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Abstract: Cells exhibit a high degree of variation in levels of gene expression, even within otherwise homogeneous populations.
The standard model to describe this variation centers on a gamma distribution driven by stochastic bursts of translation. Stochastic
bursting, however, cannot account for the well-established behavior of strong transcriptional repressors. Instead, it can be shown
the very complexity of the biochemical processes involved in gene expression drives an emergent log-normal distribution of
expression levels. Emergent log-normal distributions can account for the observed behavior of transcriptional repressors, are still
compatible with stochastically constrained distributions, and have important implications for both analysis of gene expression data
and the engineering of biological organisms.

1 Introduction

One of the key challenges in understanding and engineering biolog-
ical organisms is the high degree of cell-to-cell variation commonly
observed in gene expression, even within otherwise homogeneous
populations of cells. Even with strong genetic expression, the
observed range of cell-to-cell variation is often on the same order as
the ranges over which expression can be regulated or engineered. As
such, cell-to-cell variation in gene expression is a factor that needs
to be taken into account in engineering the behavior of biological
organisms, and it is important to have a well-founded quantitative
model of the nature and origins of cell-to-cell variation.

The current dominant model for cell-to-cell variation in otherwise
homogeneous populations is a combination of temporal fluctuations
due to “intrinsic noise” from the stochasticity of chemical reactions
and “extrinsic noise” that comes from differences in the environment
in which those reactions occur (see, e.g., [1–4]). The chemical reac-
tions involved in gene expression are certainly stochastic, based both
on the fundamental nature of chemical interactions and on a num-
ber of experimental observations of the activity of single molecules
(e.g., [5–7]). Applying stochastic analysis to an abstract model of
transcription and translation (Figure 1) then leads to an expected
gamma distribution of protein expression levels [8]. This model thus
explains high cell-to-cell variation as the result of a “bursty” process
of translation driven by sparse transcription events. As one might
expect from the law of large numbers, however, with higher rates of
transcription this stochastic model predicts that there should be little
cell-to-cell variation.

Experimental study of E. coli has indeed found that the gamma
distribution fits well for a wide range of observed natural protein
expression levels [2]. For proteins with an average of more than
about 10 molecules per cell, however, stochastic bursting cannot
explain the observed variation [2]. Under the standard model, then,
the explanation of variation for many of the most important systems
in the cell is left to fall back on rate variations caused by “extrin-
sic noise,” an ad hoc definition with no mathematically grounded
mechanism and many competing definitions and models (consider,
for example, the variety found in [1, 3, 4, 9–12]). This situation is
particularly problematic for the engineering of biological organisms,
which typically relies quite heavily on strongly expressed genes.

The canonical model in Figure 1, of course, is well-known to be a
vast oversimplification of the complex processes involved in genetic
expression. A number of attempts have been made to elaborate the
basic stochastic bursting model by inclusion of additional complex-
ity in the “intrinsic” stochastic elements and/or the “extrinsic” black
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Fig. 1: Stochastic analysis of the abstract transcription / transla-
tion model depicted above predicts a gamma distribution of protein
expression, as derived in [8].

box of rate modulations (e.g., [12–16]). None, however, either pro-
vides a stochastic model sufficient to account quantitatively for the
high degree of variation present with strong genetic expression nor
an “extrinsic” model with mechanistic grounding.

This paper proposes a fundamentally different approach, based
on the emergent properties of complex reaction networks. In par-
ticular, we show that, absent dominating factors, the process of
genetic expression is expected to produce a log-normal distribu-
tion. Any significant deviation from log-normal then indicates one
or more mechanisms being in an extreme condition such that its dis-
tribution becomes dominant. When such dominating factors exist,
the model predicts a distribution of cell-to-cell variation equal to a
product of a log-normal distribution with the dominating factor dis-
tribution. Thus, stochastic bursting becomes a special case in which
an extremely low transcription rate modulates the log-normal base-
line; another example this paper discusses is stochastic transfection
creating a bimodal log-normal distribution.

In the remainder of the paper, Section 2 introduces the strong tran-
scriptional repressors that will be used as a primary test case and
demonstrates that their variation cannot be explained by transcrip-
tional stochasticity. Section 3 then develops the log-normal model
of complex biochemical processes and shows that it conforms well
with strong transcriptional repressors. Section 4 explores the impli-
cations of embracing the log-normal model, and finally Section 5
summarizes results and discusses future directions.

2 Stochastic Bursting Cannot Explain Variation
in Strong Transcriptional Repressor Devices

Strong transcriptional regulatory devices, such as TetR/pTet,
LacI/pLac, and AraC/pBAD, were amongst the first systematically
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Fig. 2: Cells exhibit a high degree of variation in genetic expression.
For example, this figure shows several representative distributions
of expression taken from the LmrA repressor data for Cello [19]:
fully repressed (magenta), unrepressed (red), and two intermediate
levels (blue and green). Note that the distributions have a width on
the same order as the entire range of regulation and that they are
roughly symmetric on a logarithmic scale.

engineered biological components [17, 18] and are still critical and
widely used components in the engineering of biological systems.
The range of expression between fully “on” and fully “off” states
for such devices can be quite large, often in the range of 10-fold to
1000-fold difference of expression levels, depending on the partic-
ular devices, host, and context. The degree of cell-to-cell variation,
however, is often not strongly affected by such changes in expres-
sion level and as such we shall see that such variation cannot be
accounted for by stochastic bursting.

As an example of strong devices used for effective engineering
of biological circuits, let us consider the regulated expression lev-
els of twelve E. coli engineered transcriptional repressor devices
from Cello [19]∗ Each device has an associated “transfer curve” pro-
viding a function from input expression level to output distribution
of expression levels, constructed for [19] by smoothing input and
output distributions collected from twelve measurements for each
device across a wide range of induction levels. The units of the
original curves are only relative, so for better intuition regarding
their meaning, discussion in this paper will be presented with lin-
ear rescaling to an approximate estimate of Molecules of Equivalent
FLuorescein (MEFL) based on the values in [20]. Note, however,
that this does not affect any of the mathematical analyses in this
paper, which are all invariant to linear scaling.

Figure 2 shows several expression distributions representative of
repressors in the Cello data set. In particular, note that the distri-
butions have a width similar to the entire range of regulation and
that they are roughly symmetric on a logarithmic scale. Similar
log-symmetric distributions across a large range of regulation are
not peculiar to Cello, but a pattern of variation observed frequently
across a wide range of engineered biological systems (see, for exam-
ple [21–23]). Wide, roughly log-symmetric distributions such as
these are fairly typical for “well-behaved” strong transcriptional reg-
ulators in bacteria (and in many other contexts as well). Moreover,
the scale of the cell-to-cell variation is remarkably similar across the
full range of devices and input levels: the geometric standard devi-
ation of expression ranges only from a minimum of 1.5-fold to a
maximum of 2.6-fold across all twelve devices and three orders of
magnitude difference in geometric means.

Such log-symmetric distributions can be fit well by the gamma
distribution (as determined in [2]), but can also be fit well by log-
normal distributions (hence the use of geometric statistics above),
and by a number of other distributions, including Weibull, general-
ized gamma, etc., all of which can be quite difficult to distinguish

∗In particular, the collection of transfer curves from the implementa-

tion at https://github.com/CIDARLAB/cello/, as of commit

27f6354f41cd2997610e79e2a41ded61f2c3fa91
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Fig. 3: Gamma distribution parameters a and b fit for expression and
transfer curves from [19]: transcription rate a, which should change
dramatically, is confined to a small and fairly constant range, while
translation burst size b, which should be unaffected, changes across
multiple orders of magnitude

between simply by looking at the structure of a distribution [24–
27]. With a mechanistic model of the origins of a distribution,
however, we can readily test whether changes in the configuration
of the biological system are matched by predicted changes in the
corresponding parameters of the distribution.

For the stochastic bursting model, the gamma distribution param-
eters a and b correspond with transcription rate and translation burst
size, respectively. Since a transcriptional repressor device modulates
transcription but not translation, there should be little change in b but
dramatic change in a: when the repressor is expressing at a low level,
there should be a low a value and a broad distribution of variation,
but when the repressor is expressing at a high level, there should be a
high a value and a much tighter distribution of variation. Intuitively,
if strong expression is driven by high rates of transcription (as we
know it is for transcriptional repressors), the law of large numbers
should make the unevenness of bursts largely insignificant.

Figure 3 shows the results of fitting the Cello devices to a gamma
function, per the stochastic bursting model. Here we see almost the
exact opposite of what is predicted by the stochastic bursting model:
while transcription rate does change slightly with expression, it is
a very weak change that does not match the orders of magnitude
difference known to occur with such repressor devices. Instead, the
orders of magnitude change are attributed by the model to changes in
translation burst size, which also does not match any known mech-
anism. As the mechanisms of transcriptional regulation are quite
well-established experimentally, we must conclude that stochastic
bursting can account for at most a small fraction of the observed
cell-to-cell expression variation in the Cello transcriptional repressor
devices.

Enhanced stochastic bursting models with bursty transcription
or more complicated transcriptional interactions can amplify the
amount of variation expected for particular species concentrations,
but still cannot address the fundamental problem: if variation is
due primarily to some form of stochastic bursts of translation, then
when the transcription rate rises across several orders of magnitude,
the amount of variation must fall dramatically but, in general, does
not. Moreover, given that the cell-to-cell variation in the devices we
have tested is fairly typical (and in fact relatively tight compared to
many), the failure of the stochastic bursting model to account for
variation appears likely to extend to any other device that does not
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Fig. 4: Some of the many complex biochemical reactions that take
place as part of transcription and translation and are abstracted away
from simple models such as the one shown in Figure 1.

have very low levels of transcription, particularly given the find-
ing in [2] of a large and consistent level of variation for proteins
with more than about 10 copies per cell. We focus here on strong
transcriptional regulation only because it is a decisive means of dis-
tinguishing stochastic bursting from other possible contributions to
variation∗. We thus must turn elsewhere for a mechanistic expla-
nation of the remarkable regularity of expression variation across
orders of magnitude difference in expression level.

3 Complexity of Genetic Expression Implies
Log-Normal Variation

As has already been well recognized (e.g., [1]), the standard stochas-
tic bursting models abstract away most of the biochemical complex-
ity of genetic regulation and expression. Figure 4 illustrates this with
annotation of the standard model from Figure 1 with a few of the
many complex processes that are omitted, most of which are also
omitted from all of the previously proposed enhancements of the
stochastic bursting model. Abstracting away this complexity is rea-
sonable when extremely low rates of transcription cause stochastic
bursting to dominate other sources of cell-to-cell variation. When
stochastic bursting does not dominate, however, some combination
of these other factors must be taken into account.

Consider that the operation of nearly every biochemical reaction
involved in determining genetic expression should be expected to
vary at least slightly from one cell to another due to differences in the
state of individual cells, such as their size, health, available pools of
various resources, etc. This might seem to indicate that it is hopeless
to attempt to model cell-to-cell variation without a full accounting
of the expected distributions of each of these many models. That
very complexity, however, leads to an emergent property that pro-
vides a different route to abstraction with a strong mechanistic and
mathematical grounding.

Unlike most non-biological chemical reactions, many biological
processes in the cell follow a composable catalytic pattern (Figure 5).
In this pattern, a transition of some molecular species from passive
state P to active state A is driven by a chemical reaction with some
set of catalytic factors f1, f2, . . . fi. Molecules in active stateA then
transition back to P again either spontaneously or catalyzed by reac-
tion with another set of factors g1, g2, . . . gj . For example, RNA
polymerase serves as a catalyst for the transformation of nucleotides
into mRNA, and ribosomes and tRNA serve as catalysts for the
transformation of amino acids into protein. Looking further into the
details, one can find yet more catalytic processes on a similar pattern,
such as how transcription factors and sigma factors serve as a cata-
lyst for binding RNA polymerase to DNA, initiation factors combine
to serve as a catalyst for binding ribosomes to mRNA, tRNAs are
charged by aminoacyl tRNA synthetases, etc.

By the standard laws of chemical reactions, we can express the
expected rate equation for the active state A in such a pattern as

∗Note that independent vs. correlated expression (c.f. [28]) does not

actually distinguish stochastic bursting, it distinguishes correlated vs.

uncorrelated components of genetic expression effects.
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Fig. 5: Many biological processes follow a composable catalytic
reaction pattern, in which reaction with a number of chemical
species drives transition of some molecular species from a pas-
sive state P (e.g., unbound RNA polymerase) to an active state A
(e.g., RNA polymerase bound to a particular transcription initiation
region) and back again. The active state may then serve as a catalyst
in other patterns (e.g., bound RNA polymerase catalyzing transition
of nucleotides into a particular mRNA species).

follows:

dA

dt
=

(
ρ · [P ] ·

i∏
k=1

[fk]

)
−

λ · [A]
j∏

k=1

[gk]

 (1)

where ρ and λ are reaction rate constants (if some reactants are
higher order, e.g., acting as dimers, they can appear as more than
one fk).

For purposes of this analysis, we will assume that (as is usually
the case) the individual genetic expression process under considera-
tion does not dominate cellular resources, and thus that input levels
are not changing rapidly in a feedback relation with this particular
process. As a result, even though available reactants may be affected
by sequestration [29], we can treat the system as quasi-static for pur-
poses of analysis. Under this assumption, the expected equilibrium
concentration of A may be computed as:

0 =

(
ρ · [P ] ·

i∏
k=1

[fk]

)
−

λ · [A]
j∏

k=1

[gk]

 (2)

[A] =
ρ

λ
·
[P ] ·

∏i
k=1[fk]∏j

k=1[gk]
(3)

[A] =
ρ

λ
· [P ] ·

i∏
k=1

[fk] ·
j∏

k=1

[gk]
−1 (4)

Critically, notice that since the concentration of A is proportional
to a product of input concentrations (and their inverses), then if we
consider the inputs as distributions over possible values, then the dis-
tribution ofA will be proportional to a product of many distributions
(distributions of inverses being distributions as well).

The same holds when we compose patterns of this sort together,
such that A serves as one of the catalytic inputs driving the concen-
tration of species A′, e.g., a bound RNA polymerase A acting as
a catalyst for the conversion of nucleotides P ′ into an mRNA A′.
Composing the equations for A and their equivalent for A′ will then
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Fig. 6: By the central limit theorem, any product of independent
distributions converges to a log-normal distribution, as illustrated
by these histograms of 106 samples of a product of k uniform
distributions.
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Fig. 7: Positive correlations (solid lines) spread the log-normal dis-
tribution significantly, while mixed positive and negative (dashed
lines) tighten it somewhat, as illustrated by the geometric standard
deviation of 105 samples from a product of 20 multivariate nor-
mally distributed variables with various standard deviations σ and
covariance.

have an equilibrium concentration:

[
A′
]

=
ρ′

λ′
· [P ′][A] ·

i′∏
k=1

[f ′k] ·
j′∏
k=1

[g′k]
−1 (5)

[
A′
]

=
ρ′ρ
λ′λ

[P ′][P ]

i∏
k=1

[fk]

j∏
k=1

[gk]
−1

i′∏
k=1

[f ′k]
j′∏
k=1

[g′k]
−1(6)

The same holds for catalytic inputs driving the opposite transition
and for multiple compositions: in every case, the ultimate equation
is a product of many concentrations, such that the distribution of the
product will be a product of many input distributions.

With this, we now have an answer as to the expected distribu-
tion of genetic expression. The central limit theorem, which shows
that sums of independent random variables converge to a normal
distribution, also shows that that products of independent random
variables converge to a log-normal distribution (multiplication being
equivalent to addition on a log scale). Figure 6 illustrates the rapid-
ity of this convergence, showing the histogram of 106 samples of
a product of k uniform distributions on the interval [0.75, 1.25],
normalized against the maximum count across all of the plotted
histograms. Notice how the distributions spread rapidly and asym-
metrically with increasing k, such that even with fairly small k the
distribution is quite smooth and asymmetric, conforming closely to
the ideal pattern.
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Fig. 8: As the number of multiplicative factors rises, the amount
of variation per factor necessary to account for a certain level of
variation falls, as illustrated by the minimum σ/µ that provides
1.6-fold variance in a geometric standard deviation of 105 sam-
ples from a product of a variable number of multivariate normally
distributed variables with various levels of positive (solid lines) or
mixed positive and negative (dashed lines) covariance.

In cells, of course, many of these factors will not be indepen-
dent, but will have some degree of correlation. For example, a larger
or healthier cell is likely to have more of many types of resources,
and differences in chemical environment are likely to have corre-
lated effects on many different reactions. As long as correlation
is not too great, the convergence of the distribution to log-normal
will still hold, and the distribution will either spread significantly or
tighten somewhat based on the degree of correlation. To illustrate
the strength of such effects, Figure 7 shows the effect of correlation
on the geometric standard deviation computed from 105 samples of
a product of 20 multivariate normally distributed random variables
at various levels of standard deviation and correlation. In particular,
standard deviation σ is sampled at various levels from 0.01µ to 0.1µ,
covariance between each pair of variables ranges from 0 to 0.5σ2 in
steps of 0.02σ2, and correlations are either all positive or are mixed,
such that the first half of variables are negatively correlated with
the second half of the variables. As expected, positive correlations
spread the distribution significantly, while the addition of negative
correlations tightens the distribution slightly. Qualitatively, however,
correlation in distributions makes no significant change to the core
result.

Furthermore, because the distribution emerges from the interac-
tion of many factors, the expectation of log-normal distributions is
also likely to remain robust to changes in our understanding of the
processes of genetic expression. As long as there are a sufficient
number of factors with a multiplicative relationship, a log-normal
distribution will emerge, and the more factors are involved and the
more that they are positively correlated, the less variation is required
from each factor in order to predict a given observed level of vari-
ation. To illustrate this, Figure 8 shows how increasing the number
of factors decreases the amount of cell-to-cell variation needed in
individual factors in order to produce a given level of variance. Geo-
metric standards deviation is computed for 105 samples of a product
of multivariate normally distributed random variables at various lev-
els of positive or mixed correlation as for Figure 8, but in this case σ
ranges from 0.01µ to 0.015µ in steps of 0.001µ and the number of
variables ranges from 10 to 50 in steps of 2. The figure plots the first
σ/µ for which the geometric standard deviation is greater than 1.6-
fold, a typical level of variation for strong expression in the Cello
data set from Section 2. As expected, the more variables there are,
the less cell-to-cell variation in individual factors is needed in order
to account for a given level of observed variation, but the impact
per variable is small and decreases with additional variables. Note
also that in general the amount of perturbation necessary to achieve
significant amount variation is quite small indeed—only a few per-
cent. All together, these results mean that elaborations and changes
in models of genetic expression are unlikely to significantly affect
the main result.
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Fig. 9: Log-normal distribution parameters µg and σg fit for expres-
sion and transfer curves from [19]: the geometric mean µg ranges
broadly, as predicted since it is controlled by strong regulation
specific to the rate of transcription initiation, while the geometric
standard deviation σg , which is expected to arise mainly from many
small variations in factors not affected by transcriptional regulation,
shows only a slight decrease with increased transcription rate.

We should thus expect the baseline for cell-to-cell distribution of
any gene product to be log-normal. If certain factors have an unusu-
ally high degree of variability, however, those factors will dominate
and the distribution of expression levels should instead by expected
to be a product of the dominant distribution with a log-normal dis-
tribution. For example, with very low transcription rates variability
from stochastic bursting should indeed dominate other factors—and
the distributions produced are quite similar to those from a pure
gamma distribution with slightly different parameters.

As a further test of this model, we apply the log-normal model
to the Cello repressor devices from Section 2 [19], computing the
geometric mean and geometric standard deviation for each device
and input level. In this case, since these devices are transcriptional
repressors, expected to act primarily by greatly changing the rate at
which RNA polymerase binds and initiates transcription, we should
expect a radical change in the geometric mean across the range
of input. Since this is only one aspect of the complex process of
genetic expression, however, there should be little change in the stan-
dard deviation, though there may be some increased variation at low
expression levels if a particular device represses transcription tightly
enough to bring the device into the range where stochastic bursting
becomes significant. Figure 9 shows that the results of applying the
log-normal model to fit the Cello data is as expected: the geometric
mean ranges broadly, while the geometric standard deviation tight-
ens slightly with increased transcription rate—as might be expected
if a high transcription rate is removing a stochastic component of
variation. There is too much variability between devices, however,
to attempt to separate and quantify such an effect.

4 Implications of Log-Normal Distribution

The most immediate implication of the convergence to log-normal
distributions is that the cell-to-cell variation of gene products should
be interpreted in terms of its relationship to log-normal distribu-
tions, rather than normal distributions or (except in case of very low
expression) gamma distributions. For example, when computing or
presenting a statistical summary of single-cell expression data, the
geometric mean µg and geometric standard deviation σg should be
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Fig. 10: Gene expression data should be analyzed using geometric
rather than arithmetic statistics: increased variance moves arithmetic
mean sharply away from median behavior.

used in preference to the arithmetic mean µ and arithmetic standard
deviation σ. The difference between these statistics can be quite
dramatic, depending on the size of the variation, as the mean and
standard deviation of a log-normal distribution are, respectively:

µ = eµg+σ
2
g/2 (7)

σ = eσ
2
g+2µg ·

(
eσ

2
g − 1

)
(8)

Figure 10 illustrates the magnitude of this impact when dealing with
even a simple log-normal distribution: as the geometric standard
deviation σg rises, misinterpretation of the high outliers causes the
arithmetic mean to depart strongly from the peak of the distribu-
tion that it aims to capture. Geometric statistics, of course, capture a
log-normal distribution precisely.

Geometric statistics should also be used for comparison across
replicates or statistics, both for single-cell data (e.g., flow cytome-
try, microscopy) and for population data (e.g., plate readers, mass
spectrometry). The reason is that the log-normal distribution model
implies that perturbations in the state of a cell are likely to result in a
log-normal distribution of differences between replicates, rather than
a normal distribution, as is commonly assumed. Again, if arithmetic
statistics are used, they will give too much weight to high outliers,
distorting the results.

This becomes even more critical when interpreting data with more
complex distributions, such as the sample shown in Figure 11. This
shows the distribution of expression from a strong constitutive pro-
moter transiently transfected into HEK293 mammalian cells in [30].
With such a broad distribution, arithmetic statistics bear little resem-
blance to the observed distribution. Geometric statistics are better,
but with the log-normal model we can recognize that this distribu-
tion is the product of typical log-normal expression variation with
a bimodal distribution of transfection levels: a tight low component
from cells where transfection has been effectively unsuccessful and a
broader high component from an apparently log-normal distribution
of transfection levels.

Finally, geometric distributions may also have implications for the
engineering of genetic expression levels and regulation. The value
of diversity in microbial populations has been recognized before,
for example for parallelizing experiments within a sample (e.g.,
[31, 32]) or for differentiating behavior in order to better survive
environmental stress [33]. With the log-normal model, we can go
further and exploit the fact that the higher the variance of a log-
normal distribution, the more its integral is dominated by the high
tail. As a result, when synthesizing a chemical product from a pop-
ulation of cells, a population with the same median and a higher
degree of variance will outperform one with a lower degree of vari-
ance. In optimizing chemical production from engineered biological
organisms, then, in many cases it may be valuable to deliberately
increase cell-cell variation rather than to attempt to control it. Such
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Fig. 11: Log-normal model enables better statistical interpretation
of data, as in this comparison of normal (red), log-normal (green),
and bimodal log-normal (blue) distribution fits to a sample from [30].

strategies may be applicable to many other circumstances as well, in
any application where the extremes can dominate the performance
of the aggregate.

5 Summary and Discussion

This paper has presented a foundational model of the origins of
cell-to-cell variation in gene expression, mathematically connecting
the well-known complexity of the underlying biochemical mecha-
nisms to the common observation of broad log-normal population
distributions. The log-normal distribution model presented accounts
for the behavior of strong transcriptional repressors, which cannot
be explained by prior models based on stochastic bursting, while
simultaneously remaining compatible with the results of those prior
models. The results presented here imply that, in general, gene
expression data should be interpreted with geometric rather than
arithmetic statistics. Furthermore, in engineering biological systems,
in some cases it may be counterintuitively advantageous to embrace
and amplify cell-to-cell variation rather than attempting to control it.

Looking to the future, while this paper has focused on genetic
expression, and its examples have been only of simple protein
expression, the results should be more generally applicable. Expres-
sion of nucleic acid products, such as gRNA and miRNA, should
be susceptible to the same analysis implying a baseline log-normal
distribution, though the degree of variation is likely to be smaller
when there are less mechanisms involved. Complementarily, post-
processing stages such as glycosylation, splicing, or cleavage are
also likely to remain log-normal but with increased variation from
interaction with additional mechanisms. Log-normal convergence
may also be applicable to a wide variety of other complex biochem-
ical processes structured as catalytic cascades. Finally, it may be
worth noting that in this case the complexity of biological systems
results in simplicity rather than intractability, and that taking such
aggregate-based perspectives may turn out to be valuable in dealing
with other instances of biological complexity as well.
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