
Building blocks for aggregate programming of
self-organising applications

Jacob Beal
Raytheon BBN Technologies, USA

Email: jakebeal@bbn.com

Mirko Viroli
University of Bologna, Italy
Email: mirko.viroli@unibo.it

Abstract—The notion of a computational field has been pro-

posed as a unifying abstraction for constructing and reasoning

about large and self-organising networks of devices, focusing

on the computations and coordination of aggregates of devices

instead of individual behaviour. Recently, firm mathematical

foundations have been established for this approach, in the form

of a minimal universal field calculus [1], [2] and a more restricted

syntax that guarantees self-stabilisation [3]. We now aim to raise

the abstraction level for system construction by identifying a

collection of general and reusable “building block” algorithms.

By functional combination of these building blocks, it is possible

to construct complex adaptive behaviours. Moreover, the building

blocks we present are all self-stabilising, ensuring that any system

constructed from them is guaranteed to rapidly converge to a

correct behaviour.

I. INTRODUCTION

Research and development initiatives such as the Internet of
Things, pervasive computing, and smart cities all envision a
near future in which an increasingly dense set of intercon-
nected devices will pervade the environment in which we
live and work. Virtually all wearable items, phones, cars,
lamps, signs, rooms, and screens will be smart devices, ca-
pable of substantial computation and wireless communication
power. Together they will form what has been referred to
as the pervasive continuum [4]: a distributed, very dense,
and mobile substrate of nodes, hosting a myriad of pervasive
services managing the technical and social aspects of every
person’s life. This new kind of “space-time computer” will
host computations that are intrinsically: (i) context-dependent
(many interactions will be opportunistic and involve devices
in physical proximity, so that computations involve local data
and situation); and (ii) self-adaptive and self-organising (due
to scale, they must spontaneously recover from faults and
deal with unexpected contingencies). New paradigms will be
needed to engineer such collective and adaptive computational
systems, and in particular, to coordinate the complex and
distributed activities therein.

This paper is concerned with identifying reusable and
composable building blocks for constructing software appli-
cations on top of such networked systems. A large number of
programming abstractions have been proposed for coordina-
tion of spatially embedded networks, including such diverse
approaches as abstract graph processing (e.g., [5]), declarative
logic (e.g., [6]), streaming databases (e.g., [7]), and rule-based
blackboard systems (e.g., [8]). For a detailed review, see [9].

Here we focus on the notion of a computational field, already
widely exploited by such approaches (e.g., [10], [11], [12],
[13], [14]), and the corresponding computational field calculus
[1]. A computational field is a map from devices comprising
the system to (possibly structured) values, and is treated as
unifying first-class abstraction to model inputs from distributed
sensors, distributed data and processes, as well as outcomes of
computations carried on by successive local spreading and re-
aggregation of information; the computational field calculus
provides their foundation in a tiny universal language for
expressing computations based on fields. As with all such core
calculi, however, it is difficult to effectively express complex
applications, since the foundations are extremely low level and
fine-grained.

Accordingly, in this paper we identify a library of “building
block” algorithms that leverage field calculus to simplify the
construction of complex distributed systems with predictable
aggregate behaviour. Following a review of foundations for our
approach (Section II), we present a general taxonomy of space-
time functionalities (Section III) and present self-stabilising
implementations for each, along with a discussion of usage in
(Section IV). Finally, we show an example of building blocks
applied to construct a complex distributed application in the
context of crowd detection and steering [15] (Section V).

II. FOUNDATIONS

A. Computation fields and the Field Calculus

Generalising the common notion of scalar and vector field
in physics, a computational field is a (dynamically evolving)
map from every computational device in a space to an ar-
bitrary computational object [11], [10]. Examples of fields
used in distributed situated systems include temperature in a
building as perceived by a sensor network (a scalar field),
the best routes to get to a location (a vector field), the area
near an object of interest (a Boolean indicator field), or the
people allowed access to computational resources in particular
areas (a set-valued field). With careful choice of operators
for manipulating fields, one can structure the increasingly
complex computations arising in situated networks in terms
of transformations from the input fields provided to sensors to
an output field, typically feeding some sort of actuator.

The computational field calculus, introduced in [1] provides
a minimal calculus for expressing such field-based compu-
tations. Field calculus is space-time universal, meaning that



e ::= x

��
l

�� (b e1 . . . en)
�� (f e1 . . . en) ;; expression�� (rep x w e)

�� (nbr e)
�� (if e e e) ;; special constructs

w ::= x

��
l ;; variable or value

F ::= (def f(x1 . . . xn) e) ;; function
P ::= F1 . . .Fn e ;; program

Fig. 1. Field calculus syntax, expressed in modified BNF

it can approximate any causal and approximable space-time
computation, discrete or continuous [2]. We here provide an
informal account of its semantics.

Field calculus is based on five constructs, combined ac-
cording to the syntax in Figure 1. The basic element of field
calculus is an expression e specifying a field computation—
since the calculus is functional e also expresses the result of
one such computation. The terminal expressions are literals
l mapping all points to a data value l such as a number or
Boolean, and variables x referencing a function parameter or
rep state variable as defined below. These are then composed
using the following five constructs:

• Built-in operators: A built-in operator b determines the
value of its output field at event m (a point in space-
time) only from the values of the environment e and input
fields e1,e2, . . . at m. The built-in operators can range
over any such functions, including addition, comparison,
sensors, actuators, etc.

• Function definition and call: Abstraction and recur-
sion are supported by function definition: functions
are declared Lisp-style with expressions of the form
(def f(x1 . . . xn) e) and applied by expressions of the
form (f e1 . . . en).

• Time evolution: Program state is initialized and changed
over time by a “repeat” construct (rep x w e). The state
variable x is initialized to a literal or variable and updated
at each step by computing e against the prior value of x.

• Neighborhood values: The (nbr e) construct obtains a
field mapping neighboring devices to their most recent
available value of e. For example, (min-hood (nbr

e)) maps each device to the minimum value of e

amongst its neighbors (excluding itself). These can then
be manipulated and summarized with built-in operators.
Note that the notion of neighbourhood is typically appli-
cation specific, e.g., given by wireless proximity.

• Domain restriction: Distributed branching is implemented
by (if e0 e1 e2), which computes e1 where e0 is true
and e2 where e0 is false by restricting the environment
domain. This prevents computations from spreading un-
expectedly and allows termination of recursion.1

A field calculus program is then a set of function definitions
followed by an expression to be evaluated, distributed for
simultaneous unsynchronized execution on every device in the
network. For example, field calculus can be used to compute
distance to high temperatures with:

1Domain restriction is quite important for predictable composition of dis-
tributed algorithms, but is currently supported by surprisingly few distributed
programming models.

(def distance-to (source)

(rep d

infinity

(mux source 0

(min-hood (+ (nbr d) (nbr-range))))))

(distance-to (> (temperature) 25))

It uses four built-in operators: temperature extracts tem-
perature from the environment state, nbr-range determines
the most recent distance to an event’s neighboring devices, +
applies addition point-wise over fields, and mux multiplexes
between its second and third inputs, returning the second if
the first is true and the third otherwise. For full details of
field calculus, its semantics, and more examples, see [1].

In defining our building block operators, we will also
assume an extension of field calculus to a simple form of first-
class functions. In particular, we make some of our constructs
more generic by allowing metrics and reduction functions to
be passed as a named or anonymous function (via a fun

construct otherwise identical to def). This use, however, may
be considered as syntactic sugar for expressing a family of
closely related constructs, rather than an actual change in
semantics.

B. Self-Stabilisation

Self-stabilisation [16] is a property of an algorithm such
that, beginning from any arbitrary state, the algorithm is
guaranteed to return to a legal state within finite time. This
is the robust execution property that we will obtain for all
of our building block algorithms. Importantly, given any set
of self-stabilising algorithms that converge to a fixed state,
all “feed-forward” functional compositions of such algorithms
are themselves self-stabilising [3]. Intuitively, this can be
understood as follows: if the inputs of such an algorithm stop
changing, then its output will self-stabilise and stop changing.
Then any algorithm that consumes its output will have an input
that stops changing, and eventually all algorithms will have
come to a stationary point. Thus, we can be ensured that all
distributed systems constructed of our building blocks will be
guaranteed to be self-stabilising.

III. TAXONOMY

Inspired by the approach of combinatory logic [17], the
catalog of self-organisation primitives in [18], and the simple
self-stabilising calculus in [3], the main goal of this paper is
to provide a set of building blocks, in the form of a library of
functions defined in terms of the field calculus above, to be
combined to create advanced applications involving aggregate
programming of collective systems. Complex computations
over fields will then be structured as a functional combina-
tion of these building blocks: apart from locally computable
functions (which involve neither communication nor memory
and are applied event-wise to a field), they will range over a
finite and small set, as described in detail in next section. Here,
we sketch a taxonomy of such building blocks that justifies
their adoption, and paves the way towards a more formal un-
derstanding of issues related to expressiveness, completeness,



Function Space Time

Structure nbr-range,. . . dt,. . .
Aggregation C

TSpreading G

Symmetry breaking S random
Restriction if

Compute local functions, random

Fig. 2. Taxonomy and proposed building blocks

and universality. As an additional design criterion, we shall
consider only building blocks enjoying the self-stabilisation
property, as a means to ensure a more thorough understanding
of the result of computation, and ultimately, easier to predict
system behaviors.

A first key taxonomic distinction is between space and time.
Space and time are two complementary dimensions in field
computations, the interplay of which regulate the complex
dynamics of collective systems. Although space and time
are often entangled, some constructs are best understood in
terms of space, others time, and others cross both (e.g., local
functions, which have no dependencies across space or time).

Our second taxonomic distinction is the “function” played
by the construct, namely, its role in achieving the desired self-
organised behaviour. We identify as one general computation
pattern for aggregate systems the following “cycle”: (i) devices
monitor their environment for signals of interest (e.g., current
temperature), (ii) signals are combined to detect situations
of interest (e.g., is average temperature in a region above a
threshold?), (iii) information about the situation must move
towards the devices(s) able to act (e.g., temperature alert sent
to refrigeration units), and finally, (iv) the system acts in
response to the situation (e.g., switch on refrigeration).

To perform the above operations we identify six classes of
operations (each possibly working in space or time):

• Structure — Building blocks related to structure yield
significant information about the physical environment in
which the system operates, mostly in term of its spatial
structure: they are provided as 0-ary functions yielding a
field of information provided by an environmental sensor.

• Aggregation — A key element of aggregate programming
is the ability to collect information from across space and
time and construct a summary of the situation. Functions
implementing aggregation are typically fed with fields
describing what we aggregate, where and how.

• Spreading — Information from a particular location often
needs to be moved to other devices that need to be aware
of it. Functions implementing spreading are typically
fed with fields describing what information is spread,
from where, to where, and how information is possibly
modified as it spreads.

• Symmetry breaking — These functions have the goal
of identifying a limited set of space-time locations
where/when an action is to be taken.

• Restriction — Restriction splits space-time into subre-
gions so as to possibly carry on different computations in
each: this controls the scope of a distributed computation.

• Computation — This last category contains all “local”
functions that do not meaningfully interact with space or
time, such as logical and mathematical operations.

In next section we shall pick, describe and put to practice a
collection of algorithmic building blocks covering the above
categories, per Figure 2, describing in detail all with non-trivial
implementations in field calculus.

IV. BUILDING BLOCK OPERATORS

We now discuss in detail a set of building block operators
covering our taxonomy (except local functions and measure-
ments, which are defined as typical for any language). For
each building block, we describe its operation, sketch a proof
of self-stabilisation, and discuss applications. To emphasize
use of building block operators, we color them (and close
derivatives) blue in code samples; field calculus keywords are
red and built-in functions green.

A. G: Spreading Information Across Space

We begin with the G operator, which spreads information
across space, potentially further organising and computing
as it proceeds. This operator is a generalisation that covers
two of the most commonly used self-stabilising distributed
algorithms—distance estimation (also often called “gradient”)
and broadcast—as well as a number of other applications, such
as forecasting along paths. We define the G operator with the
following field calculus expression:
(def G (source initial metric accumulate)

(2nd ;; Return the reduction, discarding the computed distance
(rep distance-value

(tuple infinity initial) ;; Initial value
(mux source

(tuple 0 initial);; Source is distance zero, initial value
(min-hood ;; Minimize lexicographically over non-self nbrs
(tuple

(+ (1st (nbr distance-value)) (metric))

(accumulate (2nd (nbr distance-value)))))))))

where min-hood takes the minimum of all neighbors’ values
(excluding the device itself), nbr-range returns a field
of distances to neighbors, and mux multiplexes between its
second and third inputs, returning the second if the first is
true and the third otherwise. The G operator may be thought
of as executing two tasks, coupled together by the state tuple
of distance and value in the rep expression. The first
task is computation of a field of shortest-path distances from a
source region (indicated as a Boolean field) via the triangle
inequality, where distance is computed by the supplied func-
tion metric. The second task is computing an accumulation
of values along the gradient of the distance field away from the
source. This is performed using a function accumulate of
one argument, the current accumulated value, beginning with
initial value initial.

Assuming metric is a valid metric function, distance
computation by the triangle inequality is known to self-
stabilize [19], either to a correct set of distance estimates (for
any connected component containing a source device) or to
all values continuously rising toward infinity (for components
with no source device). Given a stable set of distance



estimates, the accumulation will self-stabilize as well, since it
is continuously refreshed outward from the source (when there
is no source, the value is ill-defined and may be neglected).

The G operator can be configured to provide a number of
different useful services. For example, shortest-path distances
can be returned by:
(def distance-to (source)

(G source 0 nbr-range (fun (v) (+ v (nbr-range)))))

and maximum-likelihood path probabilities are returned by:
(def max-likelihood (source p)

(G source 1

(fun () (

*

(nbr-range) (- (log p))))

(fun (v) (

*

v (exp p (nbr-range))))))

while values can be broadcast from the source using:
(def broadcast (source value)

(G source value nbr-range identity))

and forecasts of obstacles along a path can be made using:
(def path-forecast (source obstacle)

(G source 0 nbr-range (fun (v) (or v obstacle))))

Note that if there are multiple source devices, they will form
a Voronoi partition [20] of the network, each controlling the
values on the portion of the network that is closest to itself
according to metric.

B. C: Collecting Information From Across Space

The C operator is complementary to the G operator: whereas
G spreads information away from the source, C accumulates
information. In order to be maximize orthogonality with G,
C assumes it is supplied with a potential field directing the
accumulation of information. It may thus be defined:
(def C (potential accumulate local null)

(rep v local

(accumulate local

(accumulate-hood accumulate

(mux (= (nbr (find-parent potential)) (uid))

(nbr v)

null)))))

where uid returns a unique identifier for each device,
accumulate-hood uses the function in its first argument
to combine values from the field in its second argument, and
the find-parent function is defined as:
(def find-parent (potential)

(mux (< (1st (min-hood (nbr potential))) potential)

(2nd (min-hood (nbr (tuple potential (uid)))))

NaN))

Here potential is the potential field up which the values
of local should be accumulated, combining values with
accumulate, which must be a commutative and associative
function of two arguments. In order to avoid multiply-counting
devices (for those accumulations that are not idempotent),
some neighbors are ignored, and their values replaced by a
null that must not affect the accumulated value.

The C operator is self-stabilising because it continually
refreshes its computation: if the potential field is stable, then
the set of parents will stabilize as well, into a collection of trees
with their roots at local minima of the potential function. On
such a tree, the leaves are all set to local each round; from

there, the values propagate inductively to the root, stage by
stage, thus ensuring convergence to a consistent set of values.

Combining with G (or G-derived functions), we can obtain
a general “summary” operator that aggregates the values of a
region to a sink and then spreads it throughout space:
(def summarize (sink accumulate local null)

(broadcast sink

(C (distance-to sink) accumulate local null)))

This operator can then be put to a variety of uses, such as
averaging values over a region:
(def average (sink value)

(/ (summarize sink + value 0)

(summarize sink + 1 0)))

computing an integral:
(def integral (sink value)

(summarize sink + (

*

value (/ 1 (density)))))

or finding the maximum value:
(def region-max (sink value)

(summarize sink max value))

C. T: Summarising Information Across Time

As C and G are for space, the T operator is for time.
Since time is one-dimensional, however, there is no distinction
between spreading and collecting, and thus there is only need
for a single operator. We define the T operator as:
(def T (initial decay)

(rep v initial (min initial (max 0 (decay v)))))

where decay is a function strictly decreasing the value of
its input. This operator may thus be understood as a flexible
count-down toward zero, where the rate of the count-down
may change over time.

Assuming decay is valid, it self-stabilizes in a single
round, since its value is always constrained to the range of
[0, initial] and any strictly decreasing series of values is a
valid behaviour. Example applications of T include timers:
(def timer (length)

(T length (fun (t) (- t (dt)))))

and time-limited memory:
(def limited-memory (value timeout)

(2nd (T (tuple timeout value)

(fun (t) (tuple (- (1st t) (dt)) (2nd t))))))

where dt returns the elapsed time since the last round.

D. S: Sparse Spatial Choice

The S operator breaks symmetry by exploiting another fre-
quently used self-organisation principle, mutual inhibition. De-
vices compete against one another to become local “leaders,”
resulting in a random Voronoi partition with a characteristic
component size grain. This operator can be implemented as:
(def S (grain metric)

(break-using-uids (random-uid) grain metric))

(def random-uid ()

(rep v (tuple (rnd 0 1) (uid))

(tuple (1st v) (uid))))

(def break-using-uids (uid grain metric)



(= uid

(rep lead uid

(distance-competition

(G (= (uid) lead) 0 metric

(fun (v) (+ v (metric))))

lead uid grain metric))))

(def distance-competition (d lead uid grain metric)

(mux (> d grain) uid

(mux (>= d (

*

0.5 grain)) infinity

(min-hood

(mux (>= (+ (nbr d) (metric)) (

*

0.5 grain))

infinity

(nbr lead))))))

First each device picks a random identifier, ensuring lack of
collisions by adding the device unique identifier as a second
element of the UID. Refreshing the device identifier each
round ensures this is self-stabilising. These UIDs are then
used to break symmetry by a competition between devices
for leadership: candidate leader devices surrender leadership
to the lowest nearby UID (measuring distance with metric

and G). In the case where no device nearby is a leader, devices
nominate themselves.

The S operator self-stabilizes differently from the other
operators, possibly converging to any set of lead devices
giving an appropriate cover of the network. Self-stabilisation
depends on the flexibility in the placement of lead devices,
and can be shown inductively from the dominance of the lead
candidate with the lowest UID.

The S operator is useful for partitioning and for finding
sets of “representative” devices. For example, it can be used
to designate a representative device in a sensor network to
act as a collection point and relay to the consumers of the
network’s sensor data.

E. Restriction in Space

Finally, in addition to the operators for creating patterns that
we have considered thus far, we have spatial restriction of a
computation by means of the field calculus if construct. This
operator is not new (it was originally introduced in [10]), but it
is a critical tool for composition. In essence, the value of if is
that it allows one part of a distributed system to modulate the
behaviour of another part without a direct connection between
their code, by modifying where the code can run.

For example, we can use it to navigate around obstacles:
(def distance-avoiding-obstacles (source obstacles)

(if obstacles infinity (distance-to source)))

or to broadcast only within a particular region:
(def broadcast-region (region source value)

(if region (broadcast source value) NaN))

to measure the size of connected components of a region:
(def group-size (region)

(if region (summarize (S (diameter)) + 1 0) NaN))

or to remember whether an event has recently occurred:
(def recent-event (event timeout)

(if event true (> (timer timeout) 0)))

Fig. 3. Composite snapshot of simulation of crowd tracking and warning
for a crowded event in Boston’s Columbus Park. Dangerously crowded areas
are marked in red, nearby alerted devices marked in orange, dense but non-
dangerous crowds marked in blue, and other devices are grey, as are links
between devices. Map c�OpenStreetMap.

V. APPLICATION EXAMPLE

To illustrate the efficacy of the proposed building blocks, we
consider their use in an example complex application scenario.
In particular, we consider the problem of crowd management
and safety in large public events such as concerts, festivals,
and sports matches. In such circumstances, emergent dynamics
in the location and behaviour of people frequently cause some
areas of space to become dangerously overcrowded. In such
critical conditions, any small incident may—and often does—
create a tragedy with many people killed and injured [21].

Crowding is often evaluated by a notion of “level of service”
expressed in terms of density of pedestrians [22]. At a critical
density a little more than two people per square meter, crowds
typically transition from dense but flowing to congested and
potentially dangerous. In a crowd of people carrying smart
phones or similar devices, the instantaneous local crowd
density could be estimated by device-to-device interaction
(e.g., via low-energy Bluetooth). Assuming such a measure
is available, we can build a crowd-tracking algorithm that
identifies areas of dangerous crowding. This can be done using
only the proposed building blocks (along with local functions
the derived functions provided in the previous section):
(def crowd-tracking (p)

;; Consider only devices experiencing Fruin LoS E or F within last minute
(if (recently-true (> (density-est p) 1.08) 60)

;; Use S to break into ‘‘cells’’ and estimate danger of each
(+ 1 (dangerous-density (S 30) p))

0))

(def recently-true (state memory-time)

;; Make sure first state is false, not true...
(rt-sub (not (timer 1)) state memory-time))

(def rt-sub (started state memory-time)

(if state true (limited-memory started memory-time)))

(def dangerous-density (partition p)

;; Only dangerous if above critical density threshold...
(and (> (average partition (density-est p)) 2.17)



;; ... and also involving many people.
(> (summarize partition + (/ 1 p) 0) 300)))

where p is the fraction of people’s devices participating in the
algorithm. This algorithm assigns every device to a class of 2
if it is dangerously crowded, 1 if it is dense but not dangerous,
and 0 if uncrowded. With such a crowd estimate, we can then
add crowd safety and management layers, such as sending an
alert notice to anyone in or near a dangerously crowded area:
(def crowd-warning (p range)

(> (distance-to (= (crowd-tracking p) 2)) range))

Figure 3 shows an example of crowd-warning and
crowd-tracking for a hypothetical scenario of a large
festival in Boston’s waterfront Columbus Park, simulated using
MIT Proto [10]. In this simulation, 650 devices represent 10%
of attendees running the crowd management application on
their phones (p=0.1), devices communicate with neighbors
up to 15 meters under a unit disc model, and warnings are
distributed to a range of 30 meters. A waterfront attraction
has caused people to pack against the shore, concentrating
dangerously in one corner of the pier, and another attraction is
causing potentially dangerous congestion near an intersection
of footpaths. As can be seen, the program identifies crowds,
distinguishes those large and dense enough to potentially be
dangerous, and warns people who are nearby.

Other examples of crowd management services that could
be implemented very simply using these primitives include
navigation avoiding dense crowds:
(def safe-navigation (destination p)

(distance-avoiding-obstacles

destination (crowd-warning p)))

and recommendations to help people disperse safely from an
overcrowded environment:
(def safe-dispersal (p)

(distance-to (= (crowd-tracking p) 0)))

VI. CONTRIBUTIONS

This paper has presented a collection of “building block”
algorithms for complex distributed applications, thereby rais-
ing the abstraction level at which device aggregates can be
programmed. These algorithms are derived from commonly
used self-organisation mechanisms, and have the property
that both the individual algorithms and all legal compositions
thereof exhibit predictable self-stabilising behaviour. To the
best of our knowledge, this is the first such catalog of general
and composable self-organisation mechanisms.

This work thus represents an important step towards the ulti-
mate goal of making distributed systems as simple to engineer
as individual computers. In future work, it will be important to
establish additional properties for robust execution properties,
most particularly in adjusting algorithms to ensure that they
tolerate heterogeneity in network density and to ensure good
behaviour during as well as after self-stabilisation. Likewise,
the catalog of useful primitives is by no means complete.
Future research will thus also need to broaden the collection
of building block algorithms while continuing to ensure their
safe and predictable composition.

ACKNOWLEDGMENT

Thanks to Danilo Pianini and Kyle Usbeck for useful dis-
cussions and feedback regarding the building block operators.

REFERENCES

[1] M. Viroli, F. Damiani, and J. Beal, “A calculus of computational fields,”
in Advances in Service-Oriented and Cloud Computing, ser. Communi-
cations in Computer and Information Sci., C. Canal and M. Villari, Eds.
Springer Berlin Heidelberg, 2013, vol. 393, pp. 114–128.

[2] J. Beal, M. Viroli, and F. Damiani, “Towards a unified model of spatial
computing,” in 7th Spatial Computing Workshop (SCW 2014), AAMAS
2014, Paris, France, May 2014.

[3] M. Viroli and F. Damiani, “A calculus of self-stabilising computational
fields,” in 16th Conference on Coordination Languages and Models
(Coordination 2014), Jun. 2014, pp. 163–178.

[4] F. Zambonelli, G. Castelli, L. Ferrari, M. Mamei, A. Rosi, G. D. M.
Serugendo, M. Risoldi, A.-E. Tchao, S. Dobson, G. Stevenson, J. Ye,
E. Nardini, A. Omicini, S. Montagna, M. Viroli, A. Ferscha, S. Maschek,
and B. Wally, “Self-aware pervasive service ecosystems,” Procedia CS,
vol. 7, pp. 197–199, 2011.

[5] R. Gummadi, O. Gnawali, and R. Govindan, “Macro-programming
wireless sensor networks using kairos.” in Distributed Computing in
Sensor Systems (DCOSS), 2005, pp. 126–140.

[6] M. P. Ashley-Rollman, S. C. Goldstein, P. Lee, T. C. Mowry, and
P. Pillai, “Meld: A declarative approach to programming ensembles,”
in IEEE Intelligent Robots and Systems (IROS), 2007, pp. 2794–2800.

[7] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “Tinydb: An
acqusitional query processing system for sensor networks,” in ACM
TODS, 2005.

[8] R. D. Nicola, G. Ferrari, M. Loreti, and R. Pugliese, “A language-based
approach to autonomic computing,” in Formal Methods for Components
and Objects, ser. LNCS, vol. 7542, 2013, pp. 25–48.

[9] J. Beal, S. Dulman, K. Usbeck, M. Viroli, and N. Correll, “Organiz-
ing the aggregate: Languages for spatial computing,” in Formal and
Practical Aspects of Domain-Specific Languages: Recent Developments,
M. Mernik, Ed. IGI Global, 2013, ch. 16, pp. 436–501.

[10] J. Beal and J. Bachrach, “Infrastructure for engineered emergence on
sensor/actuator networks,” IEEE Intelligent Systems, vol. 21, no. 2, pp.
10–19, 2006.

[11] M. Mamei and F. Zambonelli, “Programming pervasive and mobile
computing applications: The tota approach,” ACM Trans. on Software
Engineering Methodologies, vol. 18, no. 4, pp. 1–56, 2009.

[12] R. Newton and M. Welsh, “Region streams: Functional macroprogram-
ming for sensor networks,” in First International Workshop on Data
Management for Sensor Networks (DMSN), Aug. 2004, pp. 78–87.

[13] M. Viroli, M. Casadei, S. Montagna, and F. Zambonelli, “Spatial coor-
dination of pervasive services through chemical-inspired tuple spaces,”
ACM Transactions on Autonomous and Adaptive Systems, vol. 6, no. 2,
pp. 14:1 – 14:24, June 2011.

[14] M. Mamei and F. Zambonelli, “Self-maintained distributed tuples for
field-based coordination in dynamic networks,” Concurrency and Com-
putation: Practice and Experience, vol. 18, no. 4, pp. 427–443, 2006.

[15] S. Montagna, M. Viroli, J. L. Fernandez-Marquez, G. Di Marzo Seru-
gendo, and F. Zambonelli, “Injecting self-organisation into pervasive
service ecosystems,” Mobile Networks and Applications, vol. 18, no. 3,
pp. 398–412, 2013.

[16] S. Dolev, Self-Stabilization. MIT Press, 2000.
[17] H. B. Curry, Combinatory Logic. North-Holland Pub. Co., 1958.
[18] J. Fernandez-Marquez, G. Marzo Serugendo, S. Montagna, M. Viroli,

and J. Arcos, “Description and composition of bio-inspired design
patterns: a complete overview,” Natural Computing, vol. 12, no. 1, pp.
43–67, 2013.

[19] J. Beal, J. Bachrach, D. Vickery, and M. Tobenkin, “Fast self-healing
gradients,” in Proceedings of ACM SAC 2008, 2008, pp. 1969–1975.

[20] F. Aurenhammer, “Voronoi diagrams: a survey of a fundamental ge-
ometric data structure,” ACM Computing Surveys, vol. 23, no. 3, pp.
345–405, 1991.

[21] G. K. Still, Introduction to Crowd Science. CRC Press, 2014.
[22] J. Fruin, Pedestrian and Planning Design. Metropolitan Association

of Urban Designers and Environmental Planners, 1971.


