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ABSTRACT: The design and construction of genetic systems, in silico, in vitro, or in vivo, often involve the handling of various
pieces of DNA that exist in different forms across an assembly process: as a standalone “part” sequence, as an insert into a carrier
vector, as a digested fragment, etc. Communication about these different forms of a part and their relationships is often confusing,
however, because of a lack of standardized terms. Here, we present a systematic terminology and an associated set of practices for
representing genetic parts at various stages of design, synthesis, and assembly. These practices are intended to represent any of the
wide array of approaches based on embedding parts in carrier vectors, such as BioBricks or Type IIS methods (e.g., GoldenGate,
MoClo, GoldenBraid, and PhytoBricks), and have been successfully used as a basis for cross-institutional coordination and software
tooling in the iGEM Engineering Committee.
KEYWORDS: synthetic biology, terminology, assembly, engineering design, SBOL

■ INTRODUCTION
The creation of the first recombinant DNA molecules a half-
century ago opened a new era for biology based on the design
and construction of custom genetic constructs. Nowadays, one
of the common tasks in synthetic biology is to plan, execute, and
document the assembly of various shorter “building block”
pieces of DNA into larger constructs. For example, a fragment of
DNA may be synthesized as an insert into a vector backbone,
digested out of that backbone, and assembled together with
other fragments to produce a final construct.
Despite this commonality, however, and despite the stand-

ardization of some assembly methods and the development of
new software and molecular tools for manipulating genetic
sequences, it is often unclear which stage of a construction
process is actually being described by a given sequence. This
often creates significant confusion between practitioners as they
communicate about parts and sequences and build plans, leading
to frequent confusion, errors, difficulty in sharing information,
delays, and waste.
We address these problems with a proposed standard

terminology intended to allow unambiguous descriptions of
DNA sequences and build plans through every stage of the

design, synthesis, and assembly of a genetic construct.
Specifically, we target the representation of build plans that
make use of DNA assembly based on digestion and ligation,
supporting at least BioBricks Assembly1 and Type IIS assemblies
like GoldenGate,2 MoClo,3 GoldenBraid,4 and PhytoBricks.5

We have further mapped this terminology into a concrete
representation using Synthetic Biology Open Language (SBOL)
version 3,6 a standard meant to ease the exchange of information
about genetic designs throughout the design−build−test−learn
cycle. SBOL3 provides all of the representational elements
necessary for a precise description of genetic elements and of the
construction of larger sequences from smaller sequences.
Previous uses of SBOL for representing parts and assemblies,
however, have lacked a systematic grounding in terminology and
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a set of relationships between stages, such as the one we now
present.
In summary, the terminology presented here should be useful

to practitioners no matter what tools or representations they
may be using, while representation in SBOL3 provides complete
formal details to allow software engineers to construct
compatible tools. Finally, we illustrate the utility of these
contributions with descriptions of how they can be applied to
common synthetic biology workflows and a brief case study
describing the adoption and use of both the terminology and the
SBOL3 representation to support cross-institutional collabo-
rations within the International Genetically Engineered
Machines (iGEM) Engineering Committee.

■ RESULTS
Terminology. To develop a terminology for build planning,

we began by considering a range of frequently used digestion/
ligation build workflows, including BioBricks Assembly,1

GoldenGate,2 MoClo,3 GoldenBraid,4 and PhytoBricks.5

Terms were developed with the aim of cleaving as closely as
possible to pre-existing patterns in descriptions and discussions
of “parts” and “assembly” among practitioners, with adjustments
to eliminate ambiguity. The terminology was then circulated for
comments by other practitioners, first privately and then
publicly, and was adjusted iteratively to address issues raised
in comments.
The resulting build terminology, illustrated in Figure 1 and

detailed below, is centered on three main concepts: part,
backbone, and assembly. The terminology also originally included
a definition for a device as a functional mechanism in some
biological context, but that definition proved unnecessary for the
discussion of build planning and has since been more fully
developed in a compatible fashion within the framework of
“functional synthetic biology”.7 We therefore use the term
“device” only as an informal or intuitive notion in this
presentation and refer the reader to the other article7 if a
more formal or precise definition is desired.
Part.

• A part is any single continuous linear DNA construct that
has a completely specified sequence and an explicit
assembly interface that allows it to be assembled with
other parts. The specific DNA sequences associated with
the assembly interface are expected to change in a
predictable manner from stage to stage in an assembly
process (e.g., following digestion with restriction
enzymes), so a part is always described with a modifier
to explicitly indicate which stage is being described (e.g.,
part in backbone, part extract). Note that the assembly

interface of a part might not actually contain any base
pairs, if a part is intended to be concatenated as part of a
synthesis order, but this needs to be explicitly declared
and not assumed.

• If no assembly interface is defined, then the DNA element
is a part core. In many cases, a part core may also be a
device with a function that can be defined simply (e.g.,
promoter, CDS, and terminator), but part cores can
potentially also be more complex devices, such as a whole
functional unit or even an entire gene cluster (this is why
“part core” is used rather than other potential alternatives
such as “basic part”). The key distinction is in whether an
assembly interface is referenced in the design. Note that
this also means that a part core may include an
undesirable “hidden” assembly interface (e.g., unlabeled
flanking sequences or restriction sites on a poorly
annotated sequence) and that any part can be trans-
formed into a part core by discarding associated assembly
interface information.

• A construct created by combining two or more parts
through a plan for assembly is a composite part. Note that
samples of a composite part need not actually be
produced by its designated assembly process: for example,
the composite part might be constructed directly via
synthesis, including the scars that would have been
formed through the planned assembly. Likewise, a
composite part can be reduced to a noncomposite part
by removing assembly information.

• In the postassembly context of a composite part, an
assembled part is the original part core plus any 5′ and/or
3′ flanking Scar sequences that are produced by the
combination of flanking sequences in the process of
assembly. Critically, note that discussion of an assembled
part refers only to one portion of the composite part�the
portion corresponding to one of the part extracts that was
combined to make the composite. For example, in Figure
1, the composite part contains two assembled parts: the
assembled version of the promoter and the assembled
version of the coding sequence. The notion of an
assembled part thus supports the discussion of how a
part has been changed by the assembly process, e.g.,
through the trimming of flanking sequences or the
introduction of scars.

Backbone.
• A backbone is a DNA construct into which parts are

intended to be inserted at one or more designated
insertion sites, in order to meet the requirements of an
assembly. In general, precisely one part can be inserted at

Figure 1. Illustration of build terminology with respect to a typical digestion/ligation build workflow: a part core is extended with flanking sequences
needed for assembly to create a part insert that can be synthesized or assembled into an insertion site on a backbone to produce a part in backbone ready
for assembly. Digestion produces a part extract that can be ligated together with an open backbone or open part in backbone and possibly other part
extracts to produce a composite part in the backbone, including the original part core within an assembled part in its final context.
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any given insertion site (though this part might be a
composite part formed by ligation of multiple part
extracts). In many cases, a backbone will be a circular
plasmid with precisely one insertion site, but other types
of vectors are possible as well, such as plasmids with
multiple insertion sites, linear plasmids, viral replicons, or
nonreplicating flanking adapters.

• A part core, plus any 5′ and 3′ flanking sequences, that is
prepared for insertion into a backbone’s insertion site is
referred to as a part insert. Note that some backbones
come with “built in” flanking sequences, in which case the
part insert may be nothing more than the part core itself.

• When a part insert is added to a backbone, the overall
DNA construct, i.e., the backbone with at least one
occupied insertion site, is referred to as a part in backbone.
The process of inserting a part insert into a backbone can,
as a side effect, lead to the release of a drop-out sequence,
which is a portion of the backbone at an insertion site that
is removed as part of the process of inserting a part at that
site. Some backbones include drop-out sequences, while
others do not.

• In the inverse direction, the extraction of a part from a part
in backbone generates a part extract, corresponding to the
part core plus any 5′ and/or 3′ flanking sequences
involved in the assembly. Note that the flanking
sequences might not have been present in the part insert,
if the backbone had “built in” flanking sequences as
described above.

• Complementary to a part extract, an open backbone is a
backbone that has been cut open to allow it to incorporate
a part extract, and an open part in backbone is the same
thing for a part in backbone. Note that the process used
for incorporating a part extract into an open backbone or
open part in backbone (e.g., ligation during assembly) will
often not be the same as the process for inserting a part
insert into a backbone (e.g., as part of a synthesis order).

Note that the backbone of the parts that are being assembled
may or may not be the same as the backbone of the composite
part in the backbone, depending on the specifics of the assembly
process. For example, in a typical BioBricks assembly, one part in
the backbone is cut to produce a part extract, while the another is
cut to form an open part in the backbone, and their combination
forms a composite part in the backbone of the second part. For a
typical MoClo Level 1 assembly, on the other hand, the
backbone of the product differs from the backbone of the inputs,
as the assembly cuts a set of part extracts out of parts in Level 0
backbones and then combines them with an open Level 1
backbone to form the composite part in backbone. Note also
that in many cases, the composite part in the backbonemay itself
be used as an input to another assembly, forming an even larger
composite part, e.g., using MoClo Level 1 products for a MoClo
Level 2 assembly.
Assembly. An assembly is a plan for combining a set of input

parts in order to produce an output of either a single composite
part or a library of composite parts. The inputs and output may
or may not include backbones depending on the specifics of the
assembly. An assembly plan should contain enough information
to allow it to be executed by the selection of appropriate
laboratory protocols.
Representation in SBOL3. All of the concepts captured by

the terminology above can also be represented explicitly using
SBOL, which enables the development and use of software tools

for working with parts and assembly plans in silico. Specifically,
we use the current version, SBOL3,6 which allows for a cleaner
and more succinct representation than would be possible with
prior versions of SBOL.
Review of Key SBOL3 Concepts and Notation. We begin

with a brief review of key SBOL3 concepts and notation used in
the representation. SBOL types, predicates, and values will be
shown in monospace font, while examples in figures will be
shown using simplified UML diagrams. For additional detail, see
the SBOL 3.1 specification.8

SBOL3 uses an object model based on the Resource
Description Framework (RDF),9 a representation of knowledge
in the form of subject/predicate/object graphs. In the RDF,
objects are named and referenced using URLs (or more
generally IRIs). Ontology terms, also in the form of URLs, are
used to express information about the types and roles of
biological entities and interactions. SBOL makes use of a
number of standard biological ontologies, including the Systems
Biology Ontology (SBO)10 for describing material types and
interactions, and the Sequence Ontology (SO)11 for providing
information about sequence features. Terms from ontologies
will be indicated by prefixing them with the abbreviation for the
ontology (e.g.,SBO:DNA is the Systems BiologyOntology term
for DNA). Note that whenever an ontology term is specified, it
should be taken to indicate either that term or any child term: for
example, saying that a replicating backbone should have a role
of a SO:vector_replicon means that it can also be a
SO:plasmid_vector since the Sequence Ontology
defines every SO:plasmid_vector to be a type of
SO:vector_replicon.
The SBOL classes that are used here for representing parts

and assemblies are as follows:
• A Component represents either a physical entity, such as

the design for a DNA construct, or a functional entity,
such as a network of chemical reactions. The type
property indicates what sort of entity the Component is, a
role property can provide information on its expected
biological function (e.g., promoter, CDS, and restriction
site), and a link to a Sequence object can provide DNA
sequence information.

• Structural information about a Component is encoded
using several kinds of Feature:

• A SequenceFeature indicates a role for
some Location in the Sequence of the
Component, e.g., a restriction site.

• A SubComponent indicates the inclusion of an
instanceOf a Component within a design.
Context-specific roles can be added by giving the
optional roleIntegration property the
value mergeRoles, e.g., to mark the part insert
in a part in backbone construct. If not all of the
included component is present, this can be
indicated using a sourceLocation, e.g., a
MoClo Level 0 part in backbone includes all of the
Level 0 destination vector except for the drop-out
sequence that was replaced by the inserted part.

• A LocalSubComponent can be used as a
placeholder for transient constructs, e.g., a part
extract produced by a digestion to be consumed by
a ligation.

• Topological information is encoded using a Con-
straint, whose restriction property indicates
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the relationship between a subject and an object
Feature, including ordering (strictlyPre-
cedes), containment (contains) and junctions
(meets, overlaps).

• Reactions are encoded using an Interaction, where
each involved species is described with a Partic-
ipation object indicating the role of the partic-
ipant species, e.g., a digestion reaction in which an
enzyme releases a part extract from a part in backbone.

• The input and output species of a network of
reactions can be indicated using an Interface, e.g.,
two input parts assembled to form an output composite
part.

• The provenance ontology PROV-O12 is used to record
how entities were produced: a prov:Activity can
indicate that a Component was created (prov:was-
GeneratedBy) using (prov:Usage) another
prov:entity in some particular way (prov:ha-
dRole), e.g., a composite part being produced using a
particular assembly plan.

Part Cores, Composite Parts, Assembled Parts, and Scars.
Any part of the core or part is represented by an SBOL
component with a type property of SBO:DNA. As is
standard with SBOL, the general function of the part or part core
(e.g., promoter, CDS, composite function) is indicated by a
Sequence Ontology term on the role property. Likewise,
structural information is indicated usingFeature objects, plus
optional Constraint objects to indicate the order of the
Features and one Sequence object if the sequence of the
part is known.
For part of the core, the Sequencemust be known a priori.

For example, the iGEM part BBa_E1010 is a part core for an
mRFP reporter, going from start codon to stop codon plus a
trailing barcode. This part core, for which an SBOL
representation may be found at https://synbiohub.org/
public/igem/BBa_E1010, is a Component of type SBO:DNA
with the roleSO:CDS, and links to aSequencewith 706 base
pairs.
For parts, on the other hand, Sequencemight be known or

might be left for later calculation from its Features and
Constraints. For example, a composite part might initially
be specified as a set of Constraints expressing assembly
order and later have its sequence calculated from its assembly
plan, while an intermediate stage such as a part extract might
never actually need to have its full sequence explicitly calculated.
When representing a composite part, it is important to include

the assembled parts in its description as well as any scars, such as
those produced by BioBrick or MoClo assembly. An assembled
part is represented by a SubComponent with an in-
stanceOf property linking to the Component representing
the part that was used as an input for the assembly, and a
sourceLocation property used to select only that portion
of the input part that is actually present in the composite. A scar,
on the other hand, is represented by a SequenceFeature
with role SO:restriction_enzyme_assembly_-
scar that either meets or overlaps with an assembled part on
both its 5′ and 3′ sides (as indicated by either Constraints
or Locations).
For example, BBa_K093005 is a composite part combining

the BBa_B0034 ribosome entry site and the BBa_E1010 mRFP
coding sequence. It is represented by a Component of type
SBO:DNA with the generic “composite part” role SO:engi-

neered_region. Figure 2 shows how the structure of this
composite part can be represented using either Constraint

or Location, as well as the inclusion of a SequenceFea-
ture of type SO:restriction_enzyme_assem-
bly_scar for the BioBricks RBS/CDS “TACTAG” scar left
between the two parts as a side effect of BioBricks assembly.
Finally, a composite part also includes at least one

prov:wasGeneratedBy link to a prov:Activity
describing an assembly plan (see below). Note that if there is no
assembly plan, then the part is not a composite part and that
there can potentially be multiple options for assembly plans
since prov:wasGeneratedBy can have multiple values.
Backbones, Insertion Sites, and Drop-Out Sequences. A

backbone, like a part, is represented by a SBOL Component
with a type property of SBO:DNA. Unlike a part, however, a
backbone does not necessarily need to be linked to a
Sequence since a backbone is not always retained in the
final construct and can sometimes be used “blindly” like a
reagent in the assembly process. It is still preferable to have a
Sequence for a backbone, however, in order to facilitate
better planning, debugging, and quality control.
The role of a backbone depends of its nature: a replicating

backbone should use SO:vector_replicon or one of its
children (e.g., SO:plasmid_vector), while a nonreplicat-
ing backbone, such as used in linear fragments with flanking
sequences for restriction, is simply an SO:engineere-
d_region. As with any Component, other information
about the structure of the backbone, including insertion sites and
drop-out sequences, is indicated with Feature and
Constraint objects.
In particular, a backbone must have at least one insertion site,

which is indicated using a SequenceFeature with the role
SO:insertion_site. Note that circular plasmids are
often described with the insertion site at the start/end of the
sequence, in which case it is generally preferable to indicate its
location as the origin (zero), rather than at the end of the
sequence. Likewise, a drop-out sequence should be indicated by
a Feature with a role of SO:deletion, e.g.,
SubComponent for expressing a selection marker. For

Figure 2. Composite parts, such as this representation of the iGEM
composite part BBa_K093005, which consists of the BBa_B0034
ribosome entry site followed by the BBa_E1010 mRFP coding
sequence, can be represented using SBOL Constraint relations
to express the order of their features (a) and/or specific Location
values if the compositeSequence has been calculated (b). Additional
data model details are shown in Figure S1.
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simplicity, it is preferable to place the insertion site
corresponding to a drop-out sequence at its start, rather than
inside of it or at its end, since then the coordinate of the insertion
site will not change after the drop-out sequence is removed.
Finally, note that some backbones may include “built in”

flanking sequences for assembly on either side of their insertion
sites, while other backbones will assume these should be
incorporated in the part insert. If there are flanking sequences,
they can be indicated with a SequenceFeature or
SubComponent with the role SO:restriction_en-
zyme_region. More specifically, in the case of most
digestion-based assembly methods, the roles will typically be
SO:restriction_enzyme_recognition_site
and SO:sticky_end_restriction_enzyme_-
cleavage_site. For example, Figure 3 shows an example

of a backbone, the iGEM plasmid vector pSB1C3, which is a
high-copy plasmid that includes the prefix and suffix of the
BioBrick RFC 10 assembly standard (BBa_G00000 and
BBa_G00001, respectively) and an insertion site between
these flanking sequences, designated as the zero coordinate of
the circular plasmid sequence.
Part in Backbone, Part Inserts, and Part Extracts. A part in

the backbone is represented by a Componentwith at least two
features: a SubComponent for the part insert and another
SubComponent for the backbone, along with Con-
straint and/or Location information to place them
with respect to one another. The SubComponent for the part
insert should also indicate that it is the part insert by adding a
role of SO:engineered_insert and a roleInte-
gration value of mergeRoles. When there is a drop-out
sequence in the backbone, its SubComponent uses the
sourceLocation property to exclude the drop-out portion
of the backbone sequence from the part in backbone.
If the backbone includes flanking sequences, as in the pSB1C3

example above, then the part insert can simply be a part core
since the backbone is providing the assembly interface. If the
backbone does not include flanking sequences, however, then
the part insert needs to provide the assembly interface and
should be a Component with role SO:engineered_in-
sert that includes both the part core and its flanking sequences
as Feature objects, using the same roles for the flanking
sequences as described above with backbones.
For example, Figure 4 shows a part in backbone constructed

by using the part core BBa_E1010 as a part insert into the
pSB1C3 plasmid vector. Note that in this case, the part insert
does not on its own have any assembly interface but rather gains
it from the context of its insertion into the pSB1C3 backbone.
Complementarily, the representation of a part extract from a

part in the backbone is much like that of a part insert. If the part
extract has no additional flanking sequences added to it, then the
part extract is simply the Component for the part core. More
typically, however, it will be flanked by 5′ and 3′ sticky
overhangs, which is represented by a Component that
includes both the part core and these flanking sequences as
Feature objects with the corresponding SO terms. For

Figure 3. Example of a backbone: the iGEM pSB1C3 plasmid vector is
a backbone with its insertion site defined as its origin, and BioBricks
flanking sequences BBa_G00000 and BBa_G00001 on either side of
the origin, each of which includes enzyme recognition and cutting sites.
For simplicity, the contents of BBa_G00000 are omitted, as are all other
features besides the insertion site and flanking sequences. Additional
data model details are shown in Figure S2.

Figure 4. Example of a part in the backbone constructed by inserting part core BBa_E1010 into the pSB1C3 backbone, omitting substructure details
for simplicity. Additional data model details are shown in Figure S3.
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example, Figure 5 shows the part extract produced by using the
XbaI and PstI restriction enzymes to digest the BBa_E1010 part

core out of the part in the backbone shown in Figure 4. Finally,
an open backbone and open part in backbone are represented in
the same way as a part extract, except that an open backbone
includes a SubComponent that is a backbone and an opened
backbone includes both a backbone SubComponent and also
a SubComponent that is an SO:engineered_insert.
Assembly. An assembly plan, describing the steps to

construct a composite part from input parts, may be represented
in SBOL using a prov:Activity object to link between the
Component for the composite part and a “reaction network”
Component that describes the sequence of reactions for
producing the composite part from a set of input parts.
A prov:Activity object is a rather general way of

describing the history of materials, so several property values
need to be set in order to allow it to express specifically the idea
that the reaction network is the assembly plan for the composite
part. To indicate that the prov:Activity provides an
assembly plan for the composite part, it is given two type
values (sbol:design and sbol:assemblyPlan) and
linked from the prov:wasGeneratedBy property of the
composite part. To link to the reaction network, the
prov:Activity links to a prov:Usage that says the

reaction network Component provides the design for this
assembly plan: specifically, the prov:Usage has a pro-
v:entity property linking to the reaction network and a
prov:hadRole property with the value sbol:design.
To represent the network of assembly reactions, the assembly

plan Component includes a SubComponent for the
composite part or core and another SubComponent for
each part or core that is planned for inclusion in the composite.
These SubComponent objects are the Interface for the
assembly, with the composite designated as the output and its
components designated as the input. For assemblies like
BioBricks or the various Type IIS assemblies, however, the
actual reactions will generally start with parts in backbone, which
are first digested and then ligated to produce the composite part
in backbone. For this reason, if the input and output are
expressed as part cores rather than parts in backbone, then each
part core should be linked to its corresponding part in backbone
using a Constraintwith type value contains, so that it
is easy to trace from the abstract part core inputs to the parts in
the backbone that are actually needed for the reactions.
The actual assembly reactions are represented with a set of

Interaction objects describing digestion to produce part
extracts, open backbones, and/or open parts in backbones,
followed by ligation of these products to produce one or more
composite parts. Specifically, a digestion step is represented by
an Interaction of type SBO:cleavage. Each input
vector or enzyme is linked to the digestion using a
Participation with a role property of SBO:reac-
tant and a participant property linking to the
Feature for the vector or enzyme. Likewise, the part extracts,
open backbones, or open part in backbones produced by the
digestion are linked using aParticipationwith a role of
SBO:product. A ligation step is the same as a digestion step,
except that the type of the interaction is SBO:ligation
and part extracts, open backbones, and/or open part in
backbones are the reactants, while the composite part is the
product. These reactions can be validated by checking whether
the features with SO:restriction_enzyme_region

Figure 5. Example of a part extract for the digest of BBa_E1010 out of
the part in backbone in Figure 4, in which enzyme digestion causes the
part core to become flanked with 5′ and 3′ sticky overhangs. Additional
data model details are shown in Figure S4.

Figure 6. Assembly example UML diagram with flanking sequences in the Backbone and Locations. The contents of BBa_G00000 and BBa_G00001
are purposefully omitted for simplicity of presentation. Objects are color-coded based on what they represent: orange is for the assembly plan, blue is
for backbone, green is for part in backbone, yellow is for part core, pink is for part extract, and magenta is for open part in backbone. Additional data
model details are shown in Figure S5.
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in the reactants and products have appropriate patterns for the
enzymes.
For example, Figure 6 shows how composite BBa_K093005

can be produced through a BioBricks assembly of BBa_B0034
and BBa_E1010. Specifically, extraction of BBa_B0034 from its
the pSB1C3 backbone is represented by a digestion with the
EcoRI and SpeI restriction enzymes as participants, while the
opening of the BBa_E1010 part in pSB1C3 to accept an
insertion is represented by a digestion with the EcoRI and XbaI
restriction enzymes as participants. The resulting part extract
and open part in backbone, with their appropriate overhangs, are
then represented as participants in a ligation to form
BBa_K093005 in the pSB1C3 backbone.
Note that while many composite parts can be described with

just one digestion/ligation stage, an assembly plan may have any
number of digestion and ligation stages to produce the
ultimately intended composite part. Likewise, an assembly
plan may produce multiple composite parts outputs (e.g., in the
case of shared intermediates or library assembly), in which case
the Interface will have multiple output values.
Representation Use Patterns. The representation de-

scribed above enables straightforward automation for a number
of common synthetic biology workflows with DNA designs.
Here, we exemplify these patterns by providing specifics about
how the representation can be used to support several common
workflows.
Maintaining a Catalog of Available Parts in Backbones. A

catalog of available parts in backbones, such as would be found
in the iGEM distribution, can be implemented in terms of two
SBOL Collection objects, one for all of the part cores and
one for all of the parts in the backbone (possibly annotated with
additional information, such as the location that the part in the
backbone should be able to be found in a distribution plate).
When planning a design or assembly, the part in the backbone
collection can then be queried to find all of the part in backbones
containing a given part core by searching the part in the
backbone collection for all Components that contain a
SubComponent with role SO:engineered_insert
whose instanceOf property either links to the desired part
core or else links to a part insert Component that contains it as
a SubComponent.
Exporting Sequences for Synthesis.Given a Collection

of parts in backbone, the sequences that need to be synthesized
into each backbone can be exported by searching each part in
backbone Component for all of the SubComponent
objects whose effective role in the context contains a value of
SO:engineered_insert. Each such sequence needs to
be synthesized and inserted at the adjacent insertion site on the
backbone.
Checking Assembly Compatibility for a Part in Backbone.

To check the assembly compatibility for a part in the backbone,
one needs to check that the part has appropriate flanking
sequences and that there are no illegal restriction sites in the part
itself as well as in the backbone.
A generic assembly template can be generated as an abstract

Component with digestion and ligation reactions by using
specific restriction enzymes. The parts in the backbone to be
assembled, however, are only fully specified in the Sequen-
ceFeature objects for the flanking sequences that contain
the restriction enzyme recognition sites, joined to undefined
LocalSubComponent feature for the backbone and part
core with Constraint objects with type value meet.
Likewise, the composite part has a fully specified Sequence-

Feature for the flanking sequences and scars and a
Constraint with the typo value meet linking each scar
to an adjacent undefined LocalSubComponent feature for
assembled parts.
To check assembly compatibility for a part in the backbone,

one can create an assembly Component with SubCompo-
nent objects for the part and the generic assembly template
and add a Constraint of type equals between the part in
backbone and an abstract part in backbone in the template.
Once this is done, attempts are made to calculate the sequence
of the Component: if there is a conflict between the part in the
backbone and the flanking sequences in the generic assembly
template, then the part in the backbone does not have
compatible flanking sequences. Likewise, many assemblies
require specific antibiotic resistance genes, which can also be
annotated on the abstract part in the backbone in the template
and checked for when resolving the equals constraint.
Once the sequence has been calculated, check for illegal

restriction sites by scanning for all locations with sequences that
match the recognition sites in the flanking sequences of the
generic assembly template. Any such location that is not fully
contained within an appropriately typed Feature for a
flanking sequence means that the part in backbone is not
compatible with the assembly. The fully computed assembly
Component can then serve as a validation record for assembly
compatibility if desired.
Designing a Composite Part via an Assembly Plan. To

design a composite part by assembling together parts, use a
generic assembly template when checking assembly compati-
bility. In this case, however, all of the parts to be assembled
should be specified, not just the one being checked. Following
the equality constraints should then allow the sequence of the
composite part to be calculated.
Case Study: Use by the iGEM Engineering Committee.

The iGEM competition is a yearly international event in which
hundreds of teams of students around the world do synthetic
biology projects and then meet to share their projects and be
judged at the iGEMGiant Jamboree. One of the key supports for
these team projects is the iGEM Distribution, a kit shipped to
participating teams that contains, among other things, a large
curated collection of DNA parts that teams can make use of in
their projects. In 2021, the iGEM Foundation decided to change
the way this collection was designed, including a complete
rebuild of all parts for the iGEM 2022 Distribution, recurating
the parts into amore organized system of “packages,” and aiming
to improve accessibility, quality, reproducibility, and traceability
of kit materials. For this effort, the iGEM Foundation enlisted
the aid of the iGEM Engineering Committee, a volunteer
organization that supports iGEM by developing and promoting
effective practices for engineering biology, along with supporting
protocols and tools. The iGEM Engineering Committee is an
international collaboration with more than 50 participating
members from academic and industrial institutions in dozens of
countries (including the authors of this manuscript) and
representing diverse areas of synthetic biology experience.
In coordinating across the many participants in the effort to

curate DNA parts for the iGEM 2022 Distribution, we quickly
encountered challenges due to many miscommunications
between collaborators about how sequences related to our
build plans. For example, did a sequence already include flanking
sequences, was this what should be synthesized, or what it would
look like after insertion into a backbone, etc. In order to solve
these problems, we developed the shared terminology presented
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above, which has rapidly become the lingua f ranca of
communication for collaboration on the iGEM Distribution,
as well as for other projects of the iGEM Engineering
Committee such as interlaboratory studies, development of
new organism-focused part kits, protocol development, and
laboratory automation efforts.
The SBOL representation for the terminology was also put to

use by the committee in developing the iGEM2022Distribution
and in the creation of a set of automation scripts for curation
assistance and error checking. Specifically, the iGEM 2022
Distribution was implemented using a GitHub repository
(https://github.com/iGEM-Engineering/iGEM-distribution),
in which each package of parts is curated bymanually populating
an Excel workbook, typical extracts from which are shown in
Figure 7. In the Excel workbook, one sheet contains information
about each part core and backbone in the collection, such as its
name, role, design notes, and an accession number that will allow
the part core or backbone to be retrieved from a local file or
imported from a public data source such as SynBioHub13 or
NCBI. The other sheet contains build plan information that
incorporates part cores into collections of part inserts,
composite parts, and parts in backbone.
In the typical usage pattern, each part of the core is flanked

with adapters to make it an assembly-compatible insert,
composed together into more complex constructs if desired,
and then inserted into a plasmid backbone. The scripts
developed by the committee export the material from the
sheets into an SBOL representation, using the guidelines
presented above to represent the intended collection of parts
and their associated build plans, supplemented with the part
core and backbone information retrieved from external
repositories as needed. The build plans are automatically
checked for errors in completeness or coherence and exported
into summary README files in Markdown for human auditing,
with no proposed change allowed to be merged into the iGEM
Distribution plan until it is certified error free and a human

reviewer has approved. Finally, an SBOL representation of the
complete iGEM Distribution is generated, and the build plans
are used to export it into two different forms: a build input in the
form of a FASTA synthesis order file and backbone insertion
instructions and a build output in the form of GenBank files for
the final part in backbone plasmids that are actually shipped in
the kit.
During the preparation of the iGEM 2022 Distribution, this

shared terminology and supporting SBOL-based automation
allowed the iGEMEngineering Committee to collectively curate
a large number of parts at a sustained and rapid pace. Following
work on preliminaries and early tests during 2021, the main
period of development for the iGEM 2022 Distribution took
place from January 1st, 2022 to February 16th, 2022, when the
first synthesis order was tagged for release. During that period,
contributions were made by 15 collaborators at 11 institutions in
8 countries, collectively building the distribution via 87 pull
requests (an average of nearly two per day) and 571 commits. At
release time, the iGEM 2022 Distribution contained a build plan
for 346 parts in the backbone organized into 13 packages,
summing to a 493 kilobase synthesis order FASTA, along with
another 569 automation-generated intermediates and compo-
sites at other stages of the build plan.
All of the Excel workbooks for the iGEM 2022 Distribution,

along with the associated build plans and final genetic constructs
are available on GitHub at https://github.com/iGEM-
Engineering/iGEM-distribution, and Figure 7 shows an excerpt
from the workbook for the CRISPR-Cas collection. Note that in
the case of this specific build, however, the actual production was
done solely by synthesis, and so the scars are inserted into
composite constructs in order to ensure that sequences are base-
for-base equivalent to the products of a BioBricks assembly (thus
ensuring compatibility of data taken from those composites
when thus previously assembled), rather than as an actual
necessity of a physical assembly process.

Figure 7. Example materials from the Excel workbook specifying the CRISPR-Cas collection in the iGEM 2022 Distribution: (a) part cores, with each
row specifying one part core, including its name, role, design notes, and accession for retrieval, and (b) build plans, with each row specifying a library of
part cores to be flanked with BioBrick assembly adapters (D1005 and D1006) to form a part insert that is to be synthesized and inserted into the
pSB1C5 backbone to produce a library of part in backbone plasmids.
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The automation tools, scripts, and configuration data used in
the production of the iGEM 2022 Distribution are also publicly
available in this same repository and in the publicly available
libraries that it imports along with the documentation that was
used to educate participants in the project on how to use the
tools. These materials should be able to serve as a template for
others wishing to make use of these same methods, e.g., by
forking the repository, deleting the iGEM parts, and using the
Excel template provided to build their own collections of parts
and composites.
Since the production of the iGEM 2022 Distribution, the

iGEM Engineering Committee has continued to make use of
both the terminology and tooling to improve the iGEM
Distribution and to improve its processes, including automatic
synthesizability checks, increased modularity of package
development, making scripts more reusable, and breaking the
monolithic distribution into a simpler-to-maintain library and
dependency model, all of which are currently being deployed in
the development of future materials for iGEM collections.

■ DISCUSSION
We have presented both a set of terminology for describing
DNA parts and a set of practices by which that terminology can
be formalized into SBOL3 representations of genetic parts at
various stages of design, synthesis, and assembly, along with
examples of both patterns for using these methods in common
synthetic biology workflows and a case study of their usage to
support complex international collaborations within the iGEM
Engineering Committee.
A standard is only as valuable as its adoption, of course, and

the work described above is still too recent to know how widely
it will be adopted. So far, at least, the reception of this work has
been positive and indicates that the terminology and
representation have a good chance of spreading organically
through the community. In addition to its ongoing use by the
iGEM Engineering Committee, as described above, the
terminology and representation have also been circulated to a
number of other organizations in the wider synthetic biology
community, where the terminology has generally been received
as useful and intuitively comprehensible. The representation has
also been formally endorsed by the SBOL standards community,
which has adopted it as a “best practice” (“BP011:
Representation of Parts and Devices for Build Planning”)
recommended method for describing parts and assembly plans
in SBOL. Looking beyond communication to software tooling, a
full supporting Python API is in the process of being
implemented for the SBOL Utilities library,14 and multiple
groups are investigating its use for coordinating assembly
reactions utilizing laboratory automation, either directly into
various liquid-handler APIs or via the cross-platform LabOP
protocol representation15. We thus anticipate that both the
terminology and the representations presented in this article will
spread more broadly through the synthetic biology community
and will be adopted into other tools that include assembly
planning.
Extending beyond the scope of this article, while the current

terminology and representation have been worked out
specifically with regard to Type IIS and BioBricks assembly
methods, the same basic framework should extend to other
contexts as well. Genomic integration, for example, should be
able to be described and represented in the same way as the
insertion of a part into a backbone, simply by substituting the
genome for the backbone, with the key difference being the

description of the locus of insertion. Likewise, the terminology
and representation are also likely to extend well to other
assemblymethods, such as Gibson Assembly16 or Ligase Cycling
Reaction Assembly,17 though certain details will likely need to
be adjusted. Finally, while the terminology and representation
presented here have so far been applied only in the context of
DNA, they may prove to be useful as a basis for developing
analogous and compatible vocabularies and representations for
other polymeric molecules such as RNA, proteins, lipids, or
polysaccharides.

■ METHODS
Automation tooling for the iGEM 2022 Distribution case study
was implemented using the SBOL3 standard in Python with the
SBOL-utilities and pySBOL3 libraries.14 Import automation was
used to access materials from SynBioHub,13 NCBI GenBank,
and the iGEM Parts Registry. Workflows were implemented
using GitHub Actions and executed on GitHub cloud resources
automatically using push and pull request triggers. Full details
are available publicly in the implementation git repository on
GitHub at https://github.com/iGEM-Engineering/iGEM-
distribution.
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