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Abstract

Self-stabilizing (asymptotically stable) distance es-
timation algorithms are an important building block of
many distributed systems featuring in Spatial or Aggre-
gate computing, but the dynamics of their convergence
to correct distance estimates has not previously been
formally analyzed. As a first step to understanding, how
they behave in interconnections involving other building
blocks, it is important to develop a Lyapunov frame-
work to demonstrate their robust stability. This pa-
per addresses this shortcoming by providing the first
Lyapunov-based analysis of an adaptive Bellman-Ford
algorithm, by formulating a simple Lyapunov function.
This analysis proves global uniform asymptotic stabil-
ity of such algorithms, a property which the classical
Bellman-Ford algorithm lacks, thus demonstrating a
measure of robustness to structural perturbations, em-
pirically observed by us in a previous work.

1. Introduction

Our world is increasingly dependent on complex
networked and distributed systems, often composed of
many different subsystems (physical or logical) that are
themselves distributed. The stability, safety, and dy-
namical behavior of such systems is of great impor-
tance, but in general, such analysis of arbitrary com-
positions of arbitrary distributed algorithms appears to
be an intractable problem.

In the controls literature the study of the robust
stability of limited classes of interconnections of large
scale distributed systems using a mature set of tools
in stability theory, [1], dates back decades, [2]. More
recently interest has been rekindled by the modern in-
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carnation of the consensus literature, (see [3] and refer-
ences therein) and formation control, (see [4] - [6] and
references therein).

This paper is motivated by the interconnections of
distributed algorithms appearing in the emerging field
of aggregate or spatial computing. One promising re-
cent approach in studying such interconnections has
been to simplify the problem by a generative approach
using a basis set of “building block” distributed algo-
rithms [7–9]. Rather than attempting to analyze ar-
bitrary systems, this approach identifies a set of dis-
tributed algorithms with properties that can be predicted
for arbitrary compositions. Any system that can be
mapped onto such a basis set then inherits its proper-
ties. While empirically the dynamics of these basis set
systems appear to be amenable to effective composi-
tion [10–13], to date formal analysis has been limited
to eventually-true properties such as self-stabilization.
In the parlance of stability theory, these results demon-
strate asymptotic stability of each individual block. Yet
as a first step in understanding the robust stability of in-
terconnections, it is important to understand how these
individual systems behave under perturbations.

More precisely are their stability properties robust
to these perturbations? Does stability in the ideal un-
perturbed setting translate to acceptable behavior in the
face of perturbations? Such robust behavior cannot be
deduced by the mere demonstration of asymptotic sta-
bility. Rather, as is now well understood in the adap-
tive systems literature, [14], [15], [16] one must instead
show uniform asymptotic stability of the unperturbed
system. This is so as uniform asymptotic stability im-
plies total stability, [17], an ability to sustain modest
departures from idealizing assumptions.

This paper begins to address this shortcoming, tak-
ing a Lyapunov-based approach toward a framework for
analyzing the stability, safety, and dynamical behavior
of arbitrary compositions of a basis set of distributed
algorithms. For this first analysis presented in this pa-
per, we focus on distributed distance estimates of the
nodes of a undirected graph from a set of source nodes.
This is a widely used building block, and is in particu-
lar a continuously adaptive variant of the Bellman-Ford
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Figure 1: Illustration of the Adaptive Bellman-Ford al-
gorithm. From [10]. Individual distance estimates may
go up and down, but the greatest overestimate (D+) and
least underestimate (D�) are monotonic. This example
shows a line network of five devices (circles, source red,
others blue) with unit edges (grey links); distance esti-
mates evolve from initial t = 0 to converge to their cor-
rect values at t = 4. The numbers on the edges are the
edge lengths. The numbers on the nodes are their cur-
rent distance estimates.

algorithm [18], [19]. As explained later this variant is
needed as the classical Bellman-Ford algorithm is not
globally uniformly asymptotically stable. Here, we pro-
pose a novel Lyapunov function, hypothesized on the
basis of experiments, but never formally analyzed in our
earlier work [10] and use it to demonstrate the global
uniform asymptotic convergence of the distance esti-
mates to their true values. In doing so we thus formally
explain empirical observations made in [10], and vali-
date the robustness observed there to structural pertur-
bations of the underlying graph.

In Section 2 we introduce the graph framework and
state the assumptions underlying this work. Section 3
introduces what we call an Adaptive Bellman-Ford al-
gorithm and explains why the traditional Bellman-Ford
algorithm is not a suitable building block of the frame-
work postulated in [7–9]. Section 4 provides the Lya-
punov analysis. Section 5 consolidates the analysis with
implications to robustness. Section 6 concludes and
outlines an agenda for future work. Most proofs are
omitted due to space constraints.

2. Framework and Assumptions

We consider undirected graphs of the type depicted
in Figure 1. We say that node i is a neighbor of node j if
an edge exists between i and j. The set of neighbors of
node i are N (i). If j 2 N (i) then i 2 N ( j). Further

i /2 N (i),

i.e. no node is deemed to be its own neighbor.
In the sequel ei j denotes the edge length between

the neighbors i and j. We will assume that

ei j > 0, 8 j 2 N (i), (1)

i.e. distinct neighbors have nonzero edge lengths be-
tween them. Thus in the graph in Figure 1 each edge
length is 1. Further, The distance di j between two nodes
is the shortest walk from i to j. Thus, the distance be-
tween the third and the last nodes in Figure 1 is 2. From
the principle optimality one has the recursion

di j = min
k2N (i)

{eik +d jk}. (2)

This is also in effect a statement of the triangle inequal-
ity.

A subset S of the nodes in the graph will form a
source set. Our goal is to find the distance between each
node and the source set S. In particular we must find for
each node i, di the distance between the source set and
node i. More precisely we must find

di = min
k2S

{dik}. (3)

In view of (2) di obeys the recursion

di = min
k2N (i)

{eik +dk} (4)

Observe
di = 0, 8i 2 S. (5)

The distance estimation we desire must be recursive and
distributed in the sense that in executing the algorithm
at time t, the i-th node knows only

(A) Its edge length from each of its neighbors.

(B) The current estimated distance of its neighbors
from the source set, i.e. d̂ j(t) for all j 2 N (i).

The classical Bellman-Ford algorithm [18,19], is a well
known solution to this problem. We will explain in Sec-
tion 3 why this algorithm fails to meet our requirements
and will present instead an adaptive version of this algo-
rithm which we have empirically studied in [10] both in
isolation and in interconnections in some cases involv-
ing feedback loops.

3. Adaptive Bellman-Ford Algorithm

In the classical Bellman-Ford algorithm [18, 19]
distance from every node in an arbitrary graph to a des-
ignated source node is estimated by the relaxation of
a triangle inequality constraint across weighted graph



edges. However, the classical algorithm only works if
the initial distance estimates are all overestimates, i.e.
for all i

d̂i(0)� di. (6)

Thus by definition the classical Bellman-Ford algorithm
is not globally uniformly asymptotically stable. In the
dynamic interconnected environment the inputs may be
graph topology, or even the source set, and indeed these
may change over time. Consequently at a given instant
the current estimate may well fall below the true cur-
rent distance. The classical Bellman-Ford simply can-
not cope with such perturbations, and hence the adap-
tive version studied here.

The algorithm we empirically studied in [10] is
based closely on the classic Bellman-Ford algorithm,
but unlike the classical algorithm computes distances to
the nearest member of a set of source nodes rather than
just a single node. Moreover, we wish to be able to
support the case where either the set of sources or the
graph may change. It is thus an adaptive algorithm that
addresses these differences by a) setting the distance
estimate of every source node to zero, and b) for all
other devices, rather than starting at infinity and always
decreasing, recomputes distance estimates periodically,
ignoring the current estimate at a device and using only
the minimum of the triangle inequality constraints of its
neighbors. For simplicity in analysis, we formulate this
algorithm in terms of synchronized rounds of computa-
tion (though in practice it is typically executed without
synchronization).

In particular, suppose d̂i(t) is the current estimated
distance of i from the source set. Then the algorithm is

d̂i(t +1) =
⇢

min j2N (i)
�

d̂ j(t)+ ei j
 

i /2 S
0 i 2 S

(7)

Observe (7) respects the information structure imposed
in (A) and (B) of Section 2, and seeks to emulate (4)
treating the available distance estimates as their true val-
ues.

Note that the behavior of this algorithm reduces to
something very close to classical Bellman-Ford in the
case where there is precisely one source device and nei-
ther the graph nor the source ever change. We have pre-
viously presented an empirical analysis and experimen-
tal results on the dynamics of this algorithm in [10]; in
this paper we extend to formal analysis of the relevant
properties.

4. A Lyapunov Based Analysis

Under the initialization (6), the classical Bellman-
Ford is known to be self stabilizing. In other words ab-

sent any topological changes the estimated distances are
known to asymptotically converge to their true value.

As noted earlier this algorithm is ill-equipped to
deliver the sort of robustness to perturbations we seek
especially in the face of interconnections of program
blocks, interconnections of the type empirically stud-
ied in [10]. Even for the adaptive algorithm in (7)
mere asymptotic convergence, for a fixed graph, does
not suffice for robustness. As argued in [14] uniform
asymptotic, rather than just asymptotic convergence in
the ideal case of a fixed graph is needed for robustness
of adaptive algorithms.

Of course one device for establishing uniform
asymptotic stability is to formulate a suitable Lyapunov
function [1]. Indeed this section formulates such a Lya-
punov function. An obvious measure of algorithm per-
formance is of course the distance estimation error,

Di(t) = d̂i(t)�di.

However, an instance of (7) depicted in Figure 1 shows
that Di(t) may well increase in magnitude for individ-
ual nodes. On the other hand at least for the partic-
ular instance of the algorithm considered in Figure 1
each of the greatest overestimate of the error D+ and
the least underestimate D�, defined below, appear to be
non-increasing

D+

(t) = max


0,max
i

Di(t)
�

(8)

D�
(t) = max


0,�min

i
Di(t)

�
. (9)

This together with their eventual decrescence has been
empirically verified in [10]. Consequently, in this sec-
tion we examine the behavior of the candidate Lya-
punov function

L(t) = D+

(t)+D�
(t). (10)

That this is a valid Lyapunov function follows from the
fact that clearly

L(t)� 0 (11)

with equality holding iff for all l,

Dl(t) = 0.

Indeed we formally verify the empirical observations
of [10], in the belief that the Lyapunov framework thus
established can be exploited in future work to quantify
the effect of perturbations on (7).

Our analysis requires some further definitions. In
the sequel k in (4) will be called a true constraining



node of i while j in (7) will be called a constraining
node of i. Evidently, in view of (4)

dl < di (12)

whenever l is a true constraining node of i.
Further, we will define as k

+

(t) a node that has the
maximum error. More precisely, k

+

(t) is an index for
which D+

(t) = Dk
+

(t)(t), i.e.

k
+

(t) = argmax
i
{Di(t)}. (13)

Similarly, k�(t) is an index for which D�
(t) = Dk�(t)(t),

i.e.
k�(t) = argmin

i
{Di(t)}. (14)

We will first show the non-increasing nature of
D+

(t).

Lemma 1. Consider (7) with the assumptions stated in
Section 2. Then with D+ defined in (8), for all t, D+

(t +
1)D+

(t). Further, equality holds only if k
+

(t) defined
in (13) is the true constraining node of k

+

(t +1).

Remark 1. In fact the omitted proof shows that D+

(t +
1) =D+

(t) iff k
+

(t) defined in (13) is the true constrain-
ing node as well as the constraining node of k

+

(t +1).

Next we prove the non-increasing nature of D�
(t).

Lemma 2. Consider (7) with the assumptions stated in
Section 2. Then with D� defined in (9), for all t, D�

(t +
1)D�

(t). Further, equality holds only if k�(t) defined
in (14) is the true constraining node of k�(t +1).

Remark 2. Again the omitted proof shows that D�
(t +

1) =D�
(t) iff k�(t) defined in (14) is the true constrain-

ing node as well as the constraining node of k�(t +1).

Lemma 1 and Lemma 2 together show that for all
t, the Lyapunov function L(t) in (11) obeys for all t

L(t +1) L(t). (15)

The proofs also show that conditions for equality in (15)
are quite stringent. The next lemma helps to show that
in fact in a connected graph these conditions cannot be
sustained beyond a number of steps equaling at most the
diameter of the graph.

Lemma 3. With every node connected to the source set
S, suppose there is a sequence of nodes k(t) such that,
for all t 2 {t0 + 1, t0 + 2, · · · , t0 +T}, k(t � 1) is a true
constraining node of k(t). Then T is no larger than the
diameter of the graph.

Lemma 1 to Lemma 3 can be used to prove the
uniform decrescence of L(t) in (10), when the graph is
fixed.

Theorem 1. Suppose in the underlying graph, each
node is connected to the source set S. Consider the Lya-
punov function in (10) under (8) and (9). Then under (7)
there exists a positive integer T no larger than the diam-
eter of the graph, and an a > 0, possibly dependent on
the initial conditions, but not on the initial time, such
that L(t) in (10) obeys

L(t +T )�L(t)
⇢
�a L(t)> 0
0 L(t) = 0 . (16)

This confirms the empirical observation of [10] that
D+

(t) and D�
(t) are non-increasing and must decline

over time intervals bounded from above by the graph
diameter. As importantly, from systems theory perspec-
tive, Theorem 1 establishes L(t) in (10) as a valid Lya-
punov function. Though, as with most Lyapunov analy-
ses Theorem 1 is conservative, particularly in the bound
on T , and possibly a , though it does not quantify a ,
it is used in the next theorem to establish the promised
uniform asymptotic stability.

Theorem 2. Suppose in the underlying graph, each
node is connected to the source set S. Then the algo-
rithm in (7) induces all d̂i(t) to converge globally, uni-
formly, asymptotically to zero.

Proof. As L(t) is non-negative (16) ensures that L(t)
and hence all Dl(t) globally converge to zero. As neither
a nor T , depend on the initial time, uniformity follows.

5. Discussion and Implication to Robust-

ness

We now discuss various aspects of Theorem 1 and
Theorem 2. First as already noted by its very nature
Lyapunov analysis caters to worst case scenarios, and
is prone to be conservative. For example, T the time it
takes D+ and D� to strictly decrease, is upper bounded
by the diameter of the graph. Yet, simulations from [10]
involving 200-node disk graphs, reproduced in Figure 2,
show that the overestimate D+

(t) converges at a much
faster rate. In these graphs the nodes are uniformly dis-
tributed over a 100x100 meter surface, with a commu-
nication range of 15 meters.

By contrast, the convergence rate of the underes-
timate D�

(t) is slower. This has been attributed in
[12] and [10] to the so called “rising value problem”.
Whereas it is impossible to have a periodic cycle where
each node is a true constraining node of its successor,
there can be cycles where each node is a constraining
node of its successor. Indeed transmission lags can cre-
ate such loops which restrict the rise of d̂i(t) values to



Fig. 2. Individual distance estimates may go up and down, but the greatest
overestimate (�+) and least underestimate (��) are monotonic. This ex-
ample shows a line network of five devices (circles, source red, others blue)
with unit edges (grey links); distance estimates evolve from initial t = 0 to
converge to their correct values at t = 4.

as both bad and good information is propagated from lower-
valued devices to higher-valued devices. Moreover, the incor-
rectness of the estimates is not increased by this propagation.

These observations suggest a different metric that does, in
fact, prove to be monotonic: the worst error in the network. In
particular, let us track the greatest overestimate �

+ and the
least underestimate �

�, which are defined:

�

+

= max(0,max

i
�i[t]) (6)

�

�
= �min(0,min

i
�i[t]) (7)

Both of these are non-negative monotonically decreasing func-
tions. Moreover, if either is non-zero, it must undergo a strict
decrease starting no more than diameter rounds after the
initial time (i.e., long enough for an initial error near the source
to propagate out to the devices farthest from the source).

Beyond that initial time, the two metrics behave quite
differently, due to the asymmetry of the triangle inequal-
ity constraint. In particular, the greatest overestimate �

+ is
guaranteed to be zero after at most diameter rounds: the
triangle inequality constraint can bring the value of ˆ

di[t] down
arbitrarily quickly once information has propagated. The least
underestimate �

�, however, is subject to the rising value
problem identified in [20], in which transmission lag creates
loops of mutual constraint that limit the rate at which device
estimates can rise to as small as 1

2

mini,j di,j per round.
Concerns of speed aside, however, we have at least the

important property that convergence is monotonic, and thus
the degree of disruption injected by a perturbation cannot grow
over time, but can only shrink. This, in turn, will enable us
to treat uses of this algorithm as simplified modules in the
analysis of systems that use them.

A. Empirical Confirmation of Monotonicity

We confirm these properties empirically in simulation. Fig-
ure 3 shows results for simulation of 200 devices distributed
randomly in a 100x100 meter environment except for a single
source device placed at the center, communicating via a unit
disc model with radius 15 meters and executing partially
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Fig. 3. Trace of greatest overestimate �+ (a) and least underestimate ��

(b) for 10 runs of 200 devices randomly distributed in a 100x100 meter
environment, communicating within 15 meters.

synchronously (same frequency, random phase), and with
initial values uniformly randomly distributed in the range of
[0, 100]. Figure 3(a) shows �

+ traces and Figure 3(b) �

�

traces for ten simulations executed in Proto [21], each run
asynchronously for 1000 simulated seconds with 1 second
rounds.

Note that as predicted, both �

+ and �

� reduce monoton-
ically to zero,5 with �

+ decreasing much more rapidly and
predictably than �

�, due to the rising value problem (again,
see [20]). The rising value problem is also reflected in the
two-round “stair-step” pattern and inflections visible in many
of the �

� traces: the “stair-steps” are caused by the passing
back and forth of constraint between close pairs of devices,
while inflections occur when there are two pairs of non-
neighboring devices: one with initially worse estimates (thus
initially dominating �

�) but the other significantly closer
together (and thus improving their estimates more slowly).

B. Response to Persistent Perturbation
From the monotonicity property and our envelope analysis,

we may then predict the response to a persistent perturbation.
The value of �

+ drops arbitrarily fast, once information has
had time to propagate, so in the limit for a large network we
would expect �+ to be bounded by the time for information
to propagate times the amount of �+ perturbation that can be
injected each round (i.e., how incorrect a far-away device can
become before information reaches it):

�

+

[t] ! d�

+

[t]

dt

· diameter (8)

For example, if the perturbation is injected by a source mov-
ing with velocity v (while other devices remain stationary),

5Actually, very slightly above zero due to numerical imprecision.

Figure 2: Plot from [10] of greatest overestimate (D+)
(a) and least underestimate D�, (b) for 10 runs of 200
devices uniformly distributed in a 100x100 meter sur-
face, with a communication range of 15 meters.

as little as
1
2

min
i, j2N (i)

ei j

per round.
Despite this fact the results in the previous section

are conservative. For example in the proofs, we have
only utilized the fact that strict decresence of the over
and underestimates requires that the node sequence with
largest over and underestimates be such that each be a
true constraining node of its successor. As noted in Re-
mark 1 and Remark 2, the prevention of decresence has
the additional requirement that in these sequences each
must also be a constraining node of its successor.

Yet Theorem 1 does formally prove robustness
to perturbations in the graph topology. For example,
should perturbations be upper bounded by a in Theo-
rem 1, and be less frequent than T , then the Adaptive
Bellman-Ford algorithm should sustain them. Again
this is conservative, as for example decline may often
exceed the minimal value of a and may occur more
frequently than a diameter interval. Similarly, in a
large graph, by the time the effect of a perturbation at
a remote point propagates through the graph, the in-
herent stabilizing property of (7) attenuates it. Indeed
[10] documents several instances of this type, and even
shows the ability to sustain perturbations induced by
feedback interconnections of multiple blocks, involving
the separate execution of (7) in these blocks.

6. Conclusion

Motivated by the recent recognition of the need
to study the robustness properties of certain ubiqui-
tous building blocks in spatial or aggregate comput-
ing, we formally analyze one such block, namely the
Adaptive Bellman-Ford algorithm. We formulate a sim-
ple Lyapunov function for this algorithm and use it to
demonstrate uniform asymptotic convergence and dis-
cuss its implications to robustness experimentally veri-
fied in [10].

We regard this as a first step toward a similar Lya-
punov based study of other building blocks, and eventu-
ally to their interconnections, possibly involving feed-
back. In the long run we anticipate even the notion
of identifying suitable analogs of the celebrated passiv-
ity, [20], or small gain, [21], theorems.
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