
Chapter 1

HIGH-LEVEL PROGRAMMING LANGUAGES
FOR BIO-MOLECULAR SYSTEMS

Jacob Beal
BBN Technologies
Cambridge, Massachusetts

jakebeal@bbn.com

Andrew Phillips
Microsoft Research
Cambridge, England

andrew.phillips@microsoft.com

Douglas Densmore
Boston University
Boston, Massachusetts

dougd@bu.edu

Yizhi Cai
Johns Hopkins University
Baltimore, Maryland

cai@jhmi.edu

Abstract In electronic computing, high-level languages hide much of the details,
allowing non-experts and sometimes even children to program and cre-
ate systems. High level languages for bio-molecular systems aim to
achieve a similar level of abstraction, so that a system might be de-
signed on the basis of the behaviors that are desired, rather than the
particulars of the genetic code that will be used to implement these
behaviors. The drawback to this sort of high-level approach is that it
generally means giving up control over some aspects of the system and
having decreased efficiency relative to hand-tuned designs. Different

2

languages make different tradeoffs in which aspects of design they em-
phasize and which they automate, so we expect that for biology, there
will be no single “right language,” just as there is not for electronic com-
puting. Because synthetic biology is a new area, no mature languages
have yet emerged. In this chapter, we present an in-depth survey of four
representative languages currently in development—GenoCAD, Eugene,
GEC, and Proto—as well as a brief overview of other related high-level
design tools.

Keywords: Synthetic biology, abstraction, high level languages, GenoCAD, GEC,
Proto, Eugene, modeling, design, XOR

1. Overview

A “high-level” programming language is one that abstracts many of
the details of how a computation will actually be implemented. The
programmer writes down a simple description, capturing the essence of
the computation, and this description is automatically expanded to pro-
duce a complete implementation that can be executed on the available
computational substrate.

On modern digital computers, this process can go through many dif-
ferent layers. Consider, for example, an entry in a Microsoft Excel
spreadsheet that adds up a column of figures. The expression itself,
something like “= SUM(C1:C10)”, is a transparently simple state-
ment in an arithmetic-centric high-level language. Within Excel, this
statement is interpreted into a set of calls to various functions within Ex-
cel, in the process adding implicit behaviors like error handling. These
Excel functions were themselves written in some high-level language,
and then compiled into machine code that can execute on the computer
where Excel is running, in the process making routine decisions like
how to implement each mathematical operation using the resources of
the machine’s processor. Even that machine code goes through another
layer of interpretation, as the processor itself restructures the code to
operate more efficiently given the current state of the processor.

The essence of the idea behind high-level languages is this: as an en-
gineering field matures, finding good-enough solutions to sub-problems
of design becomes routine. Highly routine problem solving can then
be automated, reifying the knowledge of skilled engineers into a piece
of software. The software solutions to individual parts of the design
process can then be connected together to form a complete tool-chain,
translating from high-level descriptions down to working implementa-
tions without any need for human intervention.

Languages for Bio-Molecular Systems 3

Separating the programmer from the implementation details has three
important benefits:

Accessibility: less knowledge is required to build a system, since
much of the required knowledge has been captured in software.

Scalability: since routine design work is automated, it is possible
to build larger and more complex systems, and to re-use the same
programs on different platforms.

Reliability: aspects of design that are automated are no longer
subject to programmer error; software can also check for common
errors in the programmer’s high-level design.

On electronic computers, high-level languages have become so suc-
cessful that few people ever use anything besides a high-level language.
In the programming of bio-molecular systems, high-level languages are
just beginning to emerge.

For the purposes of this chapter, we will define a high-level language
for bio-molecular systems as any system description language where the
choice of implementing biological parts may routinely be left unspeci-
fied. We will focus primarily on programming languages for in vivo bio-
molecular computation, reviewing four representative languages: Geno-
CAD, Eugene, GEC, and Proto in rough order from lower to higher
levels of abstraction. To aid comparison and understanding, we apply
each language to a simple example problem:

Express green fluorescent protein (GFP) when either of the small-molecule
signals aTc or IPTG is present, but not when both are present.

At the end of the chapter, we also review the scope of other related
high-level design tools for bio-molecular computing systems.

2. GenoCAD

GenoCAD (www.genocad.org) is one of the earliest CAD tools for
synthetic biology, built upon the foundation of formal grammars. In this
section, we summarize the basics of grammars, the theoretical foundation
underneath GenoCAD and also a brief tutorial on how programs are
constructed using the GenoCAD web service.

Formal Language & Syntactic Model

A formal language is a set of (possibly infinite) strings derived from
an alphabet Σ, which encodes information for communication purposes.
There are several kinds of languages, including natural languages (e.g.,

4

English and Chinese), computer languages (e.g., C and HTML), and
mathematical languages (e.g., first-order logic). However not all the
strings over a language’s alphabet actually belong to that language, only
those which follow its rules. A grammar is a finite set of rules that
specifies the syntax (permissible structure) of a language. A grammar
G contains four components:

A finite set N of non-terminal symbols.

A finite set Σ of terminal symbols that is disjoint from N .

A finite set P of rewriting rules, each rule is in the form of α→ β,
where α and β are both strings of symbols, and α contains at
least one symbol from N . More formally, a rewriting rule can
be represented as (Σ ∪ N)∗N(Σ ∪ N)∗ → (Σ ∪ N)∗, where ∗ is
the Kleene star operation (meaning zero or more copies of the
preceding statement) and ∪ is the set union operation.

A distinguished symbol S ∈ N that is the start symbol.

In the 1950s, Chomsky classified grammatical models into four classes
based on the forms of their production rules, which reflect their expres-
sive power [Chomsky, 1956]. In a nutshell, selecting a class of grammat-
ical model as the representation of biological sequences is a tradeoff be-
tween the expressivity and the compilation complexity. Since GenoCAD
uses a Context-Free Grammar (CFG), we will only give the mathemati-
cal definition of CFG. A good general introduction to formal languages
and the Chomsky hierarchy may be found in [Sudkamp, 2006].

A Context-Free Grammar allows any production rule of the form
A → α. The left-hand side only consists of a single non-terminal
symbol A, and the right hand side can be any string α, where
A ∈ N , and α ∈ (N∪Σ)∗. The corresponding automaton for a con-
text free grammar is a push-down automaton. The computational
complexity to recognize a context free grammar is polynomial.

GenoCAD formalizes many generic design principles of molecule bi-
ology in the form of a context free grammar. The biological parts are
the terminals, while the devices/systems composing multiple parts are
categorized as non-terminals in the grammar. In this review, only a
small grammar will be presented: two more comprehensive grammars
are published elsewhere [Cai et al., 2007, Cai et al., 2010].

Table 1.1 summarizes the non-terminals and terminals used in this
small grammar. S is a special non-terminal which is used as the start
symbol of the grammar. Operon and Cistron are complex devices, which

Languages for Bio-Molecular Systems 5

Table 1.1. GenoCAD small grammar set of terminal and non-terminal symbols.

Non-terminals Terminals
S -
Operon -
Cistron -
Promoter prom1, prom2, prom3
RBS rbs1, rbs2, rbs3
Gene lacI, tetR, gfp
Terminator b0012, b0015

Table 1.2. GenoCAD small context free grammar of gene expression.

Number Rule
P1 S → Operon
P2 Operon→ Operon,Operon
P3 Operon→ Promoter, Cistron, Terminator
P4 Cistron→ RBS,Gene
P5 Cistron→ Cistron,Cistron
P6 Terminator → Terminator, Terminator
P7 · · ·P9 Promoter → prom1|prom2|prom3
P10 · · ·P12 RBS → rbs1|rbs2|rbs3
P13 · · ·P15 Gene→ lacI|tetR|gfp
P16, P17 Terminator → b0012|b0015

are composed of multiple basic parts (terminals). In the category of
Promoter, there are three terminals, namely prom1, prom2 and prom3.
Similarly, a ribosome binding site RBS can be chosen from rbs1, rbs2
and rbs3, while a Gene could be lacI or tetR or gfp. Finally, there are
two terminals b0012 and b0015 belong to the non-terminal Terminator.
Table 1.2 presents a context free grammar for designing gene expression
cassettes. The whole grammar can be divided into two sections: rules
P1 – P6 transform the structure of a design, while rules P7 – P17 are
used to select a particular terminal for each non-terminal category. The
design starts with P1, where the start symbol S becomes an expression
Operon. Multiple Operons are allowed by applying rule P2 multiple
times: for a design with n cassettes, P2 is applies n − 1 times. Rule
P3 specifies the structure of an Operon to be a Promoter, followed
by a Cistron and a Terminator. A Cistron can be broken down by

6

rule P4 as an RBS and a Gene. Multiple Cistrons and Terminators
are allowed in a design by rules P5 and P6, respectively. After the
structure of a design is defined, rules P7 – P17 are used to transform
each non-terminal to a specific biological part (terminal). For instance,
rules P7, P8 and P9 specify prom1, prom2 and prom3 respectively to
replace non-terminal Promoter (the ‘|’ sign indicates OR relationship).

Figure 1.1. Grammatical design of a DNA sequence. Panel 1: a parsing tree showing
the step-by-step application of rules to generate the sequence (excepting terminal
selection). Each step is labeled with the rule applied. Panel 2: Representation of the
generated DNA part sequence, using a standard set of synthetic biology icons. Panel
3: The designed DNA sequence.

Figure 1.1 shows how this simple syntactic model can be applied to
generate a sequence structurally consistent with the XOR gates devel-
oped below in our presentation of Eugene (Figure 1.3) and GEC (Fig-
ure 1.4). The design process starts with applying P1 to the start symbol
S to transform the design into a single Operon. After applying P3 twice,
the design becomes three Operons. In the next step, rule P3 defines the
structure of each Operon as a Promoter, a Cistron and a Terminator.
In order to express lacI and tetR under control of the same constitutive
promoter, P5 is applied to allow two Cistrons in the leftmost Operon.
Finally, rule P4 breaks down each Cistron into an RBS followed by a

Languages for Bio-Molecular Systems 7

Gene. Once the structure of the design is decided, a part is selected for
each category (Figure 1.1.2) and mapped to a DNA sequence that can
be exported for synthesis (Figure 1.1.3).

If we operate the process in Figure 1.1 in reverse, then rather than
generating a DNA sequence, we can validate whether a specified DNA
sequence is consistent with the syntactic model. This is carried out with
an automated process known as “parsing” in computer science. The
parser operates in the reverse order of the design process: the Geno-
CAD parser takes the DNA sequence (panel 3 in Figure 1.1) as input
and breaks it into a series of biological parts (panel 2 in Figure 1.1). It
then checks for the existence of at least one rule application tree that
can generate this series of parts using the context-free grammar. Real-
izing that we can build parsers from the syntactic model opens up the
possibility of viewing DNA sequences as a programming language. One
can make changes to a DNA sequence just like writing source code, and
use the parser to check whether the new DNA sequence is still consistent
with the syntactic model (which formalizes the biological knowledge).

It should be noted that the syntactic model only checks the structure,
but not the meaning of the design. A syntactically correct sentence is not
necessarily meaningful. In the context of synthetic biology, this means
the syntactic model only controls the order of putting biological parts
together to ensure a successful gene expression, but the function of the
DNA sequence (i.e., what does this sequence do?) remains unknown.
Recently, GenoCAD has been extended to address this area with the
introduction of an attribute grammar to develop semantic models of
DNA sequences [Cai et al., 2009]. By associating biological attributes
with parts, and coupling semantic actions with each production rule, the
semantic models are capable of translating a class of DNA sequences to
mathematical models that describe the encoded phenotypic behavior.

GenoCAD Web Service

Based on the syntactic model originally described in [Cai et al., 2007],
an open-source web application (www.genocad.org) has been imple-
mented. GenoCAD constrains the design space using the underlying
syntactic models, and guides the user through the design process in
a “point and click” fashion. This has been extended recently with a
second syntactic model, designed specifically for BioBrickTM-based con-
structs [Cai et al., 2010].

The GenoCAD web tool applies these syntactic models to support
both design and validation of sequences [Czar et al., 2009] (though at the
moment when this chapter was written, the validation section was offline

8

Figure 1.2. Screenshots of the GenoCAD.org web service showing pages for sequence
design (A), sequence validation (B), part library customization (C), and the user’s
workspace (D).

for development). The design space (Figure 1.2.A) has two distinct
sections: on the left hand side is the “History Record” which keeps
track of each design step, while the right hand side shows the current
design. On top of the right hand side is an icon representation of the
current design, which will evolve as the design proceeds. Underneath
the icon representation is the main design space, where a user can point
and click on a grammar rule to transform the design or to decide on a
specific biological part for a category. After the design is finished (i.e,
the structure is finalized, and all parts are selected), GenoCAD will offer
the user an option to export the DNA sequence being designed.

If a DNA sequence is designed outside GenoCAD, it can be taken into
the validation section (Figure 1.2.B) to check whether the composition
of biological parts is consistent with GenoCAD grammars. It should be
noted that if a sequence fails in the validation, it does not necessarily
mean this sequence is non-functional. Rather, it means that the Geno-
CAD grammar could not find a parsing tree to generate this sequence,
and that sequence requires a closer inspection by human experts. On
entering the validation page, a user firsts select a grammar to validate

Languages for Bio-Molecular Systems 9

against, then pastes the DNA sequence into GenoCAD. The tool will
then interpret the DNA sequence into a series of parts and (if success-
ful) report whether this sequence has a correct structure as defined by
the selected grammar.

Finally, users who elect to register an account with the GenoCAD web
tool have more privileges in customizing their design space in GenoCAD.
A registered user can create new libraries (Figure 1.2.D), add new parts,
and save intermediate and final designs for later use (Figure 1.2.D).

3. Eugene

Eugene (www.eugenecad.org) is a human readable, executable spec-
ification, which reflects the creation of biological systems by defining,
specifying, and combining collections of biological parts. Eugene is in-
spired by the languages of the Electronic Design Automation (EDA)
industry (e.g. Verilog, VHDL) in terms of its ability to provide a bi-
ological design netlist (a collection of abstract components and their
connections) which can be synthesized (automatically transformed) into
collections of physical implementations in a design library.

Eugene bridges the synthetic biology “part” and “device” (composite
of multiple basic parts) hierarchy levels by explicitly addressing the com-
ponents in different levels of the hierarchy. These relationships are ex-
plicitly reflected in Eugene’s data types: Device and Part declarations
abstract low-level implementation details (captured by Property state-
ments), while still providing the capability to capture the lower level in-
formation through the encapsulation of specific design information with
Part Instance objects composed of specific Properties. These fea-
tures address the need for flexibility in biological part and device speci-
fication. Moreover, Eugene can directly interface with design tools like
Clotho [Densmore et al., 2009] which extract information from repos-
itories of biological parts and encapsulate that information as Eugene
“header files”. These files define specific instances of Parts and their
Properties for a given “design library”. These header files are modular
and allow changes from one design library to the other with the inclusion
of different files without modifying the Eugene Device declarations.

Eugene is also an executable specification since it is an interpreted
language. At runtime, the Eugene interpreter can create collections
of Devices based on conditional execution statements (e.g. if) coupled
with specific functions to create new Devices at runtime. These features
address the need for the combinatorial exploration of devices from a wide
variety of different biological parts. For example, if a particular Part’s
Property does not meet a specific threshold, the body of the conditional

10

statement can be used to swap that Part out with one that does meet
the requirements.

Finally, Eugene allows for the creation and assertion of design rules.
A Rule directly applies to the relationship between various Parts in a
Device and provides the validation mechanisms needed to ensure the
successful creation of a construct. These rules are not predefined in the
language but rather created by the user from a rich set of rule primitives.
Such flexibility allows users to define and assert numerous combinations
of rules.

Eugene Constructs

The language supports five predefined primitive types. These are
txt, num, boolean, txt[] (a list of text sequences), and num[] (a list
of numbers). Properties represent characteristics of interest and are
defined by primitives and associated with parts. The data type Part
represents a standard biological part, such as a BioBrickTMin the MIT
Registry. Part definitions do not construct any parts, but rather spec-
ify which parts can be constructed. Declarations of those parts create
instances of predefined Parts and assigns values to their properties. De-
vice statements represent an ordered composite of standard biological
parts and/or other devices. Below are examples of these constructs:

//Eugene Primitives

txt[] listOfSequences = ["ATG", "TCG", "ATCG"];

txt specificSequence = listOfSequences[2];

num[] listOfNumbers = [2.5, 10, 3.4, 6];

num ten = listOfNumbers[1];

//Eugene Properties

Property Sequence(txt);

Property RelativeStrength(num);

//Eugene Part Declarations

Part Promoter(ID, Sequence, Orientation);

Part ORF(ID, Sequence, Orientation);

Part RBS(ID, Sequence, Orientation);

//Eugene Part Instances

RBS rbs (.Sequence("gatcttaattgcggagacttt"), .Orientation("Forward"));

ORF orf (.Sequence("gatcttaattgcggagacttt"), .Orientation("Forward"));

//Eugene Device

Device BBa_K112234(rbs, orf);

Languages for Bio-Molecular Systems 11

Eugene Rules

The specification of rules provides the ability to validate Device dec-
larations. Rule declarations themselves do not perform the validation.
They have to be “noted”, “asserted” or used as expressions inside an
if-statement to affect program operation. Rule declarations are single
statements consisting of a left and right operand and one rule opera-
tor. The rule operators BEFORE, AFTER, WITH, NOTWITH,
NEXTTO, NOTCONTAINS, CONTAINS, and NOTMORETHAN
can be applied to Part instances or Device instances. These opera-
tors also have been defined with specific semantics as well (e.g. their
commutative properties). Property values of Part/Device instances or
primitives in relation with one Part/Device can be operators in rule
declarations when using the relational operators <, <=, >, >=, ! =,
==. These operators are overloaded when evaluating text and the text
is compared according to alphabetical precedence. The following are
examples of rules in Eugene:

Rule r1(rbs BEFORE orf);

Rule r2(rbs WITH promoter);

Rule r3(promoter NEXTTO rbs);

Rule r4(rbs.Sequence != orf.Sequence);

Rule r5(rbsStrong.RelativeStrength > rbsWeak.RelativeStrength);

num relativeStr = rbsStrong.RelativeStrength;

Rule r6(p.RelativeStrength > relativeStr);

Assert(r6); // Strong enforcement of the rule (stop compilation)

Note(r4); // Weak enforcement of the rule (warning)

Currently rules must be defined explicitly in the body of the Eugene
program or in a header file. However work is in progress to examine
ways to associate rules with Parts types and instances as well as generate
constraints in response to experimental work done in laboratories which
is fed back to Eugene at runtime. In addition, the automated assembly
system j5 [Nathan J. Hillson, 2010] uses Eugene constraints as part of
its combinatorial exploration of alternate devices.

Eugene Functionality

The use of conditional statements breaks up the flow of execution
and allows selected blocks of code to be executed. Eugene supports
two kinds of if statements to achieve this: rule validating if statements
and standard if statements. The three logical operators AND, OR,

12

and NOT can combine statements of each type but cannot mix them
together.

Rule r7(rbs BEFORE orf);

if(on (BBa_K112234) r7) {

Block statement, in case of true evaluation

} else {

Block statement, in case of false evaluation

}

boolean test = true;

if(test) {

Assert(r7);

} else {

Assert(NOT r7);

}

The permute function automates the specification of many Devices
that share the same basic structure. Applying permute generates a De-
vice for every combination of predefined Parts, maintaining the Part
type of each component in the original Device. For example, the fol-
lowing code will result in eight devices at the completion of the permute
operation.

Promoter p1(.Sequence("atc"));

Promoter p2(.Sequence("gcta"));

RBS rbs1(.Sequence("gatct"),.Orientation("Forward"));

RBS rbs2(.Sequence("gatcttaatt"), .Orientation("Forward"));

Device d2(p2, d1, rbs2);

permute(d2);

Permute also can be given additional parameters that limit the num-
ber of Devices created or force the Devices to adhere to the rules cur-
rently defined. The latter provides an intelligent design space explo-
ration process. For example, Permute(d2, 4, strict) will create four De-
vices which adhere to the rules currently defined while maintaining the
overall structure of Device d2.

XOR Design Example

We now show how Eugene can be applied to design our example XOR
system, which only produces a green fluorescent protein (GFP) with
either aTc or IPTG (but not both) present. Figure 1.3 shows the pro-
posed network of parts and the regulation present. The code snippet
below shows what this design would look like in Eugene. Of note is that
since Eugene is based around the specification of devices from individual
parts, there is not a natural way to express small molecular interactions.
These manifest themselves as properties of the parts. Control statements

Languages for Bio-Molecular Systems 13

could then check these properties to create alternate networks reflecting
the presence or absence of these molecules. If the proper DNA sequences
are provided for all the parts, these interactions themselves would occur
naturally in the physical device. The provided design merely captures
the topology of the XOR device as an ordered collection of parts.

lacI tetR

IPTG aTc

GFP GFP
rpType1 gfp rpType2 gfpcp lacI tetR

Figure 1.3. XOR Gate Design Example Designed With Eugene

Property sequence(txt);

Property smallMoleculeInteraction(txt);

Property type(num);

//1 - neg regulated by lacI, pos regulated by tetR

//2 - neg regulated by tetR, pos regulated by lacI

Part ConstitutivePromoter(sequence);

Part RegulatedPromoter(sequence, type);

Part ORF(sequence, smallMoleculeInteraction);

ConstitutivePromoter cp("ACGT...");

RegulatedPromoter rpType1("ACGT...", 1);

RegulatedPromoter rpType2("ACGT...", 2);

ORF gfp("ACGT...", "none");

ORF lacI("ACGT...", "IPTG");

ORF tetR("ACGT...", "aTc");

Device xor(cp, lacI, tetR, rpType1, gfp, rpType2, gfp);

Notice that here no rules are actually specified. However, were this de-
sign actually given to a downstream tool chain for automated assembly,
one would want to create many potential devices in case the provided
device either fails to function or assemble. Potential rules could be:

//This places the ConstitutivePromoter before lacI and tetR

14

Rule cpLocation1(cp BEFORE lacI);

Rule cpLocation2(cp BEFORE tetR);

Assert(cpLocation1 AND cpLocation2);

//Ensures that only two RegulatedPromoters are in the system

Rule UniquePromoter1(rpType1 NOTMORETHAN 1);

Rule UniquePromoter2(rpType2 NOTMORETHAN 1);

Assert (UniquePromoter1 AND UniquePromoter2);

For the sake of space, all the rules are not listed here but one should
specify the relationship between the gfp ORF part and the Regulated-
Promoters as well. This would be followed by a Permute(xor, strict)
function call which would create a variety of devices (e.g. with the po-
sition of the lacI and tetR parts swapped). These devices would then
be given to an automated assembly program [Densmore et al., 2010] for
downstream use with laboratory automation.

4. GEC

This section describes a programming language for Genetic Engineer-
ing of Cells (GEC), initially presented in [Pedersen and Phillips, 2009a]
and available at http://research.microsoft.com/gec. The main goal
of GEC is to facilitate the design, analysis and implementation of bio-
logical devices inside living cells. GEC builds on previous research in
the field of synthetic biology, including a registry of standard parts
(http://partsregistry.org) together with experimental techniques
for combining these parts into higher-level devices. More recently, a
range of software tools have been developed for designing and simulat-
ing biological devices, as discussed for example in [Purnick and Weiss,
2009, Pedersen and Phillips, 2009a]. The main innovation behind GEC
is to take the design process a step further, by allowing biological de-
vices to be designed with little or no knowledge of the specific parts
available. The user needs only a basic knowledge of the available part
types, namely promoters, ribosome bindings sites, protein coding regions
and terminators. These elementary part types can be composed and
the properties of the desired parts can be expressed as constraints in
the GEC language. Once a biological device has been designed in this
way, the GEC compiler automatically determines the set of actual parts
that satisfy the design constraints. In most cases, multiple solutions are
possible for a given design. GEC can compile each of the solutions to a
set of chemical reactions, which can then be simulated or analyzed by
the user. The solutions that exhibit the desired behavior can then be
synthesized and put to work in living cells. Although there is no guar-
antee that a solution which produces the desired simulation results will

Languages for Bio-Molecular Systems 15

(a)

APA

c

PA

PB

A B

B

BA

gfp

PB

gfp

directive sample 2000.0 1000

directive plot c[gfp]

initPop A 10000.0 | initPop B 10000.0 |
c[

prom<con(RT)>;rbs;pcr<codes(PA)>;rbs;pcr<codes(PB)>;ter ;

prom<neg(PA),pos(PB)>;rbs;pcr<codes(gfp)>;ter ;

prom<neg(PB),pos(PA)>;rbs;pcr<codes(gfp)>;ter |
PA + A -> PA-A | PB + B -> PB-B | RT > 0.1

] | A -> c[A] | B -> c[B]

(b)
[(”A”, ”iptg”); (”B”, ”aTc”); (”PA”, ”lacI”); (”PB”, ”tetR”)]

[[r0051; b0034; c0012; b0034; c0040; b0015;
rU2; b0034; e0040; b0015;
rU1; b0034; e0040; b0015]]

Figure 1.4. Designing an exclusive OR (XOR) logic gate in GEC. (a) GEC code for
the XOR gate, together with its graphical representation, expressed in terms of part
types, part properties and logical variables. Note that none of the part identifiers are
specified explicitly. The design yields a number of possible solutions. (b) One of the
solutions proposed by the GEC tool, expressed as a mapping from logical variables
to molecules, together with a list of the part identifiers that make up the design.

function correctly inside a living cell, analyzing the design on a computer
is an effective way to rapidly detect design errors prior to building the
physical device—a process which can take several days and for which
even small errors can prove very costly.

16

We illustrate the design approach of the GEC language on a simple
exclusive OR (XOR) logic gate (Figure 1.4 on page 15). The system is
specified as a collection of three transcriptional units, where each unit
consists of a sequences of part types. The first transcriptional unit con-
sists of a promoter (prom), a ribosome binding site (rbs) a protein coding
region (pcr), followed by another ribosome binding site and protein cod-
ing region, followed by a terminator (ter):

prom; rbs; pcr; rbs; pcr; ter

Additional constraints on part types are specified in the form of part
properties. In the first transcriptional unit, the prom<con(RT)> de-
notes a promoter with a constitutive transcription rate RT, the part
pcr<codes(PA)> denotes a protein coding region that codes for pro-
tein PA, and the part pcr<codes(PB)> denotes a protein coding region
that codes for protein PB:

prom<con(RT)>; rbs; pcr<codes(PA)>; rbs; pcr<codes(PB)>; ter

The transcription rate RT and the proteins PA and PB start with an up-
per case letter, which means that they are logical variables representing
an unknown rate and unknown proteins. Although the values of these
variables are not known in advance, the GEC compiler takes into ac-
count the full set of design constraints in order to find suitable values
that satisfy the desired properties. For example, the property RT > 0.1

states that the constitutive transcription rate of the promoter must be
above a certain threshold. In the second transcriptional unit the part
prom<neg(PA),pos(PB)> denotes a promoter region that is negatively
regulated by protein PA and positively regulated by protein PB:

prom<neg(PA),pos(PB)>; rbs; pcr<codes(gfp)>; ter

This places additional constraints on the proteins PA and PB, which must
act as a positive and negative regulator, respectively. The third tran-
scriptional unit places further constraints on the proteins PA and PB,
which must act as both positive and negative regulators simultaneously:

prom<neg(PB),pos(PA)>; rbs; pcr<codes(gfp)>; ter

Note that the protein gfp starts with a lower case letter, meaning that
it represents a known protein.

In order to map logical variables and design constraints to physi-
cal parts, GEC includes a database of parts. Each of the parts in the
database is associated with a part identifier together with zero or more
part properties. A subset of a GEC parts database is shown in Table
1.3 on page 17. The part properties are also associated with rate con-
stants, which are used to simulate the design solutions. For example,

Languages for Bio-Molecular Systems 17

Table 1.3. A subset of the GEC parts database, which can be defined and extended
by the user. Each of the parts in the database is associated with a part identifier
together with zero or more part properties.

ID Type Properties
e0040 pcr codes(gfp, 0.01)
c0012 pcr codes(lacI,0.01)
c0040 pcr codes(tetR, 0.01)
b0034 rbs rate(0.1)
b0015 ter
r0051 prom neg(cl, 1.0, 0.5, 0.00005), con(0.12)
r0040 prom neg(tetR, 1.0, 0.5, 0.00005), con(0.09)
rU1 prom neg(tetR,1.0,0.01,0.0), pos(lacI,1.0,0.5,0.1), con(0.0)
rU2 prom neg(lacI,1.0,0.01,0.0), pos(tetR,1.0,0.5,0.1), con(0.0)
rU3 prom neg(tetR,1.0,0.5,0.0), pos(lacI,1.0,0.5,0.1), con(0.0)

Table 1.4. A subset of the GEC reactions database, which can be defined and ex-
tended by the user.

Reactants rate Products
lacI + iptg 1.0 lacI-iptg
tetR + aTc 1.0 tetR-aTc

iptg 1.0 c[iptg]
aTc 1.0 c[aTc]

18

the database entry (c0040 7→ pcr,codes(tetR, 0.01)) denotes a protein
coding region c0040, which codes for the protein tetR with degradation
rate 0.01. The entry (r00517→prom,neg(cI,1.0,0.5, 0.00005),con(0.12))
denotes a promoter r0051 that is negatively regulated by the protein
cI, which binds to the promoter at rate 1.0 and unbinds at rate 0.5,
where the repressed transcription rate is 0.00005 and the constitutive
transcription rate is 0.12.

The design of the XOR gate in Figure 1.4 on page 15 also includes in-
teractions between proteins and transport reactions across the cell mem-
brane. The following constraints require that the protein A binds to PA

and forms a complex PA-A, and that the protein B binds to PB and forms
a complex PB-B. A vertical bar is used to separate multiple constraints:

PA + A -> PA-A | PB + B -> PB-B

This effectively specifies that the inputs A and B to the XOR gate can
inhibit the activity of the transcription factors PA and PB by forming
inert complexes with these transcription factors. Finally, the following
properties require that both A and B are able to cross the cell wall:

A -> c[A] | B -> c[B]

These properties are essential in order for the input signals of the XOR
gate to be read by the cell. In order to map these reaction constraints
to physical parts, the GEC system includes a database of reactions.
Each of the reactions in the database consists of a set of reactants, a
set of products and a corresponding reaction rate. A subset of a GEC
reactions database is shown in Table 1.4 on page 17. For example,
the reaction (lacI + iptg → {1.0} lacI-iptg) denotes the formation of a
complex between lacI and iptg. In many cases accurate rate information
for these reactions is missing, and approximate rate constants are used
instead.

The above design constraints for the XOR gate are solved by the GEC
compiler in order to find an appropriate solution. For example, the first
protein coding region of the first transcriptional unit must produce a
protein PA that can both inhibit the promoter of the second transcrip-
tional unit, activate the promoter of the third transcriptional unit and
also form a complex with a compound that is capable of crossing the cell
membrane. In the general case multiple solutions are possible for a given
design. One of the possible solutions is shown in Figure 1.4 on page 15.
The solution maps the inputs A and B to iptg and aTc respectively, and
the transcription factors PA and PB to lacI and tetR, respectively. The
corresponding part identifiers are also listed, which denote specific nu-
cleotide sequences that could potentially be inserted inside a bacterium
in order to program an XOR gate.

Languages for Bio-Molecular Systems 19

The main characteristic of the XOR gate is that green fluorescent
protein (GFP) is only produced when one of the input signals A or B
is present, but not both. When the user compiles the XOR gate design
in GEC, they are presented with a set of possible solutions that satisfy
the design constraints. The user can then simulate each of the solutions
in order to choose the most desirable one. The design can be further
refined by specifying that certain rates such as transcription, translation
or transcription factor binding must lie within a specified range. This
helps to reduce the initial set of possible solutions. In the case of the
XOR design, one of the solutions represents a condition whereby GFP is
produced even in absence of both inputs A and B. This occurs because
the rate of repression of one of the promoters by transcription factor PA
is less than its rate of activation by transcription factor PB, meaning
that activation out-competes inhibition. This unwanted solution can
be eliminated by adding the constraint that the inhibitor transcription
factors bind more tightly than the activator transcription factors.

In order to simulate a given design, GEC automatically compiles the
design to a set of chemical reactions, using the rates associated with
the part properties and reactions in the GEC databases. The set of
reactions for the XOR gate design is summarized in Figure 1.7 on page
21. Additional details about the compilation to reactions are provided
in [Pedersen and Phillips, 2009a], and a screen shot of the tool is shown
in Figure 1.6 on page 20.

In this section we have illustrated the design of genetic devices in GEC
using a simple XOR gate as an example. In order to effectively design
more complex devices, however, further work is needed to characterize
the properties of individual parts. At present only a few parts are well-
characterized and many reaction rates are unknown, so the part and
reaction databases described here do not yet exist on a large scale. As
one potential consumer of such databases, GEC may help guide how
these they are designed and populated with information about biological
devices.

5. Proto

Proto is a truly high-level language for synthetic biology, in the sense
that a programmer specifies the computation they wish to execute, but
the implementation of that computation as a genetic regulatory network
is entirely automated. This greatly increases the power of the program-
mer, at the cost of programs that typically consume more resources than
hand-tuned systems. The same sort of optimization techniques that ap-
ply to conventional processors, however, can be applied to the genetic

20

No input aTc iptg aTc & iptg

Figure 1.5. Simulation of gfp concentration over time for an exclusive OR gate in
GEC, with four combinations of inputs. The simulation uses the chemical reactions of
Figure 1.7 on page 21, which were automatically generated from the chosen solution of
Figure 1.4 on page 15. The solution exhibits the desired behavior and is a candidate
for synthesis.

Figure 1.6. Screen shot of the GEC tool in action. The GEC program is entered on
the left as a collection of part types, part properties and logical variables. The design
is then compiled to a set of solutions, which can be individually selected. A given
solution can then be simulated by the tool in order to observe the expected evolution
of the molecular species over time.

regulatory networks generated by Proto, making this a reasonable ap-
proach to designing complex synthetic biology systems.

Amorphous Medium and Proto

The original focus of Proto [Beal and Bachrach, 2006] was not syn-
thetic biology, and synthetic biology is still not its primary focus. Rather,
it was designed for programming spatial computers—potentially large

Languages for Bio-Molecular Systems 21

directive sample 2000.0 1000
directive plot c[gfp]

rate mDeg = 0.001;
init aTc 10000 |
init iptg 10000 |
c [

init glacI tetR 1 |
mlacI tetR ->{mDeg} |
glacI tetR->{0.12} glacI tetR +
mlacI tetR |
init ggfp1 1 |
mgfp1 ->{mDeg} |
ggfp1 ->{0.0} ggfp1 + mgfp1 |
ggfp1+ lacI ->{1.0} ggfp1-lacI |
ggfp1-lacI ->{0.01} ggfp1 + lacI |
ggfp1-lacI ->{0.0} ggfp1-lacI +
mgfp1 |
ggfp1+ tetR ->{1.0} ggfp1-tetR |
ggfp1-tetR ->{0.5} ggfp1 + tetR |
ggfp1-tetR ->{0.1} ggfp1-tetR +
mgfp1 |
init ggfp2 1 |
mgfp2 ->{mDeg} |
ggfp2 ->{0.0} ggfp2 + mggfp2 |
ggfp2+ tetR ->{1.0} ggfp2-tetR |
ggfp2-tetR ->{0.01} ggfp2 + tetR |
ggfp2-tetR ->{0.0} ggfp2-tetR +
mgfp2 |
ggfp2+ lacI ->{1.0} ggfp2-lacI |
ggfp2-lacI ->{0.5} ggfp2 + lacI |
ggfp2-lacI ->{0.1} ggfp2-lacI +
mgfp2 |
lacI + iptg ->{1.0} lacI-iptg | tetR
+ aTc ->{1.0} tetR-aTc |
mgfp2 ->{0.1} mgfp2 + gfp |
mgfp1 ->{0.1} mgfp1 + gfp |
mlacI tetR ->{0.1} mlacI tetR +
lacI | mlacI tetR ->{0.1}
mlacI tetR + tetR
] |
iptg->{1.0} c[iptg] |
aTc->{1.0} c[aTc] |
c [

gfp ->{0.01} |
lacI ->{0.01} |
tetR ->{0.01}
]

Figure 1.7. Network of reactions generated from the design of Figure 1.4 on page 15.
The graphical representation on the left was also generated by the GEC tool, and is
equivalent to the textual representation on the right.

22

neighborhood of P

P

Figure 1.8. An amorphous medium is a manifold where every point is a general
computational device that knows its neighbors’ recent past state.

aggregates of locally communicating computing devices distributed to
fill a physical space, such as sensor networks, robotic swarms, smart
materials, or FPGAs. A colony of cells is also a spatial computer—
albeit one that may have billions or trillions of devices, rather than the
paltry dozens in many sensor networks. Proto’s continuous space-time
abstraction lets it scale gracefully to such large numbers and its func-
tional dataflow semantics match well with genetic regulatory networks,
particularly for describing the spatial differentiation necessary to con-
struct complex multicellular systems like biofilms or tissues.

Proto’s approach to the challenges of spatial computing is to focus not
on the network of devices, but on the continuous space that they occupy,
using the amorphous medium abstraction. An amorphous medium [Beal,
2004] is a manifold with a general computational device at every point,
where each device knows the recent past state of all other devices in
its neighborhood (Figure 1.8). While an amorphous medium cannot, of
course, be constructed, it can be approximated on the discrete network
of a spatial computer.

Proto uses the amorphous medium abstraction to factor programming
a spatial computer into three loosely coupled subproblems: global de-
scriptions of programs, compilation from global to local execution on
an amorphous medium, and discrete approximation of an amorphous
medium by a real network.

Proto is a functional language that is interpreted to produce a dataflow
graph of operations on fields. This program is then evaluated against
a manifold to produce a field with values that evolve over time. Proto
uses four families of operations: point-wise operations like + that in-
volve neither space nor time, restriction operations that limit execution
to a subspace, feedback operations that establish state and evolve it in
continuous time, and neighborhood operations that compute over neigh-
bor state and space-time measures and summarize the computed values
in the neighborhood with a set operation like integral or minimum.

With appropriate operators, compilation and discrete approximation
are straightforward. Thus, Proto makes it easy for a programmer to
carry out complicated spatial computations using simple geometric pro-

Languages for Bio-Molecular Systems 23

grams that are robust to changes in the network and self-scale to net-
works with different shape, diameter, density of nodes, and execution
and communication properties [Bachrach et al., 2007].

For example, Weiss’ band detector [Basu et al., 2005] uses diffusing
AHL to detect intermediate distance from a high aTc concentration.
This can be implemented using the Proto program:

(def band-detect (signal lo hi)

(and (> signal lo) (< signal hi))))

(let ((signal (diffuse (aTc) 0.8 0.05)))

(green (band-detect signal 0.2 1)))

where aTc is a function for sensing aTc and green is an actuator that
sets the level of GFP expression. Figure 1.9 shows the Proto band de-
tector program interpreted to produce a dataflow graph, then evaluated
against an irregularly shaped space. Executing the Proto band detec-
tor in simulation produces results equivalent to Weiss’s band detector.
Figure 1.10 compares execution on a network of 2000 simulated wireless
devices distributed randomly through a 100 by 100 unit region with a
10 unit communication radius to Weiss’ original results.

Motif-based compilation and optimization

Given a library of devices and standards to compile to, Proto programs
can be transformed into genetic regulatory network designs by a process
of motif-based compilation. The resulting design can then be optimized
using adapted forms of standard code optimization techniques.

The basis of this compilation are associations of each Proto primi-
tive to be compiled with a genetic regulatory network fragment. These
are declared as annotations on primitives. For example, the logical not
operator is associated with a biological inverter motif by the statement
shown in Figure 1.11. The first line declares the not operator as a
primitive that takes a boolean as input and returns a boolean as out-
put. The second line annotates this declaration with a description of
a genetic regulatory region—in this case, a strong promoter repressed
by whatever protein will represent the not operator’s input, followed by
coding regions for the proteins representing its outputs (each of which is
implicitly headed by the necessary ribosome binding site), then finally a
terminator.

Motifs can include many other elements as well. For example, a motif
can specify particular chemicals to be used, as in the case of the green
actuator shown in Figure 1.12, whose green fluorescence side effect is im-
plemented by the inclusion of a GFP coding region in the motif. Motifs
can also include chemical reactions, as in the case of the IPTG sensor

24

Figure 1.9. A Proto program specifies a dataflow graph of operations on fields. When
evaluated on a space, each operation produces a field of values over that space. Here
the band detector program is shown evaluated on an irregularly shaped space, with
scalar fields grey (lighter is less) and boolean fields colored (true is red, false is blue).
The actuation produced by green is shown inside that operation.

shown in Figure 1.13, which uses repression of LacI to detect the pres-
ence of the small-molecule signal IPTG. They may even declare internal
signaling variables, to be filled in by the compiler, as in the case of the
and operator shown in Figure 1.14, which implements a non-brancing
logical AND using inverter input to a NOR gate.

In order to transform a Proto dataflow computation into an abstract
genetic regulatory network, the compiler maps each operator to its as-
sociated motif and maps each dataflow edge and internal motif variable
to a regulatory protein. These motifs and proteins are then linked to-
gether, using the structure of the dataflow graph, to form an abstract
genetic regulatory network. The particular choice of chemicals and se-
quences to implement this network is not fully determined, but left for
a later stage of compilation, such as might be provided by systems like
GEC [Pedersen and Phillips, 2009b] or Eugene [Berkeley Software 2009
iGem Team, 2010]. An initial set of target chemical rate constants for
the network (to be modified as the implementation is determined) are

Languages for Bio-Molecular Systems 25

a

(a)

d

ba

c

(b)

Figure 1.10. Examples of the Weiss lab band detector in use (a, reprinted by permis-
sion from Macmillan Publishers Ltd: Nature ([Basu et al., 2005]), copyright (2005)).
The circular regions in the center are active sender bacteria, while the fuzzy areas
around them are receiver bacteria expressing fluorescent protein. A Proto implemen-
tation produces equivalent results (b) on a network of 2000 simulated devices.

(primitive not (boolean) boolean
 :grn-motif ((P high R- arg0 outputs T)))

!"#$#%&"'()%*'*)+*',-.-/'&01"&..)#2

3&1"&..&4',5'#1&"-%#"')216% 7&"$)2-%#"

8#4)2+'9#"'#6%16%'1"#%&)2.

!"#$"#%&'()

Figure 1.11. Motif declaration for logical not operator.

(primitive green (scalar) scalar :side-effect
 :grn-motif ((P R+ arg0 GFP outputs T)))

!"#$#%&"'()%*'+#(',-.-+'&/0"&..)#1

21345&3',6'#0&"-%#"')104% 7&"$)1-%#"

8#3)19':#"'#4%04%'0"#%&)1.

8#3)19':#"';"&&1'<+4#"&.5&1%'!"#%&)1

!"# !"#$"#%&'()

Figure 1.12. Motif declaration for green fluorescence actuator.

filled in from the motifs where specified and filed in by a default set-point
in the standards family where not specified.

Consider, for example, the following declaration and use of logical
XOR to implement our example program:

(def xor (a b)

(or (and a (not b))

(and b (not a))))

26

(primitive IPTG () scalar
 :grn-motif ((rxn LacI IPTG -> LacI*)
 (P high LacI T)
 (P high R- LacI outputs T)))

!"#$#%&"'()*%+(+*,+(-.'./(&01"&''*#2

3.45(6&.4%*7.%&6(-8(-*26*2,(5!9:
9&"$*2.%#"

;#6*2,(<#"(#=%1=%(1"#%&*2'

>&1"&''&6(-8(3.45

!"#$

$%&'

!"#$"#%

Figure 1.13. Motif declaration for IPTG sensor. An aTc sensor uses the same motif,
except that aTc replaces IPTG and TetR replaces LacI.

(primitive and (boolean boolean) boolean
 :grn-motif ((P high R- arg0 ?X T)
 (P high R- arg1 ?X T)
 (P high R- ?X outputs T)))

!"#$#%&"'()*%+(+*,+(-.'./(&01"&''*#2

3&1"&''&4(-5(6*"'%(*217% 8&"$*2.%#"'

9#4*2,(6#"(#7%17%(1"#%&*2'

3&1"&''&4(-5('&:#24(*217%

9#4*2,(6#"($#%*6;*2%&"2./(1"#%&*2'

3&1"&''&4(-5($#%*6;*2%&"2./(1"#%&*2'

!"#$

!"#%

&'()'(*

!"

!"

Figure 1.14. Motif declaration for a non-branching logical AND operator. A logical
OR uses the same motif, except that all repressors are switched to activators and
promoters have low base activity.

!"#$
%&'

()**%

+#,
%&'

+%-

+%-

&)

Figure 1.15. A Proto dataflow computation implementing the XOR example pro-
gram.

(green (xor (aTc) (IPTG)))

This program should create cells that fluoresce green when precisely one
of IPTG or aTc is present at high concentration.

This program is first interpreted to produce the dataflow computation
shown in Figure 1.15. Each operator is then mapped to the motifs spec-
ified by the declarations shown above. The dataflow edges are assigned
to arbitrary regulatory proteins A, B, etc. The consuming motifs set
the type of protein, such that A and B are activators, C is a repressor,
etc.

Languages for Bio-Molecular Systems 27

!"#$

$%&'

'(%

)

)

&*+,

"&#

-

$

.

/

0

!

!

(

1

1

2

3

'

Figure 1.16. A Proto dataflow computation is compiled to an abstract genetic reg-
ulatory network in two stages. First, each operator is mapped to a motif and each
dataflow edge is mapped to a regulatory protein. These elements are then linked
together, using the structure of the dataflow graph, to form an abstract genetic reg-
ulatory network.

We now have a genetic regulatory network design that implements our
high-level computation, though as yet it is still unoptimized and may be
extremely inefficient. As we have demonstrated in [Beal and Bachrach,
2008], standard code optimization techniques such as copy propagation,
dead code elimination, and common subexpression elimination, can be
adapted to operate on genetic regulatory networks.

!

!"

#"$%&

&'()

)*'

#

(+,-

$(% "

.

)

Figure 1.17. Optimized genetic regulatory network for XOR example.

For example, copy propagation tests whether a protein is being used
only to copy a value; if so, the original input may be used directly rather
than the copy. In this case of this XOR program, copy propagation
changes the input of the GFP-expressing element from A to J . This then
leaves protein A not regulating anything. Similarly, copy propagation
switches the regulation of J from B to K and from F to L.

Dead code elimination deletes proteins that are not regulating any-
thing, network elements with no products, and proteins that can never
be expressed. Since protein A is no longer regulating anything, it is

28

deleted, along with all of the protein coding sequences that can produce
it. Since A was the only product of one of the network elements regu-
lated by J , that whole network element is deleted. Likewise, B and F
and their producing elements are deleted by dead code elimination.

Another example of optimization is double negative elimination, which
looks for sequences of two inverters and snips them out of the network.
In the case of this XOR program, this results in changing the production
of E to production of K, since E’s only use is to repress D, which in
turn represses K. Similarly production of I is changed to production of
L. This leaves I and E produced nowhere and D and H unable to be
expressed, so dead code elimination deletes another piece of unneeded
genetic regulatory network.

These optimizations and more are all applied automatically by the
compiler, eventually resulting in the network shown in Figure 1.17. All
told, the complexity of the generated network is reduced by approxi-
mately 50% in every measure of complexity: from 15 to 8 proteins, from
18 to 9 network elements, and from 7 to 4 stages of propagation delay.

We thus see that high-level computations specified in Proto can be
automatically transformed into an abstract genetic regulatory network
through a strategy of motif-based compilation. The resulting genetic
regulatory network can be optimized using adapted forms of standard
code optimization techniques, and might then be mapped onto particular
parts from a database using lower-level languages like Eugene or GEC.
Although the network is more complex than a hand-optimized design
like those encoded in the other tools above, stronger optimizations will
likely be able to continue to close the gap, as they have for electronic
computers.

6. Other High-Level Design Tools for Biological
Computation

We have chosen to focus this chapter on high-level programming lan-
guages for in vivo bio-molecular computation, where the metaphor of
cell as computer holds most strongly. There are a number of related
areas outside of this scope, however, in which high-level design tools for
bio-molecular systems have been developed, which we now briefly survey.

Macroizing CAD Tools. A number of synthetic biology design
tools, such as TinkerCell [Chandran et al., 2009] and SynBioSS [Hill
et al., 2008], use biological rules to aid the programmer in designing
reaction networks. For example, SynBioSS (the Synthetic Biology Soft-
ware Suite) is a software suite for the generation, storage, and quantita-

Languages for Bio-Molecular Systems 29

tive simulation of synthetic biological networks. One component of this
software suite, called SynBioSS Designer, uses biological rules to create
a reaction network given a series of biological parts, such as promoters
and ribosome binding sites, and the spatial and temporal connectivity
of these parts.

These systems also frequently include the ability to abstract a portion
of the network being designed. This type of “macroization” is a step
toward a high-level language: the details of the abstracted portion are
hidden and it can be given a name that describes its overall function.
The programmer must still be aware of the details, however, since the
set of parts in the abstracted sub-network are fixed and can interfere
with other portions of the design.

Specialized Automated Design Tools. Complementary to
Macroizing CAD tools are specialized automated design tools, which
might be thought of as limited high-level languages. An example is the
boolean circuit design tool recently described in [Marchisio and Stelling,
2010]. Given a truth table mapping inputs to desired outputs, this tool
applies the Karnaugh map method from electronic circuit design to find
a minimal set of boolean formulas, then maps these formulas onto a
library of established bio-molecular boolean gates.

Cell-free Bio-Molecular Computation. A number of bio-
molecular computation systems have been constructed to operate in cell-
free in vitro environments, and the design challenges for many of these
systems are being addressed with high-level design tools. For example,
the VERB compiler [Shea et al., 2009] transforms circuit designs written
in Verilog into a biochemical reaction network, and CAD tools have been
written to generate DNA origami structures [Rothemund, 2005].

Bio-Inspired Languages. There are a number of biologically-
inspired languages that have been designed to mimic the behavior of en-
gineered biological systems. For the most part, these are at a level of ab-
straction too high to currently be able to map to a bio-molecular systems
implementation, though Weiss’ Microbial Colony Language [Weiss, 2001]
is close. Many of these languages are focused on pattern formation, such
as the Origami Shape Language [Nagpal, 2001], which develops geomet-
ric structure through folding, the Growing Point Language [Coore, 1999],
which develops topological structure through tropisms. Yet others either
model high-level biological development without connection to the de-
tails necessary to implement it, as in the case of L-systems [Prusinkiewicz
and Lindenmayer, 1990] and MGS [Giavitto et al., 2002], or use biologi-

30

cal metaphors for decidedly non-biological programming, as in the case
of membrane computing [Paun, 2002].

Modeling languages. Biological modeling languages such as Anti-
mony [Smith et al., 2009], ProMoT [Mirschel et al., 2009], iBioSim [My-
ers et al., 2009] and little b [Mallavarapu et al., 2009] raise the level of ab-
straction for constructing models of bio-molecular reactions, but do not
directly address the problem of designing computations. For example,
Antimony is a modular model definition language that allows scientists
to define and use reaction networks. It is designed to be human-writable
and acts as an extension to other tools by translating the model to
SBML [Finney et al., 2006]. Antimony models composable DNA parts
and also allows reaction networks to be abstracted and parameterized,
but does not provide any design automation for its user.

7. Summary

In this chapter, we have examined four high-level languages for the
design of bio-molecular computing systems. Although the philosophy
and the level of abstraction varies between systems, all are fulfilling
the same basic goal of hiding complexity from the programmer. Each
thus allows a programmer to specify the computing system they wish
to create without the full details of how it will be implemented, then
automatically generates the remaining details.

At present, none of the available high-level languages can be consid-
ered mature. They are, however, an important and rapidly developing
research area. Major challenges in the near future for this area include:

Development of concise high-level abstractions that map well to
efficient bio-molecular implementations of a broad range of goals.

Enhancing the range and quality of automation.

Integration with other simulation, design, and assembly tools to
form complete tool-chains.

Transitioning from research software to production quality soft-
ware.

Assuming that progress continues in these areas, however, the advent of
high-level programming languages for bio-molecular systems is likely to
fundamentally transform the field, much as they have done in computer
science, by enabling much more complex bio-molecular systems to be
designed more reliably by a vastly larger number of practitioners.

References

[Bachrach et al., 2007] Bachrach, Jonathan, Beal, Jacob, and Fujiwara,
Takeshi (2007). Continuous space-time semantics allow adaptive pro-
gram execution. In IEEE SASO 2007.

[Basu et al., 2005] Basu, Subhayu, Gerchman, Yoram, Collins, Cyn-
thia H., Arnold, Frances H., and Weiss, Ron (2005). A synthetic
multicellular systems for programmed pattern formation. Nature,
434:1130–1134.

[Beal, 2004] Beal, Jacob (2004). Programming an amorphous computa-
tional medium. In Unconventional Programming Paradigms Interna-
tional Workshop.

[Beal and Bachrach, 2006] Beal, Jacob and Bachrach, Jonathan (2006).
Infrastructure for engineered emergence in sensor/actuator networks.
IEEE Intelligent Systems, pages 10–19.

[Beal and Bachrach, 2008] Beal, Jacob and Bachrach, Jonathan (2008).
Cells are plausible targets for high-level spatial languages. In Spatial
Computing Workshop.

[Berkeley Software 2009 iGem Team, 2010] Berkeley Software 2009
iGem Team (October 2009, Retrieved May 10, 2010.). Eugene.
http://2009.igem.org/Team:Berkeley Software/Eugene.

[Cai et al., 2007] Cai, Yizhi, Hartnett, Brian, Gustafsson, Claes, and
Peccoud, Jean (2007). A syntactic model to design and verify synthetic
genetic constructs derived from standard biological parts. Bioinfor-
matics, 23(20):2760–7.

[Cai et al., 2009] Cai, Yizhi, Lux, Matthew W, Adam, Laura, and Pec-
coud, Jean (2009). Modeling structure-function relationships in syn-
thetic dna sequences using attribute grammars. PLoS Comput Biol,
5(10):e1000529.

32

[Cai et al., 2010] Cai, Yizhi, Wilson, Mandy L, and Peccoud, Jean
(2010). Genocad for igem: a grammatical approach to the design
of standard-compliant constructs. Nucleic Acids Res, 38(8):2637–44.

[Chandran et al., 2009] Chandran, Deepak, Bergmann, Frank, and
Sauro, Herbert (2009). Tinkercell: modular cad tool for synthetic
biology. Journal of Biological Engineering, 3(1):19.

[Chomsky, 1956] Chomsky, N. (1956). Three models for the description
of language. Information Theory, IRE Transactions on, 2(3):113–124.

[Coore, 1999] Coore, Daniel (1999). Botanical Computing: A Develop-
mental Approach to Generating Inter connect Topologies on an Amor-
phous Computer. PhD thesis, MIT.

[Czar et al., 2009] Czar, Michael J, Cai, Yizhi, and Peccoud, Jean
(2009). Writing dna with genocad. Nucleic Acids Res, 37(Web Server
issue):W40–7.

[Densmore et al., 2010] Densmore, Douglas, Hsiau, Timothy H-C, Kit-
tleson, Joshua T, DeLoache, Will, Batten, Christopher, and Anderson,
J Christopher (2010). Algorithms for automated dna assembly. Nu-
cleic Acids Res, 38(8):2607–16.

[Densmore et al., 2009] Densmore, Douglas, Van Devender, Anne, John-
son, Matthew, and Sritanyaratana, Nade (2009). A platform-based
design environment for synthetic biological systems. In TAPIA ’09:
The Fifth Richard Tapia Celebration of Diversity in Computing Con-
ference, pages 24–29, New York, NY, USA. ACM.

[Finney et al., 2006] Finney, Andrew, Hucka, Michael, Bornstein, Ben-
jamin J., Keating, Sarah M., Shapiro, Bruce M., Matthews, Joanne,
Kovitz, Benjamin K., Schilstra, Maria J., Funahashi, Akira, Doyle,
John, and Kitano, Hiroaki (2006). Software infrastructure for effec-
tive communication and reuse of computational models. In Szallasi,
Zoltan, Stelling, Jörg, and Periwal, Vipul, editors, System Modeling
in Cell Biology: From Concepts to Nuts and Bolts. MIT Press.

[Giavitto et al., 2002] Giavitto, Jean-Louis, Godin, Christophe, Michel,
Olivier, and zemyslaw Prusinkiewicz, Pr (2002). Computational mod-
els for integrative and developmental biology. Technical Report 72-
2002, Univerite d’Evry, LaMI.

[Hill et al., 2008] Hill, Anthony D., Tomshine, Jonathan R., Weeding,
Emma M. B., Sotiropoulos, Vassilios, and Kaznessis, Yiannis N.

REFERENCES 33

(2008). Synbioss: the synthetic biology modeling suite. Bioinformat-
ics, 24(21):2551–2553.

[Mallavarapu et al., 2009] Mallavarapu, Aneil, Thomson, Matthew, Ul-
lian, Benjamin, and Gunawardena, Jeremy (2009). Programming with
models: modularity and abstraction provide powerful capabilities for
systems biology. Journal of The Royal Society Interface, 6(32):257–
270.

[Marchisio and Stelling, 2010] Marchisio, Mario Andrea and Stelling,
Jorg (2010). Automatic design of digital synthetic gene circuits. In
2nd International Workshop on Bio-Design Automation.

[Mirschel et al., 2009] Mirschel, S., Steinmetz, K., Rempel, M., Ginkel,
M., and Gilles, E. D. (2009). Promot: Modular modeling for systems
biology. Bioinformatics, 25(5):687–689.

[Myers et al., 2009] Myers, C.J., Barker, N., Jones, K., Kuwahara, H.,
Madsen, C., and Nguyen, N.P. (2009). ibiosim: a tool for the analysis
and design of genetic circuits. Bioinformatics, 25:2848–9.

[Nagpal, 2001] Nagpal, Radhika (2001). Programmable Self-Assembly:
Constructing Global Shape using Biologically-inspired Local Interac-
tions and Origami Mathematics. PhD thesis, MIT.

[Nathan J. Hillson, 2010] Nathan J. Hillson (Retrieved September 28,
2010.). j5 automated dna assembly software. http://jbei-
exwebapp.lbl.gov/j5.

[Paun, 2002] Paun, G. (2002). Membrane computing: An introduction.
Springer.

[Pedersen and Phillips, 2009a] Pedersen, Michael and Phillips, Andrew
(2009a). Towards programming languages for genetic engineering of
living cells. J R Soc Interface, 6 Suppl 4:S437–S450.

[Pedersen and Phillips, 2009b] Pedersen, Michael and Phillips, Andrew
(2009b). Towards programming languages for genetic engineering of
living cells. Journal of the Royal Society Interface.

[Prusinkiewicz and Lindenmayer, 1990] Prusinkiewicz, Przemyslaw and
Lindenmayer, Aristid (1990). The Algorithmic Beauty of Plants.
Springer-Verlag, New York.

[Purnick and Weiss, 2009] Purnick, Priscilla E M and Weiss, Ron
(2009). The second wave of synthetic biology: from modules to sys-
tems. Nat Rev Mol Cell Biol, 10(6):410–422.

34

[Rothemund, 2005] Rothemund, Paul W. K. (2005). Design of dna
origami. In International Conference on Computer-Aided Design (IC-
CAD).

[Shea et al., 2009] Shea, Adam, Fett, Brian, Riedel, Marc, and Parhi,
Keshab (2009). Writing and compiling code into biochemistry. In
International Conference on Computer-Aided Design.

[Smith et al., 2009] Smith, Lucian P., Bergmann, Frank T., Chandran,
Deepak, and Sauro, Herbert M. (2009). Antimony: a modular model
definition language. Bioinformatics, 25(18):2452–54.

[Sudkamp, 2006] Sudkamp, Thomas A (2006). Languages and machines:
an introduction to the theory of computer science. Pearson Addison-
Wesley, Boston, 3rd ed edition.

[Weiss, 2001] Weiss, Ron (2001). Cellular Computation and Communi-
cations using Engineered Genetic Regulatory Networks. PhD thesis,
MIT.

