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Abstract

Examples are a powerful tool for teaching both humans and comput-

ers. In order to learn from examples, however, a student must first extract

the examples from its stream of perception. Snapshot learning is a gen-

eral approach to this problem, in which relevant samples of perception

are used as examples. Learning from these examples can in turn improve

the judgement of the snapshot mechanism, improving the quality of fu-

ture examples. One way to implement snapshot learning is the Top-Cliff

heuristic, which identifies relevant samples using a generalized notion of

peaks. I apply snapshot learning with the Top-Cliff heuristic to solve a

distributed learning problem and show that the resulting system learns

rapidly and robustly, and can hallucinate useful examples in a perceptual

stream from a teacherless system.1

1 Introduction

Examples are a powerful tool for teaching both humans and computers. In
order to learn from examples, however, a student must be able to extract the
examples from the stream of perception which the student experiences.

Consider a teacher explaining multiplication of negative numbers to a class
full of students, as illustrated in Figure 1. The teacher starts by writing “5 X
7 = 35” on the blackboard, saying, “As you all know, multiplying two positive
numbers makes a positive number.” The teacher adds a minus in front of the
7, saying, “if we make one number negative, then the product is negative” and
adds a minus in front of the 35. “But if both are negative” the teacher continues,
adding a minus in front of the 5, “then the minus signs cancel and the product
is positive.” The teacher finishes, turning the -35 into +35, and the board reads
“-5 X -7 = +35”.

The teacher has given the students three examples, but the students have
not necessarily received three examples. What the students have experienced
is the teacher talking and writing on the blackboard for about a minute. In
order to learn from the teacher’s examples, the students must first find them
and extract them from this experience — and getting it wrong can teach the
student -5 X -7 = -35! A good teacher makes finding the examples easier, and
a bad teacher may obscure the examples entirely.

When teaching computers with examples, we usually avoid this problem by
providing the learner with input which contains explicit signals segmenting it
into examples. This is often a reasonable assumption: it is natural for a medical
diagnosis system, for example, to be presented with trivially distinguishable
case histories.

In the absence of explicit signals, however, the learner needs to be able
to discover examples for itself. Perception may be indirect (e.g. the teacher
must use images and sound to convey math), there may be transients in the
construction of the example (e.g. when the board says “5 X -7 = 35”), or there
may not be a teacher at all!

1This work partially supported by NSF grant #6895292
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 5 X −7 = −35

 5 X −7 =  35

 5 X  7 =  35

−5 X −7 = −35

−5 X −7 = +35

"As you all know, multiplying two positive..."

"...numbers makes a positive number..."

"...if we make one number negative..."

"...then the product is negative..."

"...but if both are negative..."

"...then the minus signs cancel..."

"...and the product is positive."
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Speech Blackboard

Figure 1: Three examples of multiplication, as seen by a student. The examples
are spread over time and there are transitional states where the equation on
the board is wrong. In order to learn correctly, the student must segment the
sequence into the original three examples. This may become even harder with
the addition of irrelevant information (e.g. “Johnny, stop that this instant!” or
the beautiful day outside).

I propose a general approach in which examples are extracted by taking
snapshots of relevant instants of perception, and one mechanism which imple-
ments the approach. Learning from these examples can in turn improve the
performance of the snapshot mechanism. As evidence of the utility of this ap-
proach, I explain a learning problem that I solved using it, and demonstrate that
the snapshot approach works predictably well under a wide range of conditions
and parameters. I further demonstrate that when applied to a scenario which
is not formulated as a sequence of examples, the snapshot approach can still
extract examples which capture interesting features of the scenario.

2 Snapshot Learning

A snapshot is just what it sounds like: an instantaneous sample of percep-
tion. Figure 2 shows the general snapshot learning framework. Perceptual
input streams continually on several channels; for example the system might
have one channel carrying vision and another carrying sound. From this stream
of input, the system extracts targets to learn about. The snapshot mechanism

observes the input and measures how relevant the current perceptual sample is
with respect to the current model of each target. When a perceptual sample
is relevant enough for a particular target, the snapshot mechanism sends it to
the learner as an example for that target. The learner then incrementally up-
dates its model of the target using the new example. If the model is improved,
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Figure 2: A snapshot learning system receives perceptual input on several chan-

nels. The snapshot mechanism identifies learning targets from the input stream.
When a sample of perception is highly relevant to a particular target, the snap-
shot mechanism sends the sample to the learner as an example for that target.
The learner then updates the target’s model, improving in turn the snapshot
mechanism’s relevance estimates.

then the snapshot mechanism will be able to better estimate which samples are
relevant, closing the loop on a beneficial cycle.

2.1 The Top-Cliff Heuristic

The Top-Cliff heuristic is one example of a snapshot mechanism. Top-Cliff
assumes perceptual activity is sparse and, given a relevance metric for each
channel, leverages that sparseness to choose a few selected samples for each
target as “relevant enough” to be used as examples.

In essence, Top-Cliff is a peak detector. Rather than lumping relevance
measures from each channel together into a single measure, though, Top-Cliff
generalizes the idea of a peak to multiple dimensions, looking instead for mo-
ments when the relevance measures are about to fall off a multi-dimensional
plateau. If the relevance measures were combined into a single measure, infor-
mation such as which channels have zero relevance would be discarded.
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Top-Cliff assumes two types of sparseness: across time and within samples.
Sparseness across time means that any given perceptual feature is not present
most of the time. Sparseness within samples means that in any given sample,
most perceptual features will not be present. As a result, any given target can
expect toq have many periods when there are no relevant perceptual features
on any channel. For any given target, then, there will be a collection of easily
separable relevant periods, even if the perceptual stream as a whole is not easily
separable into examples.

If there are many relevant periods, then we can afford to be conservative and
pick only the best moments from each relevant period; a few high-quality exam-
ples are likely to provide a much better basis for training than many examples
of dubious quality.2 Moreover, it is reasonable to assume that nearby moments
in a relevant period are likely to be very similar, so taking many samples from
any given relevant period is unlikely to add much new information and risks
over-fitting to the situation.

If relevance was a differentiable function from a single channel of input, peaks
in the relevance function would be a reasonable guess at the best moments in a
relevant period. Since there may be many channels, and the relevance function
may have plateaus of equal maximum value, I detect the onset of a top-cliff
instead. I define a top-cliff to occur when:

• Some channel’s relevance is decreasing. If nothing is going down, it isn’t
a cliff.

• No channel’s relevance is increasing. If some channel is increasing, then
it’s a saddle, not a cliff.

• All relevant channels have increased since the last time they decreased.
If some channel has already decreased, then this isn’t the top cliff, but a
lower one.

The last clause needs elaboration to precisely define relevant channels. The
definition is motivated as follows: if we add a new channel which is never rele-
vant, it should not affect the behavior of the system. However, if two channels
are relevant and one drops to irrelevance, the other dropping to irrelevance is
a lower cliff and shouldn’t trigger a snapshot. Thus I define the set of relevant

channels to be the set of channels which are either currently relevant, or which
were relevant in the same period of relevance as one which is currently relevant.
This small piece of memory allows the Top-Cliff heuristic to incrementally dis-
tinguish between these situations (Figure 3).

For discrete sampling of the channel, I approximate the derivative of rel-
evance by comparing the most recent sample of the input with the previous
sample. If a top-cliff is detected, then the previous sample, just before the cliff,
is taken as the example.

For example, consider the behavior of the Top-Cliff heuristic on the sequence
on three channels in Figure 4, showing relevance levels over time with respect to

2See, for example, Winston’s near-miss learner.[12]
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Figure 3: Relevant channels are not only the ones currently active, but also all
channels whose most recent period of relevance overlapped those which are still
relevant. This is needed to allow the system to distinguish between situations
(a) and (b) once channel C is no longer relevant.

some target. At time 1, only channels A and C are relevant, and A is dropping,
so it takes a snapshot. At time 2, A is dropping, but since B is rising at the
same time, it is not a cliff and no snapshot happens. At times 3 and 4, a channel
drops, but since A has not risen since the last time it dropped, this is not the
top cliff and no snapshot happens. At time 5, channel A is still relevant, since
it was previously active concurrently with channels B and C, so no snapshot
occurs. At time 6, however, only A is relevant, so it takes a snapshot.

For channels with high-frequency noise, a naive implementation of the Top-
Cliff heuristic may produce many spurious snapshots. In such cases filtering the
relevance signal may reduce the problematic noise, allowing elimination of most
spurious snapshots via thresholding or hysteresis.

2.2 Related Work

The vast majority of systems which learn from examples simply do not address
the question of where the examples come from. It is assumed either to be simple,
uninteresting, or dealt with by someone else.

Snapshot learning with the Top-Cliff heuristic can be viewed as solving a
problem of unsupervised learning, since not even examples are provided to the
system. Its two-stage design sets it apart from other unsupervised learning ap-
proaches, however, since the learning applied to the examples might be anything
at all.

There are some related probablistic models in which similar information
could be learned, but none with the same inherent inductive biases. These
might be applied either to solve the problem as a whole, or to implement the
snapshot mechanism, using a modelling framework such as dynamical Bayesian
networks[10] or embedded hidden Markov models[11] and carrying out the learn-
ing via an algorithm like Expectation-Maximization[4].
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Figure 4: The Top-Cliff heuristic takes a snapshot when all relevant channels
have risen since the last time they fell, no channel is rising, and some channel
falls. At times 1 and 6, Top-Cliff is satisfied and takes a snapshot. At time 2,
channel B is rising, so no snapshot happens. At times 3, 4 and 5, channel A is
relevant and has not risen since the last time it fell, so no snapshot happens.
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Solving the problem as a whole might be intractable with these techniques,
depending on what sort of examples are in the input stream. If used to imple-
ment the snapshot mechanism, on the other hand, these approaches are subject
to the same set of constraints which led me to develop the Top-Cliff heuristic,
and an appropriate set of priors might yield equivalent behavior.

Further, snapshot learning with the Top-Cliff heuristic is fast, simple, and
incremental, which many unsupervised learning techniques are not.

Segmenting a stream of input into useful chunks is a focus of much research
in sensory domains such as computer vision (e.g. [9]) and speech processing
(e.g. [1]). Snapshot learning offers a mechanism by which these methods might
be composed with symbolic techniques to enable learning of more abstract re-
lations.

3 Association of Desynchronized Binary Features

I have applied the snapshot learning model to the problem of learning asso-
ciations between desynchronized binary features. This is the problem which
motivated me to develop the snapshot learning model, as I discovered it was a
subproblem in my investigation of a larger distributed learning problem:3 be-
cause simultaneous observations of an event may propagate information through
the network of learners with variable delays, each learner may see a highly dis-
torted sequence of events.

Figure 5 shows the learning scenario. The world contains scenes composed
of a set of binary features. Only a few of the possible features are present in
any given scene, satisfying sparseness. The agent observes this world via several
perceptual channels. Features from the world are conveyed to the agent on
some subset of the channels as one or more binary percepts on each channel.
For example, if an agent with vision, language, and touch channels is presented
with a red ball, the “ball” feature might appear as two vision percepts, one
language percept and two touch percepts, and the “red” feature as one vision
and two language percepts. If all three types of input were instead carried on a
single “perception” channel, then “ball” would be conveyed to the agent by five
percepts in that channel and “red” by three. Finally, there is a desynchronizer
on each channel which applies a delay function (possibly time-varying) to each
percept.

Each percept is a learning target; the agent’s goal is to discover, for each
percept, the set of other percepts which correspond to the same underlying
feature in the world. I apply the snapshot learning framework, using the Top-
Cliff heuristic to choose snapshots and a form of Hebbian learning[6] to find
associations. Hebbian learning is intentionally chosen for its extreme simplicity,
since the problem itself is not difficult, given appropriate examples.

A target is modelled as a collection of possibly associated percepts with
confidence ratings. Relevance is measured as the number of possible associates

3A generalization of communication bootstrapping[3, 2] to larger networks with looser
synchronization.
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Figure 5: An agent is connected to the world by several channels, each with a
desynchronizer which introduces arbitrary delays. Scenes in the world are sets
of binary features, conveyed to the agent over some subset of the channels as
binary percepts. For each percept, the goal is to determine which other percepts
correspond to the same feature in the world.
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present on a channel, except that the target percept is treated as being in its
own separate channel, which has relevance 1 when the target percept is present
and relevance 0 when it is absent; this extra channel is used to separate positive
and negative learning. Each sample (and therefor each example) is the set of
percepts currently active.

Given an example, the learner updates the confidence ratings of possible
associates using a modified Hebbian learning rule.[6] If the target percept is
present, then it is a positive learning update: all possible associates which are
present are incremented C+ units of confidence, and possible associates which
are absent are decremented C− units of confidence. If the target percept is
absent, then it is a negative learning update: all possible associates which
are present are decremented C− units of confidence, and absent possible as-
sociates are unchanged (otherwise unrelated irrelevant percepts could reinforce
each other). When a possible associate’s confidence rating drops below a prun-
ing threshold P , it is discarded from the list.

Possible associates are initially acquired by collecting all percepts present
during the first period in which the target percept is present and assigning each
an initial confidence rating C0. If pruning ever results in there being no possible
associates left, then it is assumed that something has gone wrong in the learning,
and the target starts over again with a new initial collection. Since it is possible
to miss some associates during the initial collection, percepts which are not
possible associates attempt to enter the list, starting at a rating X below the
pruning threshold P . If the confidence of one of these external percepts rises
to P , then it becomes a possible associate, and if it drops below X it is once
again discarded. This is made more difficult (reflecting doubt that latecomers
are actually associates) by assigning an additional penalty Cx whenever an
external percept is decremented by the Hebbian learning rule.

Finally, the channel from which the target is drawn is treated slightly dif-
ferently than other channels. Percepts from that channel are likely to be useful
in identifying negative examples, since they will generally be associated with
percepts in the other channels. Accordingly, the thresholds for these percepts
are doubled to slow the rate at which they are pruned or added.

By default, I set the increments C+ = C− = Cx = 1, the initial confidence
C0 = 0, the pruning threshold P = −3, and the external percept threshold
X = −10. Note that because updates are additive, the behavior of the learner
is unaffected by shifting or scaling these constants.

3.1 Learning From Examples

When shown a sequence of examples, the system takes snapshots that enable
it to rapidly learn the correct set of associations. In this scenario, I used a
sequence of examples constructed from a set of N = 50 independent binary
features. These are perceived over two input channels, A and B, and with each
feature corresponding to one binary percept on each channel, giving a total of
100 targets for learning.

For example, the feature “red” might be associated with some arbitrary
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Figure 6: A sequence of examples is perceived as a sequence of percepts ap-
pearing and disappearing as one example fades into another. The stable points
when a pure example is perceived are ideal moments for learning, but ambigui-
ties prevent these from being recovered in general. Any given target, however,
can be learned during the larger periods when the associated percepts are either
all present or all absent.

percept A-1609 in channel A and B-3462 in channel B. Then when “red” is
present in an example, A-1609 and B-3462 will be perceived by the system and
when red is not present, neither A-1609 nor B-3462 will be perceived by the
system. The learner’s goal is to discover that the target A-1609 is associated
with the percept B-3642 and vice versa.

Examples are constructed by drawing randomly from the set of features, with
the size of each example randomly chosen between Emin = 2 and Emax = 6.
Each example in turn is presented to the system, as shown in Figure 6. When an
example is presented, the system’s percepts change from the previous example
to the current example one by one in a random order. Once all of the percepts
that need to change have changed, the next example is presented.

The moment when one example has finished being presented but another has
not yet started is a stable point, the only time when the system’s perception
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Figure 7: Top-Cliff versus controls solving a simple association problem (100
targets, 50 independent features on two channels, 2-6 features per example)
under ideal conditions. The plot shows average behavior over 10 trials.

precisely represents the example and a snapshot at that time would convey the
example to the learner perfectly. Although it is not generally possible to recover
this stable point from the sequence of changes, any given target can be learned
about during a larger period: a snapshot will yield a good example whenever
the target’s associated percepts are all present or all absent.

I compared learning from snapshots chosen by the Top-Cliff heuristic against
three controls: teacher segmentation, random sample, and intersection of unions.
Teacher segmentation is perfect example extraction, which magically knows each
example the teacher shows, and applies it to all targets. Random sample and
union of samples are naive methods which use only positive learning: union
of samples forms examples by taking the union of all percepts seen during an
interval in which the target percept is present, while random sample chooses
one sample of percepts randomly from that interval.

I ran 10 trials of 1000 examples for each system, and compared the results.
Unsurprisingly, Top-Cliff performs slightly worse than teacher segmentation,
and significantly better random sample and union of samples (Figure 7). Al-
though a precise analysis is difficult, Top-Cliff appears to perform worse that
teacher segmentation mainly due to two factors: there are many more percepts
identified as possible associates in the initial estimate, and when two examples
in a row contain the same feature, its percepts do not drop to trigger learning
between the examples. The worse performance of the controls under ideal con-
ditions is partially due to their lack of negative learning, but also due to the
lack of precision in selecting an example, which does not improve as the target
model improves. Union of samples adds many extra percepts from the neigh-
boring examples, making it harder to weed out the irrelevant percepts. Random
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sample also ends up with more percepts from neighboring examples, but also
often chooses bad examples, when not all of the associated percepts are present.

Snapshot learning with the Top-Cliff heuristic is not sensitive to the par-
ticulars of this scenario. I ran the experiments to verify this, varying system
parameters and data sets and running 10 trials of 1000 examples for each set
of conditions. For each experiment, I varied one parameter from the base con-
figuration of N=50 features, 2 channels, 1 percept per feature per channel, 2-6
randomly selected features per presented example, random ordering of percept
transitions between examples, pruning threshold P=-3, external percept thresh-
old X=-10, and sampling at every transition. Representative results are shown
in (Figure 8).

• Varying pruning threshold P from -1 to -10. Lowering the pruning
threshold slows the learning rate proportionally, since it takes longer to
discard the irrelevant percepts. A very high pruning threshold makes it
likely that some relevant percepts will be pruned accidentally, however,
slowing learning while they are recovered.

• Varying external percept threshold X from -3 to -20. Lowering
the the external percept threshold proportionally increases the time to
acquire percepts accidentally pruned or not initially considered relevant.
When it is too close to P , however, it becomes easy for irrelevant percepts
to accidentally become relevant, preventing a stable solution from being
reached.

• Varying expected number of features generated per example

from 1 to 9, with variability between zero and ±4 features per

example. The more features per example, the faster learning proceeds,
until violation of the sparseness assumption starts to degrade the utility
of each example.

• Varying number of features N from 20 to 200. Raising the number
of features lowers the learning rate proportionally, dependant on the likeli-
hood of a given feature being in any particular example. When the number
of features is too low, however, the sparseness assumption is violated and
learning degrades.

• Varying expected sample rate from every transition to every

ninth transition, with variability between zero and ±4 transi-

tions per sample. As the system samples its input less frequently, so
that multiple transitions happen between samples, the learning rate slows
slightly, due to a combination of some events becoming unobservable and
the increasing likelihood that an irrelevant percept in a neighboring ex-
ample will cause some channel to rise when otherwise a Top-Cliff would
occur.

• Postponing introduction of 1 to 3 groups of features, comprising

between 20% and 60% of the total features. If new learning targets
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Figure 8: Snapshot learning with the Top-Cliff heuristic does not depend criti-
cally on any particular parameter value or arrangement of features and presented
examples. Varying features, structure of presented examples, sampling, or prun-
ing thresholds has a predictable impact on learning rate. Varying number of
channels, number of percepts per feature, allocation of percepts across channels,
or transition order has negligible impact.
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are introduced to the system after some learning has already taken place,
they are learned at the same rate as if they had been introduced at the
beginning.

• Using a deterministic order for percept transitions. Using a de-
terministic order for transitions between examples rather than a random
order has no significant effect on learning rate.

• Varying the number of channels from 1-9, percepts per feature

on each channel from 0-5, and proportion of channels with per-

cepts for a feature from 22% to 100%. Changing the number of
channels, number of percepts per feature, or allocation of percepts be-
tween channels, has no significant effect on learning rate. These may
compound the impact of adverse conditions, however.

Snapshot learning with the Top-Cliff heuristic degrades gracefully under ad-
verse conditions (Figure 9). I evaluated the system against two types of degra-
dation (10 trials of 1000 examples, using the same base configuration as before)
and found it surprisingly resilient against both. For the first, I blurred examples
with a blur factor b, such that any percept present in an example is added to the
preceding example with probability b and to the following example with prob-
ability b. I applied this recursively, so a percept is smeared across k examples
with probability bk. Even 50% blurring, however, is unable to prevent learning,
though it slows it down significantly. For the second, I introduced subtractive
noise with a loss rate l, such that any percept which would otherwise be present
is deleted with probability l. Still, more than a 30% loss is necessary before the
system is unable to reliably learn all of the targets.

In the degraded scenarios, the naive controls performed dramatically worse
than the Top-Cliff heuristic. Figure 10 shows some particularly dramatic con-
ditions, in which the controls never come close to learning all the targets but
Top-Cliff still does so fairly rapidly.

Taken together, these experiments suggest that snapshot learning using the
Top-Cliff heuristic to select examples is an effective and resilient method for
identifying examples.

3.2 Learning Without a Teacher

What if there is no teacher supplying examples? Having a teacher means that
the system’s input is generated from a stream of instructional examples. What’s
important for learning, however, is not how the input is generated, but how it
is perceived by the learner. If there is no teacher, but the input has learnable
content that can be broken into examples, then learning can take place as be-
fore: the system will still identify learning targets and find snapshots to provide
examples for learning about those targets.

I hypothesize that snapshot-learning’s assumption that the world is present-
ing instructional examples will allow it to discover structure in the world even
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Figure 9: The Top-Cliff heuristic degrades gracefully under adverse conditions
for learning. Very high rates of blurring or noise are necessary to prevent suc-
cessful learning.
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when the world is not presenting instructional examples, but merely behaving
according to clear rules.

To test this hypothesis, I constructed a model of a four-way intersection with
a stoplight to generate input for the same system of snapshot-learning using the
Top-Cliff heuristic. The system’s percepts are the current and previous set
of observations from the model. If the hypothesis is correct, then the system
should identify examples in its input and learn associations between previous
observations and current observations that model the transitions of the stoplight.

The intersection model has five locations: North, South, East, West, and
Center, and 11 distinguishable types of vehicles. Each time-step of the model is
one second, and the stoplight has a sixty second light cycle: each side is green
for 27 seconds, yellow for 3 seconds, then red for 30 seconds while the other side
is green and yellow. Cars arrive randomly at any of the four cardinal directions
with a mean time between arrivals of 5 seconds, randomly choosing one of the
other three directions as an exit goal. Cars are either moving or stopped: a
stopped car must spend one second changing state to moving before it can
change location. A moving car which isn’t blocked takes one second to change
locations. Although cars arrive moving, they stop and queue up if there is a
car already stopped in front of them or they cannot enter the intersection. Cars
enter the intersection when the light is green (and sometimes when it is yellow)
and there isn’t a car in front of it in the intersection, or when turning right on
red and there isn’t a car in the center or to the left. Once in the intersection, a
car can go to its goal unless it is turning left, and there is a car going the other
way in the intersection which is not also turning left.

Percepts from the model arrive over six channels: one for each location, plus
a channel for the light. The cardinal directions have percepts for the types of
the first car in the queue and the exiting car (if there is one), the center has
percepts for the types of whatever cars are there, and the light has percepts for
the two active colors. Added to these percepts is a copy of the percepts from
the previous second, tagged to be distinguishable from the current percepts.
Transitions between sets of percepts take place as a sequence of changes in
random order. Figure 11 shows a typical sequence of perceptual states, omitting
the previous percepts for clarity.

I ran 10 trials of 1000 seconds each, encompassing 16 2

3
light cycles per trial.

There were 122 learning targets (current and previous percepts for 11 vehicle
types in each of 5 directions and six lights), for which the Top-Cliff heuristic
identified an average of 1048 positive examples and 2105 negative examples per
trial, an average of 25.8 examples per target. For the 12 light percept targets,
an average of 23.5 positive examples and 4.5 negative examples were identified
per trial.

On the basis of these examples, the system learns associated percepts for the
light percepts which capture the transitions of the stoplight finite state machine.
The cars, on the other hand, have harder to predict behavior and generally no
clear association is learned. To evaluate what has been learned, I set a threshold
of confidence ≥ 7, and consider only targets which have an associated percept
with at least this confidence to have been effectively learned. In the 10 trials,
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1. (L NS_GREEN) (L EW_RED) (C CONVERTIBLE) (E SEDAN) (W COMPACT)

2. (L NS_YELLOW) (L EW_RED) (N CONVERTIBLE) (E SEDAN) (W COMPACT)

3. (L NS_YELLOW) (L EW_RED) (E SEDAN) (W COMPACT)

4. (L NS_YELLOW) (L EW_RED) (E SEDAN) (W COMPACT)

5. (L NS_RED) (L EW_GREEN) (E SEDAN) (W COMPACT)

6. (L NS_RED) (L EW_GREEN) (E SEDAN) (W COMPACT)

7. (L NS_RED) (L EW_GREEN) (C SEDAN) (C COMPACT) (E MINIVAN) (W SEMI)

8. (L NS_RED) (L EW_GREEN) (C SEMI) (C SEDAN) (E COMPACT) (E MINIVAN)

9. (L NS_RED) (L EW_GREEN) (C SEDAN) (S SEMI) (E MINIVAN)

10. (L NS_RED) (L EW_GREEN) (S SEDAN) (E MINIVAN)

11. (L NS_RED) (L EW_GREEN) (C MINIVAN)

Figure 11: A sample perceptual sequence generated from the intersection model
(omitting the copy of previous percepts). A convertible finishes driving South
to North in the first two seconds, while a compact and a sedan wait at the red
light. In the 5th second, the lights change, in the 6th the compact and sedan
start moving, and in the 7th they enter the intersection while the cars behind
in the queue move up. The compact drives straight through, exiting East, while
the sedan is blocked from making its left turn by first the compact, then the
semi following it. In the 9th second the sedan starts moving again and exits
in the 10th second while the minivan queued up to enter the intersection starts
moving again, finally entering the intersection in the 11th second.

there are 126 targets effectively learned, of which 118 are light percepts - the
remaining 8 are uninteresting statements involving only cars (e.g. a hatchback
in the center is associated with there previously being a hatchback in the center).

Except for two cases, the learned light percepts are associated with only
other light percepts — the two exceptions contain a few car percepts which are
almost at the pruning threshold. In all cases, the associated light percepts are
either uniquely specify a transition (e.g. PREV EW GREEN is associated with
PREV NS RED, EW GREEN, and NS RED) or, more frequently, are the union
of two uniquely specified transitions (e.g. PREV EW GREEN is associated
with PREV NS RED, EW GREEN, NS RED and EW YELLOW) — Figure
12 shows the associations learned in a typical trial. In every one of the 10
trials, the learned transitions cover all 8 transitions of the stoplight finite state
machine, most multiply: Figure 13 shows the finite state machine specified by
the associations in Figure 12.

As predicted, the system has extracted useful examples, learned that the
behavior of the light is not dependent on the behavior of the cars, and learned
associations that model the behavior of the stoplight. This suggests that the
hypothesis is correct, and that in fact it is reasonable to learn as though being
presented with instructional examples, whether or not any teacher is actually
doing so. One cautionary note: the learning exhibited in this case is fragile and
does not recover from large mistakes. There are two stable types of associa-
tions, superimposed transitions and single transitions in which the light does
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EW_GREEN = PREV_NS_RED, PREV_EW_GREEN, PREV_NS_YELLOW, NS_RED

EW_YELLOW = PREV_EW_YELLOW, NS_RED, PREV_EW_GREEN, PREV_NS_RED

EW_RED = NS_YELLOW, PREV_EW_RED, PREV_NS_GREEN, NS_GREEN

NS_GREEN = PREV_EW_RED, PREV_NS_GREEN, EW_RED, PREV_EW_YELLOW

NS_YELLOW = PREV_NS_YELLOW, EW_RED, PREV_NS_GREEN, PREV_EW_RED

NS_RED = PREV_NS_RED, PREV_EW_GREEN, EW_GREEN, PREV_NS_YELLOW

PREV_EW_GREEN = PREV_NS_RED, NS_RED, EW_GREEN

PREV_EW_YELLOW = PREV_NS_GREEN, PREV_NS_RED, NS_GREEN EW_RED

PREV_EW_RED = PREV_NS_YELLOW, NS_YELLOW, EW_RED, NS_GREEN, PREV_NS_GREEN

PREV_NS_GREEN = PREV_NS_YELLOW, NS_YELLOW, PREV_EW_RED, EW_RED, NS_GREEN

PREV_NS_YELLOW = EW_GREEN, NS_RED, PREV_EW_RED, NS_YELLOW

PREV_NS_RED = PREV_EW_RED, EW_RED, PREV_EW_YELLOW, NS_GREEN

Figure 12: Example of associations learned during one trial in which at least one
associated percept has confidence ≥ 7. Collectively, these associations specify
the finite state machine showed in Figure 13.

NS_RED
EW_YELLOW

NS_RED
EW_GREEN

NS_GREEN
EW_RED

NS_YELLOW
EW_RED

Figure 13: Finite state machine specified by the learned associations shown in
Figure 12. Multiple arrows indicate multiple associations specifying a transition.
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not change, and mutilating an association can cause a transition from superim-
posed to single, but not the reverse. This could probably be corrected, however,
by biasing the system towards learning about cause and effect.

4 Conclusions

The snapshot learning framework transforms the problem of learning from streams
of perceptual input into problems of extracting examples relevant to a learn-
ing target, and learning from those examples. Feedback between the learning
targets and the snapshot mechanism improves the quality of snapshots as the
quality of the target model improves, and allows fast, incremental learning.

Learning from examples is a well studied problem, while extracting rele-
vant examples has been largely assumed away or studied in isolation, ignoring
how to interface extracted models with different types of learning techniques.
Furthermore, identifying good examples relevant to particular learning targets,
as required by snapshot learning, may be a significantly simpler problem than
identifying examples which are good in general. The Top-Cliff heuristic provides
one mechanism for incrementally identifying auspicious snapshots by applying
a generalized notion of peaks to relative measures of input relevance.

I applied the snapshot learning framework, using the Top-Cliff heuristic, to
learn associations between desynchronized binary features, a problem caused
by varying propagation times in a distributed learning network. The resulting
system learns rapidly and is robust against changes to its parameters and ad-
verse learning conditions such as large amounts of noise and blurred examples.
Moreover, the system discovers examples even when none are provided, which
can allow it to learn about the behavior it is observing: when exposed to a sim-
ulation of a four-way intersection, the system reliably learns associations which
specify the finite state machine of the traffic light.

The results of these experiments suggest that the snapshot learning frame-
work and the top-cliff heuristic are powerful and important tools for learning.
The ability to extract discrete examples from a stream of perception may help
bridge the gap between real-world data and machine learning techniques which
demand carefully segmented and annotated examples.

More importantly, the ability to find useful examples in the absence of a
teacher suggests that it may be possible deploy supervised learning methods
to solve unsupervised learning problems. More analysis is necessary to clearly
understand the properties and limitations of the snapshot learning framework
and the top-cliff heuristic, and the framework needs to tested in application to
other problems.

References

[1] Kannan Achan, Sam Roweis, and Brendan Frey. “A Segmental HMM for
Speech Waveforms.” Technical Report UTML-TR-2004-001, University of

20



Toronto, January 2004.

[2] Jacob Beal. “An Algorithm for Bootstrapping Communications” Interna-
tional Conference on Complex Systems (ICCS), June 2002.

[3] Jacob Beal. “Generating Communications Systems Through Shared Con-
text” MIT AI Technical Report 2002-002, January, 2002.

[4] Arthur Dempster, Nan Laird, and Donald Rubin. “Maximum likelihood from
incomplete data via the EM algorithm.” Journal of the Royal Statistical

Society, Series B, 39(1):1-38, 1977.

[5] Zoubin Ghahramani. “Unsupervised Learning.” In Bousquet, O., Raetsch,
G. and von Luxburg, U. (eds) Advanced Lectures on Machine Learning LNAI
3176. Springer-Verlag, 2004.

[6] D.O. Hebb. The Organization of Behaviour. John Wiley & Sons, New York,
1949

[7] Simon Kirby. “Language evolution without natural selection: From vocabu-
lary to syntax in a population of learners.” Edinburgh Occasional Paper in
Linguistics EOPL-98-1, 1998. University of Edinburgh Department of Lin-
guistics.

[8] Simon Kirby. “Learning, Bottlenecks and the Evolution of Recursive Syn-
tax.” Linguistic Evolution through Language Acquisition: Formal and Com-
putational Models edited by Ted Briscoe. Cambridge University Press, in
Press.

[9] Marina Meila and Jianbo Shi. “Learning segmentation by random walks.”
In Neural Information Processing Systems 13, 2001.

[10] Kevin Murphy. “Dynamic Bayesian Networks: Representation, Inference
and Learning.” UC Berkeley, Computer Science Division, July 2002.

[11] Radford Neal, Matthew Beal and Sam Roweis. “Inferring State Sequences
for Non-linear Systems with Embedded Hidden Markov Models.” Neural
Information Processing Systems 16 (NIPS’03). pp. 401-408, 2003.

[12] Patrick Winston. “Learning Structural Descriptions from Examples.” MIT
AI Technical Report 231, 1970.

21


