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ABSTRACT
Machines learning from human teachers can advance both
the capabilities of engineered systems and our understanding
of human intelligence. A key challenge for this field, how-
ever, is how to effectively measure and compare the teacha-
bility of machine learners, particularly given the diversity of
potential learners and the inherent adaptivity and variability
of human instructors. We are addressing this challenge with
spectrum curricula, where each spectrum curriculum is a
suite of lessons, all with the same instructional goal, but var-
ied incrementally with respect to some property of interest.
We have designed a set of seven spectrum curricula, inves-
tigating three instructional properties in the RoboCup do-
main, and are implementing these within the Bootstrapped
Learning Framework produced by the DARPA Bootstrapped
Learning program[2]. The materials we are producing are
being made publicly available on the Open Bootstrapped
Learning Project website, such that any researcher can test
against the curricula available or can contribute their own
curricula to improve the quality of this community resource.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Measurement
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1. INTRODUCTION
Humans are much better at learning from other humans

than our current machine learning systems are at learning
from humans. Right now, a human who wants to instruct a
machine needs to be two types of expert at once—an expert
in the subject that is to be instructed, and also an expert in
some method of configuring the machine, such as program-
ming or knowledge representation.
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In contrast, even the most naive instructors can easily
teach other humans, as when little kids teach one another
games. Outside of formal classroom settings, humans teach
one another informally, imprecisely, and highly effectively
(and even a classroom is extremely informal and imprecise
compared to the current requirements for machine instruc-
tion). Cultural knowledge, like how to change a flat tire,
what to do when you’re sick, or fun games to play together,
passes easily from person to person in a population, even
when the teacher has no training as an instructor.

Building systems capable of such human-like learning is
important for both engineering and scientific reasons. From
an engineering perspective, if humans and machines are to
work together in challenging environments, then machines
must be able to learn from humans in a manner similar to
how humans learn from one another. The environments that
humans act in are highly diverse and constantly changing—
whether in the office, at home, or on a battlefield. Even
a machine with an exhaustive background knowledge must
be customized for the particular environment in which it
acts, just as a secretary must become accustomed to the
peculiarities of a particular office’s policies and customs or
a soldier must learn the particular patterns and cautions of
a deployment area.

For humans and machines to work together routinely, ma-
chines must have this human-like capacity to learn from
naive instructors. Neither the homemaker nor the soldier
have the time and inclination to bother with a machine
partner otherwise. Although machines are still far from
human-like teachability, much might be accomplished even
by meeting the humans partway, as with Graffiti character
recognition[5]. Even a partial win could be revolutionary,
allowing machines to adapt “culturally” to the environments
in which they are deployed and also allowing the vast reser-
voirs of human curricula to be used in configuring machines
for application domains.

From a scientific perspective, building a machine that
learns more like a human does may shed light on the nature
of human learning. We may hope to investigate questions
such as:

• How important are shared assumptions and biases for
human-like learning?

• Are humans powerful but “rational” learners, or do they
leap to unwarranted (but often correct) conclusions?

• How does instruction enable representational change?

• What are the relative contributions of shared architec-



ture, shared inherent biases, shared culture, and shared
experiences?

• Is our arsenal of machine learning techniques missing any
fundamental tools that humans are employing?

A key challenge for this field, however, is how to effectively
measure and compare the effectiveness of machine learners,
particularly given the diversity of learners and the inherent
adaptivity and variability of human instructors. Spectrum
curricula address this challenge by measuring a student’s
ability to adapt to a set of fixed teachers, which all teach
the same lesson but vary incrementally along some property
of interest in how the lesson is taught.

We have previously proposed the notion of spectrum cur-
ricula in [1]; in this paper, we develop the idea further and
give specific and detailed examples of how such curricula
can be designed. In particular, we have designed a set of
seven spectrum curricula, investigating three properties of
instruction—strength of assumptions about mutual knowl-
edge, distance of transfer between lesson and use in context,
and level of detail—in the domain of 3-on-2 keepaway in
RoboCup simulated soccer[3]. We are implementing these
curricula within the Bootstrapped Learning Framework pro-
duced by the DARPA Bootstrapped Learning program[2],
and making the materials we are producing publicly avail-
able on the Open Bootstrapped Learning Project website,
http://dsl.bbn.com/BL/, such that any researcher can test
against the curricula available or can contribute their own
curricula to improve the quality of this community resource.

2. SPECTRUM CURRICULA
When a skilled human teacher instructs a single student,

the teacher typically adapts their curriculum to the back-
ground and needs of the student. Consider, for example,
teaching a person how to play Kriegspiel, a chess variant in
which each player sees only their own pieces and a referee
adjudicates. If the student is already deeply familiar with
chess, the game may be explained just so simply, with many
of the details in making such a variant work left implicit,
whereas all the rules may need to be spelled out explicitly
for a student unfamiliar with chess. Likewise, some students
may pick things up rapidly, whereas others may need much
reinforcement before they are comfortable with the game. In
a tutoring environment, a teacher will adapt to convey the
lesson to the student, expanding where prompted by student
difficulties and spending less time where the student picks
up readily.

While this sort of adaptability is good for making learning
systems work, since a human teacher can adjust to match the
feedback being given by the system, it presents a problem
for measuring the teachability of a system. An adaptive
teacher can teach many systems with different capabilities
the same lesson, masking their differences. Moreover, no
human teacher will instruct exactly the same way twice and
different teachers will instruct the same student in different
ways.

A spectrum curriculum addresses this problem by turning
it around, and measuring the adaptability of the student
to a set of teachers, each executing a relatively rigid cur-
riculum. Each spectrum curriculum is built around a single
variable property of instruction, such as the level of detail
in a lesson, and contains a set of lessons that incrementally
vary this property from “too hard” to “too easy.” For exam-

Figure 1: A game of 3-on-2 keepaway being played
in the Robocup simulator.

ple, a level of detail spectrum for moving pawns might range
from a single en passant capture on the “too hard” end of
the spectrum to hundreds of examples with different rest-of-
board configurations on the “too easy” end of the spectrum.
The series of lessons is taught in order from difficult to easy,
and the student is tested before the first lesson and after
each lesson. The product of training against such a curricu-
lum is thus a curve showing how the student’s cumulative
understanding improves as the aspect varies.

Testing an instruction-based learning system against sev-
eral curricula for the same aspect should produce a good
measure of the system’s adaptability with respect to that as-
pect, with more area under the curve generally being better.
No system should be expected to perform well on the most
challenging lessons, but the performance of well-designed
system should degrade gracefully as the challenge increases.
Moreover, a spectrum that ranges from “too hard” to “too
easy”should also be able to provide a fine-grained measure of
performance on which incremental progress towards human-
like teachability can be easily tracked.

Note, however, that the systems with the most human-
like teachability may not show the most breadth on a given
spectrum! For example, an assumption about human-like
teacher’s intent may cause a system to fail on an “easy”
task where too much detail is provided, since the student
cannot believe something so painstakingly instructed can be
so simple as the concept it has deduced.

To make a spectrum curriculum, one must first specify the
spectrum property of interest. The might be any topic of in-
terest to a researcher: the length of the lesson in seconds, the
number of examples provided, the number of instructional
techniques employed, the level of math knowledge that the
instruction depends on, and many others. Spectrum curric-
ula therefore can vary enormously, and the question then
is which properties are the most interesting, the most use-
ful and the most predictive of the behavior of human or
machine learners. We are not able to provide an extensive
characterization in this paper, but the topic itself is of scien-
tific and philosophical interest, and we have barely scratched
the surface in terms of the range of spectrum curricula we
have begun to study. One of the things we would like this
paper to accomplish is the beginning of a discussion of spec-
trum curricula as a topic of scientific interest and study in
the area of educational technology.



Figure 2: In an instruction scenario, three agents—
teacher, student, and world—interact by sending
symbolic messages. The world sends percept mes-
sages to both teacher and student, and either of
them can manipulate it by sending it action mes-
sages.

3. BBN ROBOCUP KEEPAWAY CURRICULA
We have begun applying the notion of spectrum curricula

by designing a set of spectrum curricula, using the domain
of Robocup soccer simulations[3]. We have designed seven
curricula, each of which teaches a different skill for playing
a 3-on-2 keepaway game in a restricted portion of the soccer
field.

Our curricula use an agent-based instructional framework.
An instruction scenario is set up in terms of a set of inter-
acting agents: a teacher, a student, and a world (Figure 2).
These all evolve independently, communicating by passing
symbolic messages to one another. The teacher and stu-
dent jointly observe the world, so any time the world’s state
changes, it sends updated percepts to both. The teacher and
the student can both affect the world’s state by commanding
it to take actions. Finally, the teacher and the student send
one another a variety of messages for different stages of the
teaching process. This general framework should be able to
support “classroom” worlds with multiple students and/or
multiple teachers, as well as dialogue between teacher and
student. At present, however, the curricula are all designed
for one-on-one instruction with low interactivity.

Each of the seven spectrum curricula we have designed is
a collection of 6 to 10 lessons, incrementally varying from
“hard” to “easy” along one of three properties of interest:

• Strength of assumptions about mutual knowledge (2)

• Distance of transfer between lesson and use in context
(3)

• Detail of instruction (2)

Three lessons teach knowledge for the“keeper”team, three
teach knowledge for the “taker” team, and one is used by
both teams. In every case, the piece of knowledge being
learned is a function that either returns a boolean result or
chooses one of two options.

These seven curricula also exercise three of the “natural
instruction method”[4] teaching modalities that have been
identified in the DARPA Bootstrapped Learning project:

• learning from examples (6)

• learning from “telling” (2)

• learning from feedback (from the instructor or environ-
ment) (2)

To clearly illustrate the spectrum curricula concept and
show how it can be implemented, we present all seven cur-
ricula, organizing them by property to show how different
curricula can investigate the same property of interest.

3.1 Assumptions about mutual knowledge

Out of Bounds.
Both keeper and taker players try to avoid going out of

bounds. This spectrum teaches a function that is used to
tell when a nearby location is illegal.
Spectrum Property: Strength of assumptions about mu-
tual knowledge.
Natural Instruction Methods: Learning by Example
Test: 10 random locations
Lessons (Easy to Difficult):

• 50 labelled examples scattered randomly around the field

• 20 labelled examples scattered around the boundary (as-
sumes values not near the boundary are indicated by the
examples given)

• 8 labelled examples, one in and one out on each line
(assumes a rectilinear area)

• 2 labelled examples, in or out, at opposite corners (as-
sumes the area is aligned with cardinal directions)

• hint at the line, two labelled examples, one in and one
out (assumes the line is the border)

• hint at the line, one labelled example in or out (assumes
the other side of the line is the opposite value)

• only hint at the line (assumes interior of boundary is
likely to be “good”)

Taker: Triangle Bounds.
In order to be effective at intercepting, a taker always tries

to stay “near enough” to the center of the group. This spec-
trum teaches that “near enough” means within the triangle
formed by the three keepers. Assumes prior knowledge of
a “Distance” function that takes two positions and returns
a scalar and an “Angle” function that takes a vertex and
two points on rays extending from it and reports the angle
between the rays.
Spectrum Property: Strength of assumptions about mu-
tual knowledge.
Natural Instruction Methods: Learning from Examples
Test: 10 random configurations of keepers and the taker
Lessons (Easy to Difficult):

• 50 labelled examples scattered randomly around the field,
with the three keepers in canonical positions. In every
case, the positions of the three keepers are hinted at,
along with the “distance” and “angle” functions.

• 20 labelled examples scattered around the boundary (as-
sumes values not near the boundary are indicated by the
examples given).

• Three pairs of examples, one in and on out on each edge
(assumes boundaries are straight lines).



(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4

Figure 3: Configuration cases for teaching a keeper player where to pass. Keepers are blue, takers are green,
and the player is keeper 0.

• One pair of examples, in and out, next to a boundary
(assumes symmetry in decision boundary).

• One pair of examples, in and out, not near a boundary
(assumes the function is set by the in/out spatial rela-
tion).

• One example, in or out, not near a boundary (assumes
the other side is the opposite value).

3.2 Transfer between lesson and use

Keeper: Where to Pass.
When a keeper has decided to pass, it needs to choose

one of its teammates to pass to. This spectrum teaches
the keeper to pass to the the team-mate with the great-
est minimum angle to a taker. Assumes prior knowledge of
“Distance” and “Angle” functions.
Spectrum Property: Distance of transfer between lesson
and use in context.
Natural Instruction Methods: Learning from Examples
Test: 10 random configurations of all five players

These lessons involve four types of configurations, as shown
in Figure 3. We will refer to the three keepers are K0, K1,
K2, and the two takes as T1 and T2. The player is always
K0 and has the ball, and is choosing whether to pass to K1
or to K2. The configurations are divided into types based
on what types of mistakes a human-like learner might make,
given examples of that type.

Figure 3(a) shows an example of a Case 1 configuration.
With examples of this type of configuration, a learner might
mistakenly come to believe that the answer is to the pick the
furthest teammate or the teammate with the least average
distance from the two takers. In Case 1, the correct answer,
K2, is the teammate furthest from K0. T1 and T2 are closer
in distance to K2 but closer in angle to K1.

Figure 3(b) shows an example of a Case 2 configuration.
With examples of this type of configuration, a learner might
mistakenly come to believe that the answer is to the pick the
closest teammate or the teammate with the least average
distance from the two takers. In Case 2, the correct answer,
K1, is the teammate closest from K0. T1 and T2 are closer
in distance to K1 but closer in angle to K2.

Figure 3(c) shows an example of a Case 3 configuration.
With examples of this type of configuration, a learner might
mistakenly come to believe that the answer is to the pick
the furthest teammate or the teammate with the greatest
average distance from the two takers. In Case 3, the correct

answer, K2, is the teammate furthest from K0. Also, T1
and T2 are closer in both distance and angle to K1 than
they are to K2.

Figure 3(d) shows an example of a Case 4 configuration.
With examples of this type of configuration, a learner might
mistakenly come to believe that the answer is to the pick the
closest teammate or the teammate with the greatest average
distance from the two takers. In Case 4, the correct answer,
K1, is the teammate closest to K0. Also, T1 and T2 are
closer in both distance and angle to K2 than they are to K1.

For each case, it is also possible to generate a Case nA
version. In the Case nA version, T1 and T2 are in the same
place, simplifying learning.
Lessons (Easy to Difficult):

• 36 labelled examples with 3 keepers in different positions
and the 2 takers at the same location: 12 examples each
of Case 1A, Case 2A, and Case 3A.

• 36 labelled examples of all 5 players in different positions:
9 examples each of Case 1, Case 2, Case 3, and Case 4.

• 12 labelled examples with 3 keepers in different positions
and the 2 takers at the same location: 2 examples each
of Case 1A, Case 2A, and Case 3A and 6 examples of
Case 4A.

• 2 labelled examples of all 5 players in different positions.
1 example each of Case 2 and Case 3.

• 1 labelled examples with 3 keepers in different positions
and the 2 takers at the same location. The example is
Case 1A.

• 1 labelled example of all 5 players in different positions.
The example is Case 1.

Taker: Who to Guard?.
Assuming that a taker player has decided to guard one

of the keepers that does not have the ball, it needs to pick
one of the two to be the one that it guards. This spectrum
teaches that a taker should guard the keeper that it is closest
to. Assumes prior knowledge of the “Distance” function.

Some potential incorrect conclusions that the learner might
make are it should select the keeper who does not have the
ball and is (1) closest to the ball (2) furthest from the ball
(3) nearest to the other taker (4) farthest from the other
taker.
Spectrum Property: Distance of transfer between lesson



and use in context.
Natural Instruction Methods: Learning from Examples
Test: 10 random configurations of you, the other taker, a
keeper with the ball, and two keepers who don’t have the
ball.

In all the following lesson examples, the taker player is T1
and the keeper with the ball is K0.
Lessons (Easy to Difficult):

• 20 examples with only T1, K1, and K2. No ball. Make
sure T1 is not equidistant from K1 and K2.

• 20 examples with all 5 players and T2 at the same lo-
cation as K0. Make sure T1 is not equidistant from K1
and K2.

• 4 examples with K0 in the center of the field. K1 and
K2 are equidistant from K0. T2 is at the same location
as K0. T1 is located approximately on the line that runs
through K1 and K2. In one example, T1 is on the side of
K1 that is away from K2. In one example, T1 is between
K1 and K2, but closer to K1. In one example, T1 is
between K1 and K2, but closer to K2. In one example,
T1 is on the side of K2 that is away from K1.

• 4 examples with K1 in the center of the field. K0 and
K2 are equidistant from K1. T2 is at the same location
as K0. T1 is located approximately on the line between
K1 and K2. In one example, T1 is approximately 20% of
the distance between K1 and K2. In the other examples,
T2 is approximately 40%, 60%, and 80% of the distance
between K1 and K2.

• One example with T1, K1, and K2 randomly placed on
the field. No ball, no K0, no T2. Make sure that T1 is
not equidistant from K1 and K2.

• One example with K0 in the center of the field. K1 and
K2 are equidistant from K0. T2 is in the same places as
K0. T1 is near K1. The answer is K1.

Keeper: Where to Move.
When a keeper does not have the ball, it tries to get open

so that its team-mate can pass to it. Thus spectrum teaches
the keeper that good “open” locations are in a band 50-
80% of the field away from the keeper with the ball, and not
within 10 degrees of either taker or the other keeper without
the ball. Assumes prior knowledge of“Distance”and“Angle”
functions.
Spectrum Property: Distance of transfer between lesson
and use in context.
Natural Instruction Methods: Learning from Feedback
and Learning by Examples.
Test: 10 random configurations with the following proper-
ties: two are acceptable locations, and two each exercise the
distance prohibition and the three player proximity prohibi-
tions.

In all the following examples, the keeper player is K0.
Lessons (Easy to Difficult):

• 100 labelled examples of all 5 players in random plausible
positions. The ball is with a different keeper. Student
is then allowed to propose up to 10 position/label pairs
and told whether each is right or wrong.

• 40 labelled examples with three keepers and one taker

in random plausible positions. The ball position and
feedback stage are as before.

• 20 labelled examples with two keepers in fixed positions,
K0 at a random distance and one taker in a random
position between them. The ball position and feedback
stage are as before.

• 10 labelled examples with the ball keeper in a fixed posi-
tion, K0 at a random distance, and one taker in a random
position between them. The ball position and feedback
stage are as before.

• Four examples, one per rule. One has just two keepers,
and K0 starts too close and moves away until its distance
is acceptable and the ball is kicked to it. Another is
the same except that the keeper starts too far away and
moves closer. The other two have a taker at too near an
angle and a keeper at too near an angle. Feedback is as
before.

• Two examples: two keepers and a taker slightly off the
line between the keepers. In the first example, K0 is
at an acceptable distance, and moves until its angle is
acceptable, at which point the ball is kicked to it. In the
second example, the angle is acceptable, but the distance
is too close. Feedback is as before.

• One example: two keepers and a taker slightly off the
line between the keepers. K0 starts too close in distance
and angle, then moves away from the line, simultaneously
hitting an acceptable distance and angle, at which point
the other keeper kicks the ball to it. Feedback is as
before.

• Same as before, but the ball starts with K0.

3.3 Detail of instruction

Taker: Guard or Take?.
When a keeper is holding the ball, each taker player peri-

odically checks to see if it should be the one trying to take
the ball from that keeper. If not, it will guard one of the
other keepers. This spectrum teaches that the taker should
try to take if it is the one closest to the ball. Assumes prior
knowledge of a “Distance” function.
Spectrum Property: Detail of instruction
Natural Instruction Methods: Learning from Examples,
becoming Learning by Telling as lessons become easier.
Test: 10 random configurations of takers and ball-holding
keeper
Lessons (Easy to Difficult):

• Full calculation told as hints:
GoTake = Distance(me.pos,ball.pos)

<Distance(other.pos,ball.pos) Given an example of
two takers and a ball on the field, with the function re-
turning opposite answers when applied to the two takers.

• Given both distance calls as hints, but not comparison.

• Hints just point to distance from teammate to ball.

• Hints just point to distance function and ball.

• Hint just points to distance function.



• Hint just points to position of ball.

• No hints at all, just the example.

Keeper: When to Pass.
Whenever a keeper player has the ball, it periodically

checks to see whether it should continue holding the ball
or to pass. This spectrum teaches that it should pass when-
ever a taker comes “near,” and how to determine what is
“near.” Assumes prior knowledge of a “Distance” function.
Spectrum Property: Detail of instruction
Natural Instruction Methods: Learning by Feedback,
becoming Learning by Telling as lessons become easier.
Test: 10 random configurations of takers
Lessons (Easy to Difficult):

• Full calculation told as hints:
PassNow = Or(Near(taker0),Near(taker1))

Near(taker) = Distance(me.pos,taker.pos)<k

The student is then told to maximize their length of pos-
session and given 10 feedback trials.

• Don’t tell the value of the threshold k.

• Also don’t tell how to use the distance calculation.

• For Near, hint only that the positions of self and taker

are important.

• For Near, hint only that self is important.

• Give no information about Near.

• Hint only that Near should be calculated for taker0 and
taker1, but not how to combine them.

• Hint only that taker0 and taker1 are important.

• Only tell the student to maximize possession time.

• Only tell the student that possession time is important.

4. IMPLEMENTATION AND DISTRIBUTION
We are implementing these curricula in the Bootstrapped

Learning Framework that is being produced by the DARPA
Bootstrapped Learning program[2]. This Java-based frame-
work provides an infrastructure for agent-based instruction
scenarios, a scripting language for designing lessons and con-
necting them to form curricula, and a knowledge representa-
tion language (InterLingua[4]) that can be used to describe
the goal knowledge that a lesson is attempting to teach. A
Robocup domain package created by SRI interfaces a stan-
dard Robocup simulator into this framework and provides a
base player for each team, with spots in its strategy where
learned knowledge may be plugged in.

We are making the curricula we produce publicly avail-
able on the Open Bootstrapped Learning Project website,
http://dsl.bbn.com/BL/, along with a copy of the frame-
work, additional documentation, and a semi-competent base
learner for researchers to build off. Researchers can use the
spectrum curricula on the site as challenge problems or to
evaluate their systems. Researchers are also encouraged to
submit new spectrum curricula to the collection, either using
the provided framework or their own framework, to improve
the quality of this community resource.

Figure 4: BBN Open Bootstrapped Learning
Project webpage

5. CONTRIBUTIONS
We have demonstrated how spectrum curricula can be de-

signed for investigating a student’s teachability, where each
spectrum curriculum incrementally varies how a lesson is
taught with respect to a property of interest. More particu-
larly, we have presented a set of seven spectrum curricula in
the Robocup domain that can be used to investigate three
properties of instruction: strength of mutual knowledge as-
sumptions, transfer distance between lesson and use, and
lesson detail.

It is important to remember, however, that the actual
effectiveness of these curricula at capturing their designed
goals has yet to be evaluated. An important future direction
of research is to test both humans and machine learners
against these curricula in order to verify that useful spectra
are actually produced.

The materials we are producing are being made publicly
available on the Open Bootstrapped Learning Project web-
site, such that any researcher can test against the curricula
available or can contribute their own curricula. As this pub-
lic resource is improved, we hope that it will prove stimu-
lating to the community of researchers investigating teach-
ability, both providing a useful set of challenge problems
and a meaningful standard of cross-system comparison, and
thereby advance us toward a future of adaptive human-
machine collaboration and predictive models of human teach-
ability.
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