A Dimensionless Graceful Degradation Metric

for

Quantifying Resilience

Jacob Beal
Raytheon BBN Technologies; Cambridge, MA, USA
Email: jakebeal@bbn.com

Abstract—Many self-* properties are variations on the same
theme: resilience of a system to changes in itself or the condi-
tions under which it operates. Quantifying resilience is difficult,
however: there are no metrics of resilience that are readily
comparable across systems, and the space of possible changes is
typically prohibitively large. To address this problem, I propose a
quantitative measure of graceful degradation that is independent
of the units, scales, and number of system parameters. Although
this metric is typically intractable to compute precisely, it can
be approximated by perturbation surveys, and the quality of
approximation is likely to be improved by a random perturbation
approach based on recent advances in manifold learning.

Keywords-engineered self-organization; graceful degradation;
perturbation analysis; self-adaptability; self-*

I. MOTIVATION

When we evaluate the self-* properties of an engineered
system, what exactly should we be trying to quantify? There
are many different self-* properties—self-adaptation, self-
healing, self-configuration, self-organization, self-stabilization,
etc.—and the definitions for many of them are still rather hazy,
subject to dispute, and frequently overlapping.! Most of these
properties, however, may be boiled down to the same general
theme: the resilience of a system to changes, whether to itself
or to the conditions in which it operates.

The problem here is that the space of possible changes
is typically staggeringly immense, due to the large number
of possible system states and operating conditions, and the
potential for interaction between them. Analytic solutions
are typically not feasible, meaning we must seek empirical
approaches based on sampling system behavior at a limited
number of points. To date, much of the work on evaluating
self-* systems has been construction of taxonomies (e.g., [1],
[2], [3], [4]) identifying qualitative classes of resilience. A
number of possible metrics have been proposed, such as the
entropy-based approaches in [5], [6], [7], the control autonomy
measure in [8], and the trajectory divergence measure in [9].
All, however, are tightly dependent on the particular parame-
ters and/or units used to describe a system and its operating
conditions, making the metrics incomparable even for closely
related systems. Many are also infeasible to compute. Perhaps
it is for this reason that [10] found that most publications on
self-* systems present little or no evidence for their claims.

To address this problem, I propose a new quantitative mea-
sure for graceful degradation, constructed to be independent

Perhaps this haziness is why they are often lumped together as “self-*"?

Acceptable

Fig. 1. Diagrammatic representation of a system’s domain: each axis
is a configuration parameter or external condition; system performance is
interpreted qualitatively as acceptable (solid green), failing (solid red), or
degraded (mixtures). Graceful degradation is measured as the minimum ratio
between degraded and acceptable behavior on any axis.

of units, scales, and number of system parameters. Although
this metric is typically intractable to compute precisely, it
can be approximated by perturbation surveys. Moreover, the
quality/cost trade-off for such perturbation surveys can likely
be greatly improved by a random perturbation approach based
on recent advances in manifold learning.

II. FORMAL DEFINITION OF GRACEFUL DEGRADATION

To quantify the degree to which a given system exhibits
graceful degradation, we need a formal definition of:

¢ The domain D of possible configurations and operating
conditions for the system.

o A set of performance metrics y; for system behavior.

e An interpretation function Z; for each metric, classifying
performance as acceptable, degraded, or failing.

e A metric G that maps the interpreted performance over
the domain to a number quantifying graceful degradation.

We will consider each of these in turn, building up to a
definition of G. Critically, our definition for G will produce
a dimensionless number that is independent of the relative
scaling of the parameters used to define D. This means that we
need not be concerned about units—even such odd bedfellows
as microfarads, meters, and gigawatts may be safely combined
in a parameter space without any one inappropriately domi-
nating the metric.

A. Domain and Performance Metrics

Consider an arbitrary engineered system. This system has
some number 7, of configuration parameters pi, pa, ... Pnyo

each of which has a (potentially infinite) set of values P; that
it can take on. Let us assume that for each parameter p;, there
is a homeomorphic map from the values P, onto a subset
of R¥. Let us also assume that the external conditions under
which the system operates can be decomposed into a set of
N, parameters ci, c, ... Cn,, €ach of which can take on a set
of of values C; that similarly map onto real numbers.

The domain D of the system may then be expressed as
the set of all combinations of the potential values for these
variables, whether valid or not:

D= Px]] ¢

i<ng j<ne

Performance metrics map points in this domain to quanti-
tative measurements. Typically, there are many aspects of a
systems performance that are of interest. We thus consider a
set of n,, performance metrics, ft1, {42, ... fin,,, €ach of which
is a function mapping p; : D — R.

B. Interpretation of Performance

Our understanding of how resilient a system is depends
critically on defining what it is that we want to achieve with the
system. Consider, for example, the time delay for a message to
propagate from source to destination through a network. This
aspect of system performance can obviously be measured in
seconds, but the number of seconds that is acceptable depends
on the application. For email, it is typically quite reasonable
for minutes to elapse, while a phone call becomes difficult if
the delay is more than a few tenths of a second. The exact
same system may therefore have different effective resiliences
when considered for different purposes.

We thus need an interpretation function Z; for each per-
formance metric p,;. For this, I propose a mapping from
the original quantitative measure onto the set {A, D, F}, for
the qualitative categorizations of ‘“‘acceptable,” “degraded,’
or “failing.”> For many metrics, this can be implemented
simply as a normalization of p; such that Z; o u;(D) > 1
is “acceptable,” intermediate values of 0 < Z; o u;(D) < 1 are
“degraded”, and Z; o u;(D) < 0 is “failing.”

When the system’s performance has failed according to any
metric, the system as a whole may be considered to have
failed. For example, it does not matter how reliable and secure
message delivery is if the messages arrive too slowly to be
useful. Likewise, degradation according to any metric may be
considered to be degradation of the whole. Thus, the set of
interpreted metrics may be combined with logical disjunction
to produce a function:

\/ Ziop: D— {A,D,F}
1E€ENm
that interprets each point in the system domain as “acceptable,”

“degraded,” or “failing.”

2This notion is similar to the “nonstressed,” “stressed,” and “nonviable”
space for functional blueprints [11].

Fig. 2. Graceful degradation along an axis is quantified as the minimum
ratio between the measure of adjacent “degraded” to “acceptable” sets along
that axis. For example, the two example axes through the domain shown on
the left have the interpreted performance sets shown on the right, with the sets
producing the minimum graceful degradation for these two axes indicated by
a dashed red circle.

C. Graceful Degradation

We now come to the crux of the question: given an inter-
pretation of system performance, how can measure resilience?
The volume of the acceptable and degraded spaces seems an
obvious choice, and is one that has previously been proposed
in various forms (e.g., [8]). Volume, however, depends on the
particular choice of configuration parameters and their units,
making it effectively impossible to make compare measure-
ments of even closely related systems.

Instead, let us define our graceful degradation metric G
as a dimensionless quantity that compares the ranges of the
acceptable and degraded regions. Intuitively, this metric will
indicate how difficult it is to navigate the system domain
without the system failing.

Let us build this metric up by first considering a one-
dimensional domain. Every point in this domain is interpreted
as A, D, or F, so we may consider the domain as a collection
of intervals of the three qualities. The graceful degradation of
this domain is then:

_ . b

= min ——-—
Ip,Ia |IA|

G(D1)

where each possible value of 14 is an acceptable interval and
Ip is a degraded interval separating it from a failing interval
(there are also special cases: G(D;) is zero if acceptable and
failing intervals are ever directly adjacent or there are no
acceptable intervals, and infinity if no point is failing).

We may then generalize to arbitrary spaces by letting G(D)
be the infimum of the one-dimensional metric for all lines
passing through A. In other words, the graceful degradation
for the whole domain is the least graceful degradation that
we get by starting at any acceptable point and heading toward
failing in any direction. Figure 1 illustrates this for a two-
dimensional domain, and Figure 2 shows examples of evalu-
ating the metric along lines in a concave acceptable space.

Importantly, the value produced by G is dimensionless,
having no relationship to the physical units of the domain
parameters. Due to the method of calculation, G is unaffected
by changes in scale, or in fact any linear transformation of the

domain. Likewise, the number of dimensions in the parameter
space will typically have little effect on the value produced by
G: adding irrelevant dimensions does not change the value of
G, because it is determined entirely by the single worst axis
in the entire parameter space—in effect, the metric is looking
for the system’s weakest point.

Nonlinear transformations of the domain, however, can
affect the metric: For example, consider a square block that is
acceptable when its edge length is less than 10 units, degrades
from 10 to 20 units, and fails when the edge is greater than 20
units. Its G is 1 (10/10), but switching from edge to area gives
a G of 3 (300/100). Logarithmic versus linear scales is another
simple example. In such cases, it is likely best to select the
units in which errors are likely to occur: for example, if the
square is produced by a manufacturing process that makes two
cuts, then it is better to use edge length than area.

This definition does have some counter-intuitive conse-
quences. For example, if the region of degraded behavior has
equal width along two different axes, then then the axis with
the greater interval of acceptable behavior will be judged to
degrade less gracefully. Why shouldn’t it be more graceful,
since there is more acceptable behavior? Remember, however,
that the relative “length” of the interval depends on choice
of units. The metric is instead showing the degree of tension
between quickly shifting a parameter through its acceptable
range and at the same time keeping the system from failing.

D. Non-Numerical and Indeterminate-Size Parameters

Everything presented so far has assumed that it is possible to
reasonably map any configuration parameter or external con-
ditions onto a finite-dimensional interval of numbers (discrete
or continuous). This may not always be the case, however.

Consider, for example, a system where one of the con-
figurations parameters is a free choice of search algorithm.
While this might possibly be mapped onto a sequence of real
numbers, doing so may destroy the relations between elements
that we need to be able to understand. How should non-
numerical objects like breadth-first search, depth-first search,
hill-climbing search, and branch-and-bound search be mapped
onto numbers and compared?

While this problem may not be able to be resolved for
all such non-numerical parameters, in many cases it can be
mapped onto a continuous space by considering mixtures of
values. For example, in the case of searches, consider each
step of the search flipping a weighted coin to determine
which of the possible types of step it will take next. We thus
have a search algorithm under control of a small number of
parameters, each a real number in the range [0, 1], which blend
smoothly between the possible types of search (at the cost of
greatly increasing the number of dimensions in the domain).

Another problem can arise when the dimensionality of a
parameter cannot be given a reasonable limit a priori. For
example, one parameter may set the number of instances of a
second parameter that exist, each of which is capable of being
set independently. For example, in informed flocking [12] each
informed member of the flock has a preferred direction of

Convergence vs. Drive Rate
140 T T T T i i i

—+ Time to converge

—5— Convergence rate
120 B

100

® I
g 8of g
@ a

60

401

20 1 1 1 1 1 1 1 1 1

0 005 01 015 02 025 03 035 04 045 05
Drive rate

Fig. 3. Example of a perturbation survey from which graceful degradation

can be computed. This survey, from [13], varied one configuration parameter
of a self-adaptive design assistant and measured using two metrics; the range
from 0.1 to 0.35 is acceptable; below 0.02 and above 0.4 are failing.

motion, so the number of potential “preferred direction” pa-
rameters scales linearly with the number of informed members.
In such cases, however, it is often the case that as the number
of parameters increases, the collective behavior approaches a
limit based on the statistical distribution of values rather than
individual elements. The number of parameters then reduces
to the number required to describe the distribution, no matter
the number of individuals.

There are likely cases that cannot be addressed by these
strategies, or indeed that cannot be mapped onto this graceful
degradation metric in any reasonable manner. If, however, a
broad enough range of applications can be reasonable mapped
or approximated for this definition, then it will still be useful.

III. COMPUTING GRACEFUL DEGRADATION

So far, we have formulated a mathematical definition of
graceful degradation, but not yet considered how it can be
practically calculated. Brute force approaches are infeasible
for all but the simplest systems, due to the number of possible
combinations of parameter values that must be scanned. We
can reduce the cost to tractable levels, however, by conducting
perturbation response surveys instead, in which scans are
performed along selected vectors rather than the entire space.

A. Orthogonal Perturbation Survey

The high costs of parameter scans come from considering
many dimensions at once. An alternate approach is to select a
reference point r in the configuration domain D and conduct
perturbation surveys around this point. For each parameter ¢ in
D, we take the basis vector 7 and measure the performance of
r+ A7 for incrementally varying values of A.3 This radically
reduces the number of performance evaluations to be made.

Figure 3 shows an example of a perturbation survey along
one dimension, taken from [13], of a self-adaptive design

3Small combinations of perturbations can be used, but that way lies the
combinatorial problems we are trying to escape.

assistant, measured on two metrics. This one-dimensional slice
shows a classic profile of graceful degradation: when the
parameter is too high or too low the system fails, but a broad
range in the middle is acceptable and the transition from
acceptable to failing is not sharp. Taking the acceptable range
as 0.1 to 0.35 and the failing range as above 0.4 and below
0.02, we can compute apply the graceful degradation metric G
developed above. The acceptable interval is size 0.25, with the
upper and lower degraded regions having sizes 0.05 and 0.08
respectively. In this case, G(D) is thus equal to 0.2, indicating
that there is a reasonable margin of error available for adjusting
this parameter.

This approach depends critically on the assumption that
for a large region around the reference point r there is an
approximately linear relation between perturbation responses.
In other words, it is assumed that:

pi(r o+ AF + AF) % i+ AF) + il + A'R) = pa(r)

where p; is any of the performance measures and A and A’ are
the size of perturbations away from reference point r along
basis vectors ; and k of D. If this is not the case, then it
is likely for the resilience of a system to be overestimated,
as several small changes interact to cause an unexpected
failure—exactly the problem that self-* systems are intended
to prevent! Surveying combinations of perturbations, however,
returns to the combinatoric explosions that make parameter
scans infeasible.

B. Random Perturbation Survey

There is an approach, however, that should be able, with
high probability, to combine the thoroughness of parame-
ter scans with the tractable cost of orthogonal perturbation
surveys. Recently, the machine learning community has de-
veloped methods for “manifold learning” based on selection
of random vectors [14]. The key insight is this: in a high
dimensional space, any random vector is likely to have a
significant component in the direction of the principle eigen-
vector of the space. Thus, choosing several random vectors and
evaluating their dot products with a data set produces a good
lightweight approximation of principle component analysis.
The method can then recurse to refine its approximation of the
data manifold by picking further random vectors on subsets
of the data.

This same principle should be applicable for evaluating G.
As with orthogonal perturbation surveys, this approach would
begin with a reference point r. Rather than perturb along a
single parameter, however, this approach would perturb in
a random direction, potentially combining all parameters. If
the performance gradients are relative smooth, then a few
such perturbations should be sufficient to detect the parameter
combinations with the most restricted operating range.

Although the results of such an approach will be less
intuitive to interpret, they offer a potentially major advantage
in that they depend only on approximate smoothness of the
performance metrics, rather than difficult to analyze system
properties. At the same time, it is possible that the number of

perturbations required to evaluate a system might actually be
lower than for an orthogonal perturbation survey, since many
parameters might be tested by the same random vector.

IV. CONTRIBUTIONS AND OPEN PROBLEMS

I have proposed a new dimensionless metric for graceful
degradation, which has the advantage of being readily compa-
rable across self-* systems. Although the metric is generally
intractable to compute precisely, it can be approximated via
perturbation surveys, and I have additionally proposed a new
random perturbation approach to allow surveys to detect pa-
rameter interactions. These are, of course, just the beginning of
what needs to be done to provide a practical ability to quantify
the resilience of complicated self-* systems. A clear next step
is to fully elaborate the random perturbation approach and
to test it against well-known systems such as flocking. A
mathematical analysis will need to be made, as well, of the
conditions under which it can and cannot be relied upon to
work. If these ventures are successful, however, the graceful
degradation metric proposed in this paper may at last provide
a practical and reliable means of quantifying self-* properties.

REFERENCES

[1] J. A. McCann and M. C. Huebscher, “Evaluation issues in autonomic
computing,” in Conference on Grid and Cooperative Computing Work-
shops, 2004, pp. 597-608.

[2] E. Gjorven, F. Eliassen, and J. O. Aagedal, “Quality of adaptation,” in
International Conference on Autonomic and Autonomous Systems, 2006,
pp. 9-14.

[3] G. Muhl, M. Werner, M. A. Jaeger, K. Herrmann, and H. Parzyjegla,
“On the definitions of self-managing and self-organizing systems,”
in KiVS Workshop: Selbstorganisierende, Adaptive, Kontextsensitive
verteilte Systeme (SAKS0O7). VDE Verlag, 2007, pp. 291-301.

[4] N. Villegas, H. Muller, G. Tamura, L. Duchien, and R. Casallas, “A
framework for evaluating quality-driven self-adaptive software systems,”
in 6th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS 2011). ACM, 2011.

[5] C. R. Shalizi, K. L. Shalizi, and R. Haslinger, “Quantifying self-
organization with optimal predictors,” Physical Rev. Lett., vol. 93, pp.
1-4, 2004.

[6] F. Heylighen, “The science of self-organization and adaptivity,” in The
Encyclopedia of Life Support Systems, 1999, pp. 253-280.

[71 T. De Wolf, G. Samaey, T. Holvoet, and D. Roose, “Decentralized
automatic computing: Analysing self-organising emergent behavior us-
ing advanced numerical methods.” in 2nd International Conference on
Automatic Computing (ICACO0S5), 2005, pp. 52—63.

[8] H. Schmeck, C. Muller-Schloer, E. Cakar, M. Mnif, and U. Richter,
“Adaptivity and self-organization in organic computing systems,” ACM
Transactions on Autonomous and Adaptive Systems, vol. 5, no. 3, p.
Article 10, September 2010.

[9] Y. Chaaban, C. Muller-Schloer, and J. Hahner, “Measuring robustness

in hybrid central/self-organising multi-agent systems,” in COGNITIVE

2012 : The Fourth International Conference on Advanced Cognitive

Technologies and Applications, 2012.

M. Nagqvi, “Claims and supporting evidence for self-adaptive systems a

literature review,” Master’s thesis, Linnaeus University, 2012.

[11] J. Beal, “Functional blueprints: An approach to modularity in grown

systems,” Swarm Intelligence, vol. 5, no. 3, 2011.

I. Couzin, J. Krause, N. Franks, and S. Levin, “Effective leadership and

decision making in animal groups on the move.” Nature, vol. 433, pp.

513-516, 2005.

A. Adler, F. Yaman, J. Cleveland, and J. Beal, “Morphogenetically

assisted design variation,” in 2nd International Conference on Morpho-

logical Computation, September 2011.

Y. Freund, S. Dasgupta, M. Kabra, and N. Verma, “Learning the

structure of manifolds using random projections,” in Advances in Neural

Information Processing Systems, vol. 20, 2007, pp. 473-480.

[10]

[12]

[13]

[14]

