT facilitates several steps in the experimental process from experimental inception to the presentation of the results.
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2.2.2. Specification. The specification of an experiment
involves creating an ER. In addition to the controls,
measurements, and protocol parameter tables, the ER includes
several pieces of information that describe the context of the
experiment. The primary sections are the front matter
(describing points of contact, date, etc.), the goal of the
experiment, the rationale for the experimental method, a
description of the protocol, the identified stakeholders, and any
risks and mitigations.
The Round 4.0 ER configures a time series experiment with

three media types, two controls, 24 strains, two measurement
types, and five time points (i.e., 1440 total reporting conditions
and either three or six replicates per strain). Before the RT can
process these data, it seeks to annotate the terms with their
definitions. For example, to assess strain performance, the RT
must know the input−output state expected for a specific logic
circuit that strain UWBF_7299 implements.
2.2.3. Annotation. The annotation of the terms appearing

in an ER is critical to avoid ambiguity and provide a long-
term/reusable data set for the experiment. What the
experimental designer describes as “SC media” may in fact
correspond to what the laboratory technician describes as
“synthetic complete media” and the LIMS indexes under the
machine identifier rs1b4uj7zbdy6m. Moreover, the data
scientist that determines the impact of media upon growth
rates may not be able to distinguish these terms from publicly
available descriptions of the media ingredients. Similarly,
automated analyses require additional information about the
terms, such as the intended logic function implemented by a
strain.
The RT solves this coreferencing and data linkage challenge

with three software components: the Intent Parser,16 the Data
Dictionary,17 and SynBioHub.18 The Intent Parser (assisted by
its Google Docs add-on client) provides several features for
annotating the ER. The Intent Parser identifies terms in the
ER, flags them for annotation, and provides possible quick-fix
actions. The Data Dictionary and SynBioHub store data that
backs the Intent Parser business logic. The Data Dictionary
lists common terms and synonyms, unique SynBioHub URIs
defining the terms, and laboratory-specific nomenclature and
identifiers. SynBioHub provides unique URIs for common
terms that can be bare representations of the terms, SBOL2

representations (e.g., the genetic sequence, expected gene
products, and regulatory model), or links grounding in external
databases such as ChEBI or UniProt.
Through a simple process facilitated by the Intent Parser

add-on, the experimental designer can hyperlink each term
with a SynBioHub URI. For each term, the Intent Parser
provides a list of possible common terms and URIs that are
close matches. The experimental designer can either select one
of these suggestions or add his/her own. The Intent Parser
adds new common terms by automatically populating the Data
Dictionary and SynBioHub for the experimental designer. The
experimental designer can provide synonyms and SBOL
representations of the term either at the creation time or at
any later time. A full annotation of the terms present in the ER
provides additional metadata for later analysis. For example,
the RT helps annotate the strain identifier UWBF_7299 with a
URI https://hub.sd2e.org/user/sd2e/design/UWBF_7299/1.
Annotation is the first step to ensuring that RT data

products can not only be produced without ambiguity but also
later be analyzed reliably. While there is opportunity for human
error, it is isolated to the specification and annotation stages.

Automation carries the metadata linked by the annotations
through the RT so that no further compounding of human
error can occur. Likewise, corrections to the annotations can
be automatically pushed through the RT to avoid multiple,
costly, human-driven edits. With a fully hyperlinked ER, the
RT proceeds by generating a formal representation of the ER,
called a Structured Request.

2.2.4. Structuring. When the experimental designer is ready
to execute the experiment, they use the Intent Parser client to
submit the experiment. The first step of submission involves
converting the semistructured ER into a Structured Request.
The Structured Request is a stand-alone JSON representation
of the ER that relates the controls (C), measurements (M),
and parameters (P) along with hyperlinks, common names,
and synonyms for all terms.
The Intent Parser, Structured Request Generator, and Data

Dictionary coordinate to populate the Structured Request.
Through the Intent Parser client, the experimental designer
invokes the Structured Request Generator to send the
annotated ER as input. The Structured Request Generator
populates the Structured Request with an expansion of the
Measurement Table into a set of measurements M (similar to
the content in Table 3) and further annotates the Structured
Request with laboratory specific terms. While the ER contains
common terms that are hyperlinked to their SBOL
representations in SynBioHub, the lab (i.e., Strateos) chosen
for experimental execution will have its own terms, often
opaque LIMS identifiers. The Data Dictionary labels synonyms
of common terms with those of the laboratory technician. (An
added benefit is the ability to repurpose ERs for execution at
multiple laboratories because the Data Dictionary resolves the
terms.) With a complete Structured Request, the Structured
Request Generator submits the experiment for planning.

2.2.5. Planning. The XPlan experimental planner19

determines how to configure the protocol to execute the
experiment, over several experimental run launch requests.
XPlan also produces additional metadata that describes how its
decisions impact each measurement (e.g., which lab container
and well contain the sample). XPlan returns the metadata to
the Structured Request Generator so that it can consolidate the
metadata in the Structured Request.
XPlan decides several low-level details governing the

experimental execution to reduce burden on the experimental
designer. Most notably, XPlan: (1) partitions the measure-
ments into experimental runs, (2) assigns reagent concen-
trations and replicate ids to container wells, and (3) enforces
constraints to ensure the ER can be accomplished with the
available lab resources.
XPlan encodes this decision problem as a Satisfiability

Modulo Theories (SMT) problem24 and applies the z3
solver.25 The SMT problem seeks to assign a set of variables
that satisfy several constraints, including: each requested
measurement is produced by a well of a container of a run,
each container in a run obeys experiment-wide constraints (e.g.,
uses the same temperature because containers from multiple
runs occupy the same incubator), each well in a column has
the same reagent concentrations (e.g., if the protocol uses
multitip pipettes that address columns), and each well of a
container produces the same measurements (e.g., a plate read
at 4 h, and flow cytometry read at 8 h).
If satisfiable, XPlan extracts a measurement to run mapping

from the assignment found by the SMT solver. This additional
metadata also helps XPlan create and submit the experimental
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run launch requests for execution at the lab. The lab responds
with a run identifier for each, and XPlan attaches the
measurement to run mappings to the Structured Request. At
this point, the Structured Request has all the information
needed to link the requested measurements with the data to be
produced by the lab.
The Round 4.0 experiment uses the TimeSeries protocol,

which implies several types of constraints. Experiment-level
constraints state that each run uses the same temperature (30
°C) due to a shared incubator. Run-level constraints state that
all measurements from the same run must use the same media
due to liquid handler restrictions and that the measurement
time points must fall within allowed ranges and frequencies.
Sample-level constraints state that each measurement of the
same replicate of a strain is made from the same microplate
well and that there is one sample per well. While not exercised
in the Round 4.0 experiment, the TimeSeries protocol has
column- and row-level constraints that require all wells within
a column or row to receive the same reagent concentration.
2.2.6. Execution. While an ER may require many measure-

ments, XPlan partitions the measurements into runs (physical
batches). In this way, the lab does not need to know about the
ER and the experimental context. The RT provides the lab
with all the information needed to initiate a run. In principle,
this permits the RT to use multiple laboratories to produce the
requested measurements. In practice, the RT is currently
integrated with the Strateos robotic cloud laboratory and the
extension to additional laboratories requires similar mappings
from the ER to the protocol launch.
The run launch parameters specify the protocol, protocol

configuration values, materials (e.g., reagents and containers),
and measurements. The lab uses the parameters to configure
and run the experiment. The experiment results in two types of
data. The first is a sample trace, describing the generated
measurements (e.g., the file corresponds to measuring a well at
a given time). The second is the raw measurement data, such
as CSVs of plate reader data or FCS files produced by a flow
cytometer.
2.2.7. Acceptance. The Acceptance stage compares the lab

results with the expected measurements that the RT prepared
prior to the Execution stage. The Structured Request
Generator computes the difference and produces a summary.
This summary lists both unrequested and unfulfilled measure-
ments in terms of their metadata. It also provides descriptive
statistics, such as the counts of measurements fulfilling
different experimental factors.
The RT proceeds automatically beyond the Acceptance

stage if the Structured Request Generator is able to correctly
align the expected and actual experiments. If not, it provides
the summaries to the experimental designer and laboratory to
correct the deviations. The correction process involves altering
the expected samples by updating the ER or updating the
experimental data produced by the lab. In both cases, the RT
recomputes any intermediate data and repeats the measure-
ment alignment process.
While not exercised in the Round 4.0 experiment, the

Acceptance stage has been used to identify additional
measurements produced by the lab. For example, if an ER
omits a strain that is already present on the microplate used to
initiate an experiment, the lab will report unexpected plate
reader measurements for this strain. Similarly, the lab may omit
measurements, such as those taken at a particular time point.

2.2.8. Extract Transform and Load. The ETL stage
involves storing the experimental data in a cloud file system
hosted at TACC through an S3 bucket, ingesting the
measurement metadata into a Data Repository, and running
data cleansing pipelines. Due to its size, the storage of the
experimental data can be challenging. TACC stores data on its
cloud platform and provides several important utilities,
including backups, access protocols, and high performance
computing nodes for preliminary data analysis. TACC also
hosts the Data Repository that records all experimental
metadata. The Data Repository is a MongoDB database (a
NoSQL database) that represents the Structured Request and
sample trace metadata provided by the lab, which can vary by
protocol and experiment. The flexibility of the database
supports easy data ingest. In contrast, the following Stand-
ardization stage supports ease of analysis by consolidating the
data into a format that does not vary by protocol and
experiment. The final ETL steps correspond to data cleansing
software such as RNASeq pipelines and TASBE flow cytometry
tools22 that produce additional data products.

2.2.9. Standardization. The Standardization step draws
upon the ETL data products to create several AI-ready data
tables, as demonstrated in Table 5. The provision of a
consistent set of columns for each table, along with standard
units and data value conventions, enables one to compare
analysis techniques across experiments. It also reduces the
burden of creating and applying automated analysis. The RT
achieves standardization with the Data Converge component.
Upon ETL completion, Data Converge runs automatically.

Data Converge also runs as needed as requests for additional
data table columns arise. Data Converge also retains versions
of every data table it produces to maintain backward
compatibility. The standard data products it creates include:
raw and log transformed flow cytometry event-level and
summary data tables, metadata for each flow cytometry data
table that describes the columns and their value statistics, plate
reader measurements, and RNASeq data.
The metadata added by Data Converge originate in the Data

Repository and include: the strain (common name and
SynBioHub reference), input and output states (for genetic
circuits), protocol, time point, replicate id, media, inducer
concentrations, instrument settings, date of experiment,
laboratory, and cell counts. This metadata aims to capture
the essential parameters of an experiment along with the
biological constructs, reagents, and measurements. Data
Converge products are the single point of reference for all
tools in the Analysis stage.

2.2.10. Analysis. The Analysis stage automatically follows
Data Converge completion and runs several analysis algorithms
in parallel. Each analysis algorithm reads Data Converge data
products and writes a variety of analysis results. Each result is a
data table that includes the same metadata columns produced
by Data Converge and additional columns that constitute the
analysis output. Each analysis technique may also aggregate
over Data Converge data table rows (e.g., aggregate over rows
corresponding to a time series of measurements for each
sample).
The process of applying the analyses is overseen by the

Precomputed Data Table component. The Precomputed Data
Table matches data products with analyses, determining which
pairs are compatible. For example, the Precomputed Data
Table executes growth curve and doubling time analyses upon
plate reader data and several fluorescence-based analyses upon
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flow cytometry data. For each analysis and data pair, the
Precomputed Data Table manages the execution, result
storage, and dashboard reporting.
2.2.11. Presentation. The RT finishes its processing

pipeline with visualizations of the Analysis stage results in
the Presentation stage. The visualizations are organized by the
Escalation software component.20 Escalation uses a web
interface to provide interactive data exploration with several
predefined, interactive plots meant to address specific
experimental designer concerns. In addition to the visual-
izations provided by Escalation, data scientists may extend
Escalation or develop their own visualizations from the Data
Converge and Precomputed Data Table data products. For
example, the TACC environment provides Jupyter notebook-
based interfaces to the data products for interactive scripting of
custom visualizations.
2.3. Use of Round Trip in SD2.We evaluate the impact of

the RT in terms of a representative use case and a broad
characterization of the benefits gained over the course of the
SD2 project.
2.3.1. On-the-Loop Discovery and Identification of

Sources of Variation. The RT supports a rapid experimental
investigation paradigm where the experimental designer can
guide and monitor a largely automated experimental campaign
while “on-the-loop”, rather than being deeply involved in each
step. We conducted several rounds of experiments with the
yeast circuits to identify the sources of variation and candidate
circuit designs requiring redesign to improve their quality and
robustness. We describe the impact of the RT upon this

process in terms of the duration and types of analyses
supported.
Table 6 lists the RT end-to-end duration and turnaround

time for each round of the experimental campaign. Each round
involved a number of different runs (indicated in the table),
where each used the time series protocol with a different media
and distinct starting 96-well microplate. The table lists the
submission and completion date of each round, measured from
the start of ER authoring to the final analysis completion. The
table also lists the duration in days between submission and
completion that includes overall (wall-clock) time and active
(user-engagement) time. Finally, the turnaround time denotes
the overall and active time for the experimental designer to
plan the round, on the basis of data from the previous round.
While the overall duration and turnaround were impacted by
unrelated laboratory and experimental designer workload (i.e.,
other work tasks and vacation/holidays), the active time was
relatively consistent. The primary impact upon a round’s active
duration was the extent to which runs were run in parallel at
the laboratory. The results show that the mean active duration
of an experimental round was 2.8 days, and the mean active
turnaround time spent planning a round in response to the
previous round was 1.1 days. This was for a mean number of
2.8 experimental runs per round and resulted in a mean of
1992.6 measurements per round.
Within the campaign, we sought to determine the degree to

which the strains and circuits: (1) perform under different
conditions, (2) replicate performance within experimental
conditions, and (3) are robust to experimental conditions.
Figures 5, 6, and 7 illustrate results from several different

Table 6. Summary of the On-the-Loop Experimental Campaigna

Round Runs Measurements Submission Completion Duration (overall) Duration (active) Turnaround (overall) Turnaround (active)

1.0 4 2916 7−10−20 7−18−20 8 3
1.1 2 1458 9−1−20 10−1−20 30 2 44 2
2.0 1 486 9−29−20 10−1−20 3 2 72 0.5
3.0 4 2916 10−27−20 11−7−20 11 4 28 1
4.0 3 2187 1−28−21 2−11−21 14 3 83 1
mean 2.8 1992.6 13.2 2.8 56.8 1.1

aDuration and turnaround are measured in days. The round 2.0 turnaround is measured with respect to round 1.0.

Figure 5. RT produces data tables that report data points along multiple dimensions, including optical density and cells/mL. The respective box
plots illustrate the per media and time point distributions of the replicates along these dimensions.
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analysis techniques, enabled by the RT. The analyses, which
were taken from Round 4.0, include optical density and
estimated cells/mL per media and time point (Figure 5),
circuit function ranking over all conditions (Figure 6), and
variation in circuit performance aggregated by alternative
experimental factors (Figure 7). The first two analyses were
produced by data scientists from data tables within the data set
created by the RT. Figure 5 illustrates how RT data tables,
which record per data point measurement values, can readily
identify per media and time point distributions over replicates.
Figure 6 illustrates how more advanced analysis techniques can
produce high-level summaries. The circuit scoring method
ranks how well the truth table for each of the six Boolean logic
circuits best matches the measurements for a given circuit. The
figure illustrates the rank of the expected circuit against the
measurements for the circuit across all strains, replicates, and
conditions. This summary highlights that the OR and NOR
circuits are not behaving as expected because their true and
observed ranks are significantly different. Figure 7 illustrates
three plots generated by the RT analysis called Data Diagnosis.
It shows how a tool automated by the Precomputed Data
Table can compute useful summaries of the data set. Data
Diagnosis computes the distribution of the ratio of the
fluorescence (relative to the low control) of each dimension of
the data set, including strain, time point, and media. The p-
value for each distribution signifies how poorly the dimension
explains variation in the performance.
The analyses helped to answer the questions about

performance under different conditions, replicability, and
robustness. These analyses not only helped our data scientists
reach conclusions about the strains but also guided the rounds
of experimentation. Most notably, they helped to identify the
most promising growth conditions and time points to use for
sampling. Analyses such as these impact the RT workflow by
providing experimental designer feedback that can result in
three outcomes: (1) develop a new ER to gather additional
measurements, (2) end the experimental campaign, or (3)
redesign the strains or biological materials, followed by
gathering additional measurements with the RT.

2.3.2. Cumulative RT Experimental Impact. In addition to
the experimental campaign described above, the RT has been
used for many other experiments within the SD2 program.
Figure 8 illustrates the cumulative number of experiments run
over the course of the SD2 project separated by phase,
cumulative number of data product files produced, and the
time required to analyze new experimental data to produce
data sets. Each experimental data point refers to the date where
the data for a respective experiment was delivered to the SD2
data repository. Prior to the RT deployment and use (i.e., from
late 2017 to mid 2019), data was uploaded in a preliminary
format. Figure 8 illustrates the Phase 1 experiments as a dashed
trend line only to indicate that the experiment upload to the
SD2 platform was sporadic with several large batches occurring
months after execution. Overall, in Phase 1, there were 0.19
experiments per day, using one experimental protocol.
The RT was deployed in November of 2019. We note that

the lack of additional experiments in mid 2020 was due to
reduced capacity in candidate experimental designers creating
samples to screen with the RT due to COVID-19 mandates.
The ingest date depicted by Figure 8 over this period is much
more closely aligned with the experimental date. The
experimental frequency afforded by the RT was 0.29
experiments per day over Phase 2 and 0.39 experiments per

Figure 6. RT supports analyses such as Circuit Scoring that aggregate
all measurement data across multiple ERs. Circuit Scoring computes
the mean rank of each circuit: how well the observed circuit function
implements the intended circuit (rank 1 indicates the circuit
implements the intended circuit function better than all other
possible alternative circuits).

Figure 7. RT automates several analyses, including Data Diagnosis.
Data Diagnosis measures the association of performance with
experimental variables, such as strain, time point, or media. Each
plot shows the performance ratio data grouped by variable.
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day over Phase 3, representing a 2.05× increase in the rate of
experiments. The experiments in Phase 2 comprised four
experimental protocols and in Phase 3, five protocols,
contributing to the increased complexity of the set of possible
experiments.
The first right axis in Figure 8 illustrates the cumulative

number of data product files uploaded to or created on the
SD2E platform over the course of the SD2 project. The plot of
the cumulative number of data products exhibits two inflection
points, located in December 2018 and March 2020. Prior to
the first inflection point, as noted above, we developed a
preliminary data format and built software to support a more
rapid, bulk ingest of the data. During this time before
December 2018, the rate of data product generation was
44.11 files per day. Following bulk ingest and prior to RT
deployment, the rate of data product generation increased to
931.30 files per day, mainly due to the bulk processing
experiments run in the prior months. The combined rate of
data product generation prior to the RT was 292.20 files per
day. Following the RT introduction, the rate of data product
generation was 495.54 files per day, a 1.70× increase in the rate
of data product generation. The second inflection point
indicates the time at which the RT data set production was
made operational for a large set of experiments.
Finally, the second right axis in Figure 8 illustrates the

estimated time to produce an analysis of an experiment after
the data was uploaded. The 4.20× speed-up from Phase 1 to
Phase 2 corresponds to the introduction of the RT to automate
metadata creation with manually triggered, yet standardized
analysis. The final 30.10× speed-up from Phase 2 to Phase 3
was achieved by automating all of the metadata creation, data
standardization, and analysis. Overall, from Phase 1 to Phase 3,
the SD2 RT elements contributed to a 126.10× speed-up in
producing the analyses of the experiments.

3. DISCUSSION AND FUTURE WORK
3.1. Discussion. The RT comprises several software

components that are aimed to help create and curate metadata
in support of generating and automatically analyzing large data
sets. The primary contributions of the RT are flexible
knowledge representations and automated processing steps
that support experimental designers in specifying their
experiments and maintaining the integrity of the data
produced. We have demonstrated an increased rate of
experiments and complexity and decreased data analysis
times that result in significantly more data being generated

per time period. We have also applied the RT to multiple
different experimental protocols, organisms, and DBTL loops.
The RT in its current form is available for use on the TACC

infrastructure and through a public Github organization.
Future projects can readily build upon the RT extensible
architecture to include new protocols, laboratories, data types,
and analyses. For example, we adapted the RT to a DBTL loop
for screening cell-free riboswitches within two months,
including a new protocol and related ER measurement table
structure and sample trace format. As the RT is based on
containerized software components that do not rely strongly
on any particular cloud platform, future usage can also include
transition to other public or private computational environ-
ments.
We have run several pilot experiments with prospective

government transition partners (and are seeking industry and
academic partners), which has motivated some of the future
work items below. Broadening the adoption of the RT also
requires additional standardization around the support for new
laboratories, protocols, and data analyses. Currently, the
integration of this new type of functionality requires software
development rather than declarative interface specifications.

3.2. Future Work. There are many possible directions for
future work, including alternative software hosting, protocol
authoring, and increased experimental design automation.
While developed for cross-organization collaboration, the

RT software can be adapted to benefit organizations that
require local hosting of software components. The primary
extensions include (1) replacing the Google Docs interface for
the ER with a similar document sharing solution, such as
Markdown and Git, and (2) extending the support for
additional laboratory interfaces for launching protocol runs.
To support experimental designer authoring of protocols, we

have developed the Protocol Activity Modeling Language
(PAML).15 PAML is an open standard built upon the UML
Activity Model.26 It uses primitives that map onto
Autoprotocol instructions and other protocol description
formats. We have demonstrated automated submission and
execution of end-user authored protocols that translate PAML
into Autoprotocol for Strateos runs. Future work on PAML
and the RT could combine protocol and ER authoring as well
as simplify the Planning, Acceptance, ETL, and Stand-
ardization stages.
Finally, the RT has the potential to support increased

experimental design automation by lifting the ER specification
to make hypotheses and experimental intent machines

Figure 8. RT performance in SD2. Left axis (blue, orange, and green lines): Cumulative number of experiments over the course of the SD2 project,
separated by program phase with linear fit (dashed) lines. The RT was introduced near the start of Phase 2, as indicated by the vertical black line.
Phase 1 data did not closely track experimental dates, and we illustrate the linear fit only. First right axis (red dotted line): Cumulative data product
volume over SD2. Second right axis (gray bars and black lines): Mean time to analyze data after experimental data upload by the program phase of
SD2.
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processable. From these high-level specifications, an automated
experimental design algorithm could identify the controls,
measurements, and protocol parameter tables. Furthermore,
the Analysis stage can be more finely tuned to address the
hypothesis with the experimental data. Another potential
improvement to the Analysis stage would be to automate or
support users to chain analyses.

4. METHODS
4.1. Computational Infrastructure. Computational infra-

structure for the RT is implemented using technologies from
TACC and Strateos. The RT is implemented as an integrated
set of software components that are deployed on the TACC
high performance computing platform. The RT configures,
initiates, and analyzes data from several experimental protocols
on the Strateos robotic cloud laboratory platform.
TACC provides several high performance computing

(HPC) clusters that are accessible through the SD2E portal
(www.sd2e.org). RT components that run on the clusters are
orchestrated through the Tapis platform.27 Tapis brings
together public, private, and shared HPC, high-throughput
computing (HTC), Cloud, and Big Data resources under a
single, web-friendly REST API. The RT uses Tapis to
configure storage systems (for controlled access to data and
metadata) and execution systems (for allocating jobs and
applications to specialized hardware). Orchestration happens
through the Tapis app and actor frameworks.
An app, in the context of Tapis, is an executable code

available for invocation through the Tapis Jobs service on a
specific execution system. Apps are language agnostic,
providing an interface to containerized code. TACC provides
an apps service, a central registry for all Tapis apps that
provides discovery services and permissions, validation,
archiving, and revision information about each app. The RT
uses apps for compute-heavy operations, such as XPlan SMT
solving, Data Converge data processing, and Precomputed
Data Table component analyses.
The Tapis actor framework is similar to that of apps but

focuses on messaging capabilities and lightweight computing.
For example, the Structured Request Generator, XPlan, and
Precomputed Data Table use actors to send and respond to
messages as well as dispatch jobs to apps. Both XPlan and
Precomputed Data Table respond to requests to process new
experiments and dispatch heavy-weight processing to apps.
The actor and app interaction methodology provides the
capability to respond to heterogeneous use cases and scale-up
computing requirements as needed.
In addition to the TACC Tapis platform, the RT provides

access to a project dashboard to gain better insight into
experimental processing status. The dashboard lists each
experiment and batch along with timestamps for important
processing steps and links to intermediate data produced (e.g.,
ERs, Structured Requests, laboratory data, ETL, Data
Converge, and Precomputed Data Table products).
4.2. Protocols. Five protocols were used by the RT to

produce the data reported in the results. These protocols are
implemented by Strateos at their robotic cloud laboratory and
named HarmonizedYeastGates, GrowthCurve, TimeSeries,
ObstacleCourse, and Cell-Free-Riboswitches. There are several
similarities between the protocols. Each protocol generates
plate reader and/or flow cytometry measurements. Most
protocols require an initial microplate that contains the
experimental strains and begin with an “overnight” growth

phase to help samples recover from cold storage. This is
followed by a growth phase with various time point
measurements. The details of how to configure each protocol
can be obtained through the Strateos API (https://github.
com/strateos/transcriptic), which specifies a JSON-based
schema for the available parameters.
The HarmonizedYeastGates protocol was developed early in

the SD2 project to investigate cross-laboratory reproducibility
through a common protocol executed at three geographically
separated sites. The protocol begins with an overnight
incubation of a glycerol stock microplate plus plate reader
measurements to determine the optical density of each sample.
The protocol uses the optical density to dilute each well to
meet a configurable target optical density. After dilution, the
protocol incubates the samples for a configurable duration and
ends with a plate reader and flow cytometry measurement.
The GrowthCurve protocol provides a time series of plate

reader measurements to characterize the growth rate of the
samples arrayed on a microplate. The protocol begins with
overnight growth, similar to the HarmonizedYeastGates
protocol, followed by incubation with a configurable series of
time points at which plate reader data is collected.
The TimeSeries protocol builds upon the GrowthCurve

protocol capabilities by additionally offering flow cytometry
measurements at configurable time points. The protocol also
offers a configurable series of recovery steps that collect plate
reader measurements. The recovery steps are followed by an
induction step that permits addition of a reagent in a column-
wise configurable concentration to the microplate. Following
induction, the protocol takes plate reader and flow cytometry
measurements at specified time points.
The ObstacleCourse protocol was developed to screen

genetic circuits with one or two inputs. It collects data on the
behavior of samples over several days (following an overnight
growth). Each day, the protocol dilutes samples by a
configurable factor and introduces configurable quantities of
two reagents (inducers). Each day, the protocol takes two plate
reader measurements (post-induction and end of day) and one
flow cytometry measurement (end of day).
The Cell-Free-Riboswitches protocol arrays a number of

DNA fragments and cell-free execution materials at config-
urable concentrations onto microplates along with a reagent
for the riboswitches to sense at varying concentrations. The
protocol conducts several plate reader measurements over a
time series.
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