
A Calculus of Computational Fields

Mirko Viroli1, Ferruccio Damiani2, and Jacob Beal3

1 University of Bologna, Italy
mirko.viroli@unibo.it

2 University of Torino, Italy
ferruccio.damiani@unito.it

3 Raytheon BBN Technologies, USA
jakebeal@bbn.com

Abstract. A number of recent works have investigated the notion of “computa-
tional fields” as a means of coordinating systems in distributed, dense and mobile
environments such as pervasive computing, sensor networks, and robot swarms.
We introduce a minimal core calculus meant to capture the key ingredients of lan-
guages that make use of computational fields: functional composition of fields,
functions over fields, evolution of fields over time, construction of fields of values
from neighbours, and restriction of a field computation to a sub-region of the net-
work. This calculus can act as a core for actual implementation of coordination
languages and models, as well as pave the way towards formal analysis of prop-
erties concerning expressiveness, self-stabilisation, topology independence, and
relationships with the continuous space-time semantics of spatial computations.

1 Introduction

In a world ever more densely saturated with computing devices, it is increasingly im-
portant to have effective tools for developing coordination strategies that can govern
collections of these devices. The goals of such systems are typically best expressed in
terms of operations and behaviours over aggregates of devices, e.g., “send a tornado
warning to all phones in the forecast area,”, or “activate all displays in the route towards
the nearest group of friends of mine.” Effective models and programming languages are
needed to allow the construction of distributed systems at the natural level of aggregates
of devices, contrasting with the classical individual-device view that often obfuscates
the system design.

Recently, approaches based on models of computation over continuous space and
time have been introduced, which promise to deliver aggregate programming capabil-
ities for the broad class of spatial computers: networks of devices embedded in space,
such that the difficulty of moving information between devices is strongly correlated
with the physical distance between devices. Examples of spatial computers include
sensor networks, robot swarms, mobile ad-hoc networks, reconfigurable computing,
emerging pervasive computing scenarios, and colonies of engineered biological cells.

A large number of formal models, programming languages, and infrastructures have
been created with the aim of supporting computation over space-time, surveyed in [5].
Several of these are directly related to the field of coordination models and languages,

C. Canal and M. Villari (Eds.): ESOCC 2013, CCIS 393, pp. 114–128, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Calculus of Computational Fields 115

such as the pioneer model of TOTA [11], the (bio)chemical tuple-space model [17],
the στ-Linda model [19], and the pervasive ecosystems model in [13]. Their recurrent
core idea is that through a process of diffusion, recombination, and composition, in-
formation injected in one device (or a few devices) can produce global, dynamically
evolving computational fields—functions mapping each device to a structured value.
Such fields are aggregate-level distributed data structures which, due to the ongoing
feedback loops that produce and maintain them, are generally robust to changes in the
underlying topology (e.g., due to faults, mobility, or openness) and to unexpected in-
teractions with the external environment. They are thus useful for implementing and
composing self-organising coordination patterns to adaptively regulate the behaviour of
complex distributed systems [11,17,18].

A sound engineering methodology for space-time coordination systems will require
more than just specification, but the ability to predict to a good extent the behaviour of
computational fields from the underlying local interaction rules—a problem currently
solved only for particular cases [4]. This paper contributes to that goal by introducing
a core calculus meant to precisely capture a set of key ingredients of programming lan-
guages supporting the creation of computational fields: composition of fields, functions
over fields, evolution of fields over time, construction of fields of values from neigh-
bours, and restriction of a field computation to a sub-region of the network.

The proposed calculus is largely inspired by Proto [3,12], the archetypal spatial
computing language (and is in fact a fragment of it). As with Proto, it is based on
the idea of expressing aggregate system behaviour by a functional composition of op-
erators that manipulate (evolve, combine, restrict) continuous fields. Critically, these
specifications can be also interpreted as local rules on individual devices, which are
iteratively executed in asynchronous “computation rounds”, comprising reception of
messages from neighbours, computing the local value of fields, and spreading messages
to neighbours. The operational semantics of the proposed calculus precisely models
single device computation, which is ultimately responsible for the whole network exe-
cution. The distinguished interaction model of this approach, which is first formalised
into a calculus in this paper, is based on representing state and message content in an
unified way as an annotated evaluation tree. Field construction, propagation, and restric-
tion are then supported by local evaluation “against” the evaluation trees received from
neighbours.

The calculus thus developed formalises key constructs of existing coordination lan-
guages or models targeting spatial computing. As such, we believe it paves the way
towards formal analysis of key properties applicable to various coordination systems,
concerning soundness, expressiveness, self-stabilisation, topology independence, and
relationships with the continuous space-time semantics of spatial computations.

The remainder of the paper is organized as follows. Section 2 describes the proposed
linguistic constructs and their application to system coordination. Section 3 illustrates
how single devices interpret the proposed constructs locally. Section 4 presents the for-
mal calculus. Section 5 discusses the soundness property of the calculus. Section 6 con-
cludes by discussing related works and outlining possible directions for future works.

116 M. Viroli, F. Damiani, and J. Beal

e ::= x
∣∣ l

∣∣ (o e)
∣∣ (f e)

∣∣ (rep x w e)
∣∣ (nbr e)

∣∣ (if e e e) expression
w ::= x

∣∣ l variable or value
F ::= (def f(x) e) function
P ::= F e program

Fig. 1. Surface syntax

2 Computational Fields

Generalising the common notion of scalar and vector field in physics, a computational
field is a map from every computational device in a space to an arbitrary computational
object. Examples of fields used in distributed situated systems include temperature in a
building as perceived by a sensor network (a scalar field), the best routes to get to a loca-
tion (a vector field), the area near an object of interest (a boolean indicator field), or the
people allowed access to computational resources in particular areas (a set-valued field).
With careful choice of operators for manipulating fields, the aggregate and local views
of a program can be kept coherent and each element of the aggregate-level program can
be implemented by simple, automatically generated local interaction rules [2]. Follow-
ing this idea, in this section we present a core language to express such operators. This
language is identified based on the strengths and commonalities across many different
approaches to spatial computing reviewed in [5] (though we do not rule out the possi-
bility that others may be identified), and drawing on the Proto [3,12] implementations
of these mechanisms.

We describe the selected mechanisms directly showing the syntax of the proposed
calculus, reported in Figure 1. We take the global, aggregate-level viewpoint, consid-
ering the main syntactic element e as being a field expression, or simply a field. As a
standard syntactic notation in calculi for object-oriented and functional languages [10],
we use the overbar notation to denote metavariables over lists, e.g., we let e range over
lists of expressions, written e1 e2 . . . en.

A basic expression can be a literal value l (also called local value), such as a floating
point number, a boolean, or a tuple—note most of the ideas of computational fields are
agnostic to the structure of such values. According to the global viewpoint, a literal field
expression l actually represents the constant function mapping l to all nodes. A basic
expression can also be a variable x, which can be the formal parameter of a function or
a store of information to support stateful computations (see rep construct below).

Such basic expressions (values and variables) can be composed by the following
5 constructs. The first one is functional composition, a natural means of manipulat-
ing fields as they are functions themselves: (o e1 e2 . . . en) is the field obtained by
composing together all the fields e1, e2, . . . , en by an operator o. Operators are built-
in, and include standard mathematical ones (e.g. addition, sine): they are applied in
a pointwise manner to all devices. For instance, if et is a field of Fahrenheit tem-
peratures, then the corresponding field of Celsius temperatures is naturally written
(* (/ 5 9) (- et 32)). Execution of built-in operators is context-dependent, i.e.,
it can be affected by the current state of the external world. So, 0-ary operator self
gives a field that maps each device to its identifier, dt maps each device to the time

A Calculus of Computational Fields 117

elapsed since its previous computation round, and finally nbr-rangemaps each device
to a table associating estimated distances to each neighbour (such a table being a field
itself).

The second construct is function (definition and) call, which we use as ab-
straction tool and to support recursion: (f e1 e2 . . . en) is the field obtained
as result of applying user-defined function f to the fields e1, e2, . . . en. Such
functions are declared with syntax (def f(x) e). For instance, after definition
(def convert (x) (* (/ 5 9) (- x 32))), expression (convert et) denotes
the same field of Celsius temperatures as above. Note that function definitions, along
with the top-level expression, form a program P.

The third construct is time evolution, used to keep track of a changing state over
time: (rep x w e) is initially the field w (a local value or a variable) that is stored in
the new variable x, and at each step in time is updated to a new field as computed by
e, based on the prior value of x. For instance, (rep x 0 (+ x 1)) is the (evolving)
field counting in each device how many rounds that device has computed. Similarly,
(rep x 0 (+ x (dt))) is the field of time passing.

The fourth construct is neighbourhood field construction, the mechanism by which
information moves between devices: (nbr e) maps each device to the field of its neigh-
bours’ local value of field e; hence, it is a field of neighbourhood fields like the output
of nbr-range above. As an example, let min-hood be the operator taking a neighbour-
hood field and returning its minimum value, then (min-hood (nbr et)) is the field
mapping each device to the minimum temperature perceived in its neighbourhood.

The last construct is domain restriction, a sort of distributed branch: (if e0 e1 e2)
is the field obtained by superimposing field e1 computed everywhere e0 is true and
e2 everywhere e0 is false. As an example (if efah et (convert et)) is the field of
temperatures provided in Fahrenheit (resp. Celsius) where the field efah is true (resp.
false). Restriction is the most subtle of the five mechanisms, because it has the effect
of preventing the unexpected spreading of computation to devices outside of the re-
quired domain, even within arbitrarily nested function calls, as will be clarified in the
following.

We now present some examples to illustrate how these five key mechanisms can be
combined to implement useful spatial patterns.

(def gossip-min (source) (rep d source (min-hood (nbr d))))

(def distance-to (source)
(rep d infinity (mux source 0 (min-hood (+ (nbr d) (nbr-range))))))

(def distance-obs-to (source obstacle)
(if (not obstacle) (distance-to source) infinity))

We first exemplify how constructs rep and nbr can be nested to create a long-distance
computation, to achieve network-wide propagation processes. Function gossip-min
takes a source field and produces a new field mapping each device to the minimum
value that source initially takes. The rep construct initially sets the output variable
d at source, and it iteratively updates the value at each device with the minimum

118 M. Viroli, F. Damiani, and J. Beal

one available in d’s neighbours. Hence, gossip-min describes a process of gossiping
values until the minimum one converges throughout the network.

Similarly, function distance-to takes as its input a source field holding boolean
values, and returns a new scalar field that maps each device to the estimated distance
to the nearest device where source is true. This works by first setting d to infinity,
then updating it as follows: sources are of course at distance 0, while all other devices
use the triangle inequality, finding the minimum sum of a neighbour’s estimated dis-
tance d and the distance to that neighbour. Operator mux, used to combine the two, is
a purely functional multiplexer, which uses the first input to choose whether to return
the second or third. The field returned by distance-to is often also referred to as a
gradient [11,4,17], and is a key building block for many computations in mobile ad-hoc
networks, such as finding routes to points of interest. There are many similar variants
with different purposes, most of which automatically repair themselves when either the
sources or network structure change.

The last definition exemplifies the use of construct if. It creates two different spatial
domains: one where the obstacle is present (field obstacle holds positive boolean
value) and one where is not. In the former an infinity constant field is computed; in the
latter we spread the distance-to field. As a result, distance estimation as provided
by distance-to automatically takes into account the need of circumventing obstacle
areas, since information does not cross the two domains due to the semantics of nbr as
explained in next section.

A number of coordination mechanisms can be constructed on the basis of these ex-
amples, like the gradient-based patterns discussed in [17,13,19], which find applications
in many areas, including crowd steering in pervasive computing.

3 From Global to Local

The description of field constructs so far has focused on what we can call the global
viewpoint, in which the computation is considered as occurring on the overall com-
putational fields distributed in the network. For the calculus to be actually executed,
however, each device has to perform a specific set of actions at particular times, includ-
ing interaction with neighbours and local computations. The result of these local actions
then produces the overall evolution of computational fields. We call this description of
the language in term of individual devices the local viewpoint, and it is this view that we
shall use for the operational semantics. Let us now begin with an informal presentation
of the peculiar aspects of that operational semantics, to aid in understanding the full
formalisation presented in Section 4.

Following the approach considered in Proto [12] and many other distributed pro-
gramming languages, devices undergo computation in rounds. In each round, a device
sleeps for some limited time, wakes up, gathers information about messages received
while sleeping, performs its actual field evaluation, and finally emits a message to all
neighbours with information about the outcome of computation, before going back to
sleep.

Taking the local viewpoint, we may model a field computation by modeling the eval-
uation of a single device at a single round, assuming the scheduling of such rounds

A Calculus of Computational Fields 119

across the network be fair and non-synchronous—either fully asynchronous or partially
synchronous, meaning that devices cannot execute infinitely quickly. Assuming that
the main bottleneck in the system is communication rather than computation (which
is frequently the case in wireless communication networks), this model can be readily
achieved by any collection of devices with internal clocks that schedule execution of
rounds at regular intervals. So long as the relative drift between clocks is not extreme,
execution on such a system will be fair and partially synchronous.

To support the combination of field constructs, we design our operational semantics
as follows. First, our functional style of composition, definition and calls, fits well with a
small-step evaluation semantics, in which we start from the initial expression to evaluate
and reduce it to a normal form representing the outcome of computation, including the
local value of the resulting field and the information to be spread to neighbours. In
order to keep track of the state of variables introduced by rep constructs, and values
at nbr constructs to be exchanged with neighbours, we take our computational state to
be the dynamically produced evaluation tree. During a round of computation, such a
tree is incrementally decorated with partial results expressed as annotations of the form
“·v” or superscripts “s”. These decorations track the local outcome of evaluation and
determine which subexpression will be next evaluated.

To illustrate our management of evaluation order and computational rounds, as well
as the rep construct, let us begin by considering expression (rep x 0 (+ x 1)) (cf.
Section 2). As this tree is evaluated according to the operational semantics, it goes
through a sequence of four transitions. We show these informally by in each step un-
derlining the next portion of the tree to be rewritten, by coloring the changes introduced
by each rewrite red (they will appear grey in a non-color print of the paper), and by
labelling the transitions with the (nested) rules of the operational semantics causing the
transition. The rules may be ignored for now, and be considered later to understand the
formal calculus in Section 4. The first computation round goes as follows:

(rep x 0 (+ x 1))
[REP,CONG,VAR]−−−−−−−→ (rep x 0 (+ x·0 1))

[REP,CONG,VAL]−−−−−−−→
(rep x 0 (+ x·0 1·1)) [REP,CONG,OP]−−−−−−→ (rep x 0 (+ x·0 1·1)·1)
[REP]−−→ (rep1 x 0 (+ x·0 1·1)·1)·1

Annotations are computed depth-first in the expression tree until eventually reach-
ing the outer expression: we first annotate variable x with its current (initial) value 0,
then simply identically annotate value 1, then perform built-in operation + causing an-
notation of its sub-tree with 1, and finally execute the rep construct, which records the
result value as a superscript to rep and as an annotation of the whole expression.

Once the evaluation is complete, with the result value in the outer-most annotation,
the whole evaluation tree will be shipped as a message to neighbours, in order to align
nbr statements and share values between neighbours, as described later. Pragmatically,
of course, any implementation might massively compress the tree, sending only enough
information for nbr statements to be aligned.

The subsequent round begins after an initialisation that erases all non-superscript
decorations. This second round leads to evaluation tree (rep2 x 0 (+ x·1 1·1)·2)·2,
third one to (rep3 x 0 (+ x·2 1·1)·3)·3, and so on.

120 M. Viroli, F. Damiani, and J. Beal

The main purpose of managing evaluation trees in this way is to support information
exchange through the nbr construct. Consider the expression (min-hood (nbr (t)))
(cf. Section 2), where t is a 0-ary built-in operator that returns the temperature perceived
in each device. If a device σ perceives a temperature of 7 degrees Celsius, and executes
its first computation round before its neighbours, then the result of computation should
clearly be 7. This is implemented by the following sequence of transitions:

(min-hood (nbr (t)))
[CONG,CONG,OP]−−−−−−−→ (min-hood (nbr (t)·7)) [CONG,NBR]−−−−−→

(min-hood (nbr (t)·7)·(σ #→ 7))
[OP]−→ (min-hood (nbr (t)·7)·(σ #→ 7))·7

We first enter the subexpression with the 0-ary operator t which yelds 7. We then eval-
uate nbr to the field of neighbour values, associating only σ to 7, written (σ #→ 7).
Finally, we evaluate unary operator min-hood, which extracts the smallest element of
the input field, which in this case is 7.

Construct nbr retrieves values from neighbours using the tree environment of the
device σ , which models its store of recent messages received from neighbours. The
tree environment is a mapping Θ = (σ1 #→ e1, . . . ,σn #→ en) created at each round, from
neighbours (σi) to their last-received evaluation tree (ei), which we call the neighbour
tree of σi . The evaluation of (nbr e), where e is evaluated to local value l, takes values
from the tree environment to produce a field (σ #→ l,σ1 #→ l1, . . . ,σn #→ ln), mapping
σ to l and each neighbour σi to the corresponding local value li from σi.

In the example above we assumed that none of the neighbours of σ had
already completed a round of computation, and that therefore Θ was empty
and accordingly (nbr (t)) gave simply (σ #→ 7). If we instead assume that
the first round of computation on the device σ takes place when the neigh-
bours σ1 and σ2 have completed exactly one round of computation, perceiv-
ing temperatures of 4 and 9 degrees respectively, then the tree environment of
σ would be (σ1 #→ e1,σ2 #→ e2), where e1 = (min-hood (nbr (t)·4)·(σ #→ 4))·4
and e2 = (min-hood (nbr (t)·9)·(σ #→ 9))·9. The computation goes similarly,
the only difference is that the evaluation of (nbr (t)·7) now produces the field
φ = (σ #→ 7,σ1 #→ 4, σ2 #→ 9) and the final outcome of the computation round on σ
is the tree (min-hood (nbr (t)·7)·φ)·4.

More specifically, the extraction of values from neighbours is achieved by computing
the local evaluation tree “against” the set of its neighbour trees: when evaluation enters a
subtree, in the tree environment Θ we correspondingly enter the corresponding subtree
on all of its neighbour trees, which are structurally compatible by construction since each
node executes the same program. This process on neighbour trees is called alignment.
So, in the example above, sub-tree (nbr (t)·7) is recursively evaluated against the
neighbour sub-trees (σ1 #→ (nbr (t)·4) · (σ1 #→ 4),σ2 #→ (nbr (t)·9) · (σ2 #→ 9)), in
which the neighbour values are immediately available as the outermost annotation of
the argument of nbr.

One reason for using this structural alignment mechanism is to seamlessly
handle the cases where nbr subtrees could be nested at a deep level of the
evaluation tree because of (possibly recursive) function calls. Assume defini-
tion (def f (x) (min-hood (nbr x))), and the main expression (f (t)) whose

A Calculus of Computational Fields 121

expected behaviour is then equivalent to our prior example (min-hood (nbr (t))).
This expression would be handled by the following sequence of transitions:

(f (t))
[CONG,OP]−−−−→ (f (t)·7) [FUN,CONG,CONG,VAR]−−−−−−−−−−→ (f(min-hood (nbr x·7)) (t)·7) [FUN,CONG,NBR]−−−−−−−→

(f(min-hood (nbr x·7)·φ) (t)·7) [FUN,OP]−−−−→ (f(min-hood (nbr x·7)·φ) (t)·7)·4
After the function arguments are all evaluated, the second transition creates a super-
script to function f, holding the evaluation tree corresponding to its body. This gets
evaluated as usual, and its resulting annotation 4 is transferred to become the annota-
tion of the function call. So, note that the evaluation tree is a dynamically expanding
data structure because of such function superscripts being generated and navigated at
each call, with alignment automatically handling nbr construct, even for arbitrary recur-
sive call structures. Note that this mechanism also prevents terminating recursive calls
from implying infinite evaluation trees, since only those calls that are actually made are
annotated.

This management of memory trees also easily accommodates the semantics of re-
striction. An if sub-expression is evaluated by first evaluating its condition, then eval-
uating the selected branch, and finally erasing all decorations on the non-taken branch,
including superscripts. In this way, neighbour trees corresponding to devices that took
a different branch will be automatically discarded at alignment time, since entering the
same subexpression is impossible because of a bad match. For example, consider ex-
pression (if (b) (f (t)) 0), where operator b returns a boolean field that is true at
σ and σ2, and false at σ1. Assuming again that first round of σ happens after first round
of σ1 and σ2, we have:

(if (b) (f (t)) 0)
[CONG,OP]−−−−→ (if (b)·true (f (t)) 0)→∗

(if (b)·true (f(min-hood (nbr x·7)·(σ #→ 7,σ2 #→ 9)) (t)·7)·7 0)
[THEN]−−−→

(if (b)·true (f(min-hood (nbr x·7)·(σ #→ 7,σ2 #→ 9)) (t)·7)·7 |0|)·7

The reason why the rep sub-expression now yields field (σ #→ 7,σ2 #→ 9) is that the
neighbour tree of σ1 cannot be aligned, for it has (b) annotated with false, which does
not match. Hence, nbr will retrieve values only from the aligned nodes that followed
the same branch, avoiding interference from nodes residing in different regions of the
partition made by restriction. The erasure of the non-taken branch by operator |.| (0
trivially erases to 0 in this case) is used to completely reinitialise computation there,
since the node no longer belongs to the domain in which the non-taken branch should
be evaluated.

4 The Computational Field Calculus

The computational field calculus formalisation is set forth in Figure 2 and described
here in turn after a few preliminaries. We let σ range over device unique identifiers and
φ over field values (mapping set of devices to local values). Given any meta-variable y
we let ẙ range over an element y or the null decoration (which in the calculus is ◦ when
it has to be expressed, and blank otherwise). The calculus is agnostic to the syntax of
local values: we only assume they include at least device identifiers and value 0. We
let metavariables f and t range over boolean-interpreted values, orderly 0 and any other
value.

122 M. Viroli, F. Damiani, and J. Beal

Runtime Expression Syntax:
e ::= a·v̊ runtime expression (rte)
a ::= x

∣∣ v
∣∣ (nbr e)

∣∣ (if eee)
∣∣ (reps xwe)

∣∣ (fs e)
∣∣ (oe) auxiliary rte

v ::= l
∣∣ φ runtime value

s ::= å superscript
w ::= x

∣∣ l variable or local value
φ ::= σ #→ l field value
Θ ::= σ #→ e tree environment
Γ ::= x := v variable environment

Congruence Contexts:
C ::= (nbr [])

∣∣ (fs e [] e)
∣∣ (o e [] e)

∣∣ (if [] e e)
∣∣ (if a·t [] e)

∣∣ (if a·f e [])

Alignment contexts:
A ::= C

∣∣ (reps x w [])
∣∣ (f[] a·v)

Auxiliary functions:

πA(Θ ,Θ ′) = πA(Θ),πA(Θ ′)
πA(σ #→ (A′[e])·v) = σ #→ e if A′ :: A

πA(σ #→ e) = • otherwise

s!a = a
s!◦= s

(nbr []) :: (nbr [])

(fs
′

e′1...e
′
i−1 [] e′i+1...e

′
n) :: (fs e1...ei−1 [] ei+1...en)

(o e′1...e
′
i−1 [] e′i+1...e

′
n) :: (o e1...ei−1 [] ei+1...en)

(if [] e′1 e′2)) :: (if [] e1 e2))
(if a′·t [] e′) :: (if a·t [] e)
(if a′·f e′ []) :: (if a·f e [])
(reps

′
x w []) :: (reps x w [])

(f[] e′1...e
′
n) :: (f[] e1...en)

Reduction Rules: [THEN]

Θ ;Γ ' (if a·t a′·l e)→ (if a·t a′·l |e|)·l
[VAL]

Θ ;Γ ' v → v·v
[ELSE]

Θ ;Γ ' (if a·f e a′·l)→ (if a·f |e| a′·l)·l
[VAR]

Θ ;Γ ' x→ x·Γ (x)|dom(Θ),ε(self)

[CONG] πC(Θ);Γ ' a → e
Θ ;Γ ' C[a]→ C[e]

π(nbr [])(Θ) = σ #→ a·l
[NBR] φ = (σ #→ l,ε(self) #→ l)

Θ ;Γ ' (nbr a·l)→ (nbr a·l)·φ

[REP] π(repl̊ x w [])(Θ);Γ ,(x := (Γ (w)! l̊)) ' a → a′·v̊
Θ ;Γ ' (repl̊ x w a)→ (repl̊!v̊ x w a′·v̊)·v̊

[OP]

Θ ;Γ ' (o a·v)→ (o a·v)·ε(o,v)
[FUN] π(f[] a·v)(Θ);(args(f) := v) ' (body(f)!s)→ a·v̊

Θ ;Γ ' (fs a·v)→ (fa a·v)·v̊

Fig. 2. Device Semantics

Runtime Expression Syntax. A runtime expression is the evaluation tree created out of
a surface expression. It is similar to expressions in the surface syntax (cf. Figure 1) with
the following differences (see Figure 2): (i) a (runtime) value v is either a local value
l or a field value φ ; (ii) a run-time expression e can be coupled (at any level of depth)
with optional annotation v̊ representing the transient side-effect of a computation; (iii)
constructs rep and function calls can have a superscript (s) representing the durable
side-effect of a computation. Note that, syntactically, surface syntax expressions can
(and will) be used to denote runtime expressions with null decorations in all annotations
and superscripts.

A Calculus of Computational Fields 123

The erasure operator | · | turns a runtime expression e (or an auxiliary rte a) to the
surface expression |e| (resp. |a|) obtained by dropping all annotations and superscripts.
The erasure of an expression e (or a) is defined if and only if for every auxiliary rte a′

occurring in e (resp. a): (i) a′ = (nbra′′·v) implies that the runtime value v is a local
value, and (ii) a′ = (fa′′ e) implies that |a′′| is the body of the the function f.

Note that fields are actually mappings, for which we introduce some syntactic con-
ventions and operators. A field value φ can either be written as σ1 #→ l1, . . . ,σn #→ ln
or be shortened by notation σ #→ l. The domain of φ , which is the set {σ1, ...,σn}, is
denoted by dom(φ). The value li associated to a given device σi by field φ is retrieved
by notation φ(σi). Since a field can be seen as a list, we use the notation • for the empty
field, and comma as list concatenation operator: e.g. φ ,φ ′ is the field having both the
mappings of φ and φ ′. We shall sometime restrict the domain of a field φ to a given
set of devices σ , which we denote as φ |σ . When restriction is applied to local val-
ues it works as the identity function. A tree environment, Θ , maps devices to runtime
expressions (namely, it keeps neighbour trees), and a variable environment, Γ , maps
variables to runtime values. Since tree environments and variable environments are also
mappings, all the above conventions and operators will be used for them as well.

To take into account special constants, mathematical operations, usual abstract data
types operations, and context-dependent operators, we introduce a special function ε .
This is such that ε(o,v) computes the result of applying built-in operator o to values v.
In particular, we assume constant self gets evaluated to the current device identifier.
In order not to escape the domain restricted by operator if, as discussed in Sections 2
and 3, for each primitive operator o we assume that: (i) ε(o,v1, · · · ,vn) is defined (i.e.,
its evaluation does not get stuck) only if all the field values in v1, . . . ,vn have the same
domain; and (ii) if ε(o,v1, · · · ,vn) returns a field value φ and there is at least one field
value vi in v1, . . . ,vn, then dom(φ) = dom(vi).

Congruence Contexts and Alignment Contexts. The operational semantics uses con-
gruence contexts, ranged over by C, to impose an order of evaluation of subexpressions
in an orthogonal way with respect to the actual semantic rules; and it uses alignment
contexts, ranged over by A, to properly navigate into evaluation trees. In particular, note
that C is a subcase of A (see Figure 2).

A context A is an auxiliary runtime expression with a hole []. As usual, we write A[e]
to denote runtime expression obtained by filling the hole of A with the runtime expres-
sion e. If a given runtime expression e matches C[e′], then e′ is the next subexpression of
e where evaluation will occur, positioned in e as described by the position of [] in C. The
way the syntax of congruence contexts C is structured constraints the operational se-
mantics to evaluate the first argument of if and then, depending on its outcome, the sec-
ond or third, and to non-deterministically evaluate arguments in function and operation
calls. For instance, the runtime expression (* 1·1 (+ 2·2 3)) matches C′[e′] only by
C′ = (* 1·1 []) and e′ = (+ 2·2 3): this means that e′ contains the next subexpres-
sion to evaluate. The expression e′, in turn, matches C′′[e′′] only by C′′ = (+ 2·2 [])
and e′′ = 3. Therefore 3 is the next subexpression to evaluate (becoming 3 ·3).

124 M. Viroli, F. Damiani, and J. Beal

Auxiliary Functions. The projection operator π implements the mechanism for syn-
chronising navigation of an evaluation tree with those of neighbour trees. Namely,
πA(Θ) takes a tree environment Θ and extracts a new tree environment obtained by
discarding the trees that do not match the alignment context A (according to the align-
ment context matching relation “::”) and extracting the corresponding subtree matching
the hole in the remaining ones. As an example, given Θ0 =(σ1 #→ (if a·t e1 e2)·v1, σ2 #→
(if a′·f e3 e4)·v2) and A= (if a′·t [] e′2), we have πA(Θ0) = (σ1 #→ e1). In fact, the evalu-
ation tree for σ2 is discarded since it does not match A due to the label of first argument
being f, while the evaluation tree for σ1 matches and extracts e1.

The replacement operator ! is introduced that retains the right-hand side if this is
not empty, otherwise it takes the left-hand side. It is useful to handily update null deco-
rations.

Reduction Rules. Following [10], we formulate the reduction relation by means
of reduction rules (which may be applied at any point in an expression) and con-
gruence rules (which express the fact that if e → e′ then (o e1 . . .ei−1 e ei+1 . . .en)
→ (o e1 . . .ei−1 e′ ei+1 . . .en), and so on). The reduction relation is of the form

Θ ;Γ ' e → e′ , to be read “expression e reduces to expression e′ in one step”, where
Θ is the current tree environment and Γ is the current store of variables (which is
built incrementally in each reduction step by the congruence rules [REP] and [FUN] when
evaluation enters the third argument of a rep-expressions or the body of a function,
respectively).

The reduction relation models the execution of a single computation round, com-
puted as Θ ;• ' a →∗ a′·v where: Θ is the set of evaluation trees produced by neighbours
at their prior computation round; the variable environment is empty (the main expres-
sion must not contain free variables); and a is the runtime expression resulting from the
computation of previous round with all the annotations (not superscripts) erased—at
very first round a is simply the top-level surface expression. During computation steps
the run-time expression will be decorated with annotations, until one appears at top
level in the final runtime expression a′·v, where v represents the local value of the com-
putational field currently computed. Also some superscripts will be present at the end
of the round, for they represent the side-effect of computation on the evaluation tree
that should be transferred to next round. In particular, as already mentioned: (i) the final
runtime expression a′·v will be shipped to neighbours replacing there the one previously
sent (and being dropped only when the current device exists the neighbourhood); (ii)
the runtime expression obtained from a′·v by dropping all annotations (not superscripts),
denoted by init(a′·v), will be used as starting point for the next round computation.

We now describe each reduction rule in turn. Computation rules have a common
pattern: they compute a result value v, which appears as top-level annotation—in the
following we shall say that v is the “local result”. Rule [VAL] simply identically annotates
a value. Rule [VAR] looks at the value Γ (x) associated to x by the variable environment,
and (in case it is a field) restricts it to the set of currently aligned neighbours σ (plus
the local device ε(self)). Rule [NBR] is the one actually exploiting Θ : let l be the value
locally computed, we extract the corresponding values l from aligned neighbours σ ,
and use as local result the corresponding field σ #→ l (adding the local slot self #→ l).
Rule [OP] computes the result of applying operator o to values v (done by function ε ,

A Calculus of Computational Fields 125

which gives semantics to operators), to be used as local result. Rules [THEN] and [ELSE]

handle condition branching: rule [THEN] (resp. [ELSE]) uses the label of second (resp.
third) argument as local result in case of positive (resp. negative) condition, and erases
the other branch (which may contain superscripts generated in the previous round).

Rule [CONG] can be understood as a compact representation for six different con-
gruence rules, corresponding to the 6 cases for the context C. While navigating the
evaluation tree inside context C to identify the next evaluation site a (which should be
non-annotated), this rule contemporarily enters the same context into all slots of the tree
environment Θ , guaranteeing that the expression to evaluate is kept synchronised with
the corresponding trees in Θ . Note that rule [CONG] does not describe the congruence
rules for rep-expressions and function applications. In fact, the metavariable C does
not range over contexts of the form (repl̊ x w []) and (f[] a · v). The rational for this
choice is that the corresponding rules, [REP] and [FUN], need to update the variable envi-
ronment Γ by adding to Γ the rep-bound variable x or by completely replacing Γ with
the environment for the function formal parameters args(f), respectively. Moreover,
[REP] and [FUN] are not pure congruence rules: each of them encodes a congruence rule
possibly followed by a computation rule. Note that this encoding exploits the notation
ẙ and the auxiliary function ! defined above.

Rule [REP] handles evolution of a field. When the superscript l̊ is null, the evaluation
of the body of rep-expression is carried on in an environment that assigns to the rep-
bound variable x the value of the variable or local value w—with abuse of notation we
indicate it as Γ (w): when w is a local value l we assume Γ (l) = l. When the superscript
l̊ is a local value l, the evaluation of the body of rep-expression is carried on in an
environment that assigns to the rep-bound variable x the value l. If the reduction step
performed (in the premise of the rule) on the body of the rep-expression produces an
evaluated runtime expression (i.e., if the annotation v̊ is not null), then the local result
is propagated to the rep-expression (which becomes evaluated).

When the actual parameters of a function call are evaluated, rule [FUN] performs a re-
duction step on the function body in an environment consisting of the proper association
of formal parameters args(f) to values v: the (possibly null) resulting annotation v̊ is
transferred as local result. If the superscript s is null, replacement operator ! guarantees
the function body is used instead.

5 Properties

A key property to pave the way towards advanced forms of behavioural analysis is the
following soundness. We say that the operational semantics of the field calculus is sound
to mean that the execution of a well-formed surface program satisfies the following two
properties:

P1. The reduction does not get stuck.
P2. The domain of every field value arising during the reduction consists of the identi-

fiers of the aligned neighbours and of the identifier of the self device.

While the former follows from the standard type soundness argument, the latter is
needed to guarantee a proper handling of restriction. Of course, it is key to find a

126 M. Viroli, F. Damiani, and J. Beal

definition of well-formedness for expressions that filters out those expressions which
would eventually lead to either P1 or P2 failing to hold, without restring the expressive
power of the language.

Let us illustrate how well-formedness should work with some counter-examples,
all connected to the novel issues of field values rather than just the more typical el-
ements shared with many other calculi. Any program containing a non-well-formed
function or expression is non-well-formed. An example of a non-well-formed function
is (def wrong-distance-to (x) (distance-to (nbr x))), using the function
distance-to defined in Section 2. In this example, the field value φ , which is pro-
duced by (nbr x) and passed into distance-to, conflicts with its use as the first
input to mux, which requires a local value for ε . Rule [OP] thus cannot be applied, and
the evaluation cannot be completed.

Another example is the function (def wrong-f-two (x) (min-hood
(min-hood (nbr (nbr x))))), which tries to find the minimum value of x
within two hops. This fails to evaluate because Rule [NBR] requires its input to be a
local value, and thus cannot be applied to the outer nbr. This prevents the need to
communicate a field value whose size scales linearly with the number of neighbours,
which might be extremely burdensome. A well-formed alternative that produces the
same computational result as wrong-f-two is intended to is (def right-f-two
(x) (min-hood (nbr (min-hood (nbr x))))). This takes advantage of the
commutative property of minimisation to break the minimisation into two stages, thus
avoiding the communication explosion of the not well-formed formulation.

A final example is the function (def wrong-nbr-if (x y z) (min-hood (-
(if (sense 1) (nbr x) (nbr y)) (nbr z))). This will fail to evaluate on Rules
[THEN] and [ELSE], since they require local values for the test and returned values. This
prevents conflicts between field domains, as in this case, where the field produced by
(nbr z) would contain all neighbours, while the field produced by the if expression
would contain only a subset, leaving the fields mismatched in domain at the subtrac-
tion. A correct alternative is (def right-nbr-if (x y z) (min-hood (- (nbr
(if (sense 1) x y)) (nbr z))), which conducts the test locally, ensuring that
the domains of the two fields match.

We argue that these sorts of well-formedness problems are detectable as type errors
through static analysis, without having to evaluate the program in a full context. We are
currently working at a formalisation of the notion of well-formed surface program by
means of a simple type system designed to support the formal statement for properties
P1 and P2.

6 Conclusion, Related and Future Work

A number of works present notions of computational fields; a thorough review may be
found in [5]. Regarding the most similar: the Hood sensor network abstraction [20] and
Butera’s “paintable computing” hardware model [7] implement computational fields
using only the local view, and thus do not ensure well-formed domains. The στ-
Linda model [19] proposes an extension of Linda with few constructs for spreading
tuples to form fields, and adopting a notion of computation rounds very similar to the

A Calculus of Computational Fields 127

one we formalised. More generally, while all of the key ingredients for programming
computational fields are supported in a number of different languages (see [5]), at
present only Proto supports all five that we found critical to include in the calculus.

A number of other formal calculi have also been developed for parallel computa-
tions in structured environments, like 3π-calculus [8], Ambient calculus [9], and P-
systems [14]: they all describe parallel computation over variously abstracted notions
of space; differently from our calculus they do not focus on raising the level of abstrac-
tion beyond local interaction rules and up to aggregate-level descriptions.

A core operational semantics for discrete execution of Proto programs was devel-
oped in [15]. Although closely related to the present one, it was a preliminary attempt
extremely limited in the types of computations it could represent, since it did not tackle
the fully general problem of combining restriction, evolution, and recursive function
calls (i.e. dynamically expanding evaluation trees), which we have addressed through
the idea of aligning annotated evaluation trees. Based on [15], in [16] a full formali-
sation of discrete Proto was provided. This resulted in a rather large semantics aimed
at a faithful representation of every construct in Proto and of their execution by the
platform—e.g., including an intricate technique for optimising message size. The re-
sulting model is then too complicated to readily use in proving language properties.
In contrast, the operational semantics of the calculus presented in this paper is gen-
eral enough to cover all of Proto and many other spatial languages [5], and is compact
enough to be suitable as a basis for tackling interesting properties.

In particular, we believe that equipping the calculus with a sound static type system
can bootstrap investigations on other important properties. For example, the work in
[6] develops a precise model of spatial computing covering the same key mechanisms
considered in this paper, but for fields over continuous space-time rather than discrete
device executions. In future works, we mean to prove that there is a broad class of cases
where our model converges to the continuous one in the limit, as the density of devices
increases and the length of time steps decreases. This would allow characterisation of
those programs that have a predictable conformation to the aggregate-level behavior
independently on the topology (density) and on the timing of devices. Another interest-
ing thread concerns finding a characterisation of expressiveness of spatial computing
languages [1], with clear implications in the design of new mechanisms.

This calculus should thus serve as an important step toward identifying an engineer-
ing methodology for developing spatial computing and coordination systems able to
make use of complex yet predictably well-behaved self-organising mechanisms, both
in today’s and in emergent distributed computing scenarios.

Acknowledgements. We thank the anonymous FOCLASA referees for comments and
suggestions for improving the presentation.

References

1. Beal, J.: A basis set of operators for space-time computations. In: Spatial Computing Work-
shop (2010), http://www.spatial-computing.org/scw10/

2. Beal, J.: Engineered self-organization approaches to adaptive design. In: Roy, R., Shehab,
E., Hockley, C., Khan, S. (eds.) 1st International Conference on Through-life Engineering
Services, pp. 35–42. Cranfield University Press (November 2012)

http://www.spatial-computing.org/scw10/

128 M. Viroli, F. Damiani, and J. Beal

3. Beal, J., Bachrach, J.: Infrastructure for engineered emergence in sensor/actuator networks.
IEEE Intelligent Systems 21, 10–19 (2006)

4. Beal, J., Bachrach, J., Vickery, D., Tobenkin, M.: Fast self-healing gradients. In: Proceedings
of ACM SAC 2008, pp. 1969–1975. ACM (2008)

5. Beal, J., Dulman, S., Usbeck, K., Viroli, M., Correll, N.: Organizing the aggregate: Lan-
guages for spatial computing. In: Mernik, M. (ed.) Formal and Practical Aspects of Domain-
Specific Languages: Recent Developments, ch. 16, pp. 436–501. IGI Global (2013), A longer
version available at: http://arxiv.org/abs/1202.5509

6. Beal, J., Usbeck, K., Benyo, B.: On the evaluation of space-time functions. The Computer
Journal (2012), Online first, available through doi:10.1093/comjnl/bxs099

7. Butera, W.: Programming a Paintable Computer. PhD thesis, MIT, Cambridge, MA, USA
(2002)

8. Cardelli, L., Gardner, P.: Processes in space. In: Ferreira, F., Löwe, B., Mayordomo, E.,
Mendes Gomes, L. (eds.) CiE 2010. LNCS, vol. 6158, pp. 78–87. Springer, Heidelberg
(2010)

9. Cardelli, L., Gordon, A.D.: Mobile ambients. Theoretical Computer Science 240(1),
177–213 (2000)

10. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: A minimal core calculus for Java
and GJ. ACM Transactions on Programming Languages and Systems 23(3) (2001)

11. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing applications: The
tota approach. ACM Trans. on Software Engineering Methodologies 18(4), 1–56 (2009)

12. MIT Proto, http://proto.bbn.com (retrieved January 1, 2012)
13. Montagna, S., Viroli, M., Fernandez-Marquez, J.L., Di Marzo Serugendo, G., Zambonelli,

F.: Injecting self-organisation into pervasive service ecosystems. Mobile Networks and Ap-
plications 18(3), 398–412 (2013)

14. Paun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1),
108–143 (2000)

15. Viroli, M., Beal, J., Casadei, M.: Core operational semantics of Proto. In: Proceedings of
ACM SAC 2011, pp. 1325–1332. ACM (March 2011)

16. Viroli, M., Beal, J., Usbeck, K.: Operational semantics of proto. Science of Computer Pro-
gramming 78(6), 633–656 (2013)

17. Viroli, M., Casadei, M., Montagna, S., Zambonelli, F.: Spatial coordination of pervasive
services through chemical-inspired tuple spaces. ACM Transactions on Autonomous and
Adaptive Systems 14, 14:1–14:24 (2011)

18. Viroli, M., Casadei, M., Omicini, A.: A framework for modelling and implementing self-
organising coordination. In: Proceedings of ACM SAC 2009, vol. III, pp. 1353–1360, March
8-12. ACM (2009)

19. Viroli, M., Pianini, D., Beal, J.: Linda in space-time: an adaptive coordination model for
mobile ad-hoc environments. In: Sirjani, M. (ed.) COORDINATION 2012. LNCS, vol. 7274,
pp. 212–229. Springer, Heidelberg (2012)

20. Whitehouse, K., Sharp, C., Brewer, E., Culler, D.: Hood: a neighborhood abstraction for
sensor networks. In: Proceedings of the 2nd International Conference on Mobile Systems,
Applications, and Services. ACM Press (2004)

http://arxiv.org/abs/1202.5509
http://proto.bbn.com

	A Calculus of Computational Fields
	1 Introduction
	2 Computational Fields
	3 From Global to Local
	4 The Computational Field Calculus
	5 Properties
	6 Conclusion, Related and Future Work
	References

