
Functional Synthesis of Genetic Regulatory Networks

Jacob Beal
Raytheon BBN Technologies

jakebeal@bbn.com

Aaron Adler
Raytheon BBN Technologies

aadler@bbn.com

Abstract
As synthetic biologists improve their ability to engineer complex
computations in living organisms, there is increasing interest in us-
ing programming languages to assist in the design and composi-
tion of biological constructs. In this paper, we argue that there is a
natural fit between functional programming and genetic regulatory
networks, exploring this connection in depth through the example
of BioProto, a piggyback DSL on the Proto general-purpose spa-
tial language. In particular, we present the first formalization of
BioProto syntax and semantics, and compare these to the formal
syntax and semantics of the parent language Proto. Finally, we ex-
amine the pragmatics of implementing BioProto and challenges to
proving correctness of BioProto programs.

Categories and Subject Descriptors B.6.3 [Logic Design]: De-
sign Aids; D.3.1 [Programming Languages]: Formal Definitions
and Theory; J.3 [Biology and Genetics]

General Terms Design, Languages

Keywords synthetic biology, functional programming, semantics,
domain-specific languages, spatial computing, Proto

1. Introduction
Synthetic biologists are rapidly developing the ability to engineer
and control the behavior of living organisms. As the scale and
complexity of the systems that can potentially be designed and
implemented is rapidly increasing, the need for effective design
tools is rapidly increasing as well [30].

While most design tool work has been focused on lower-
level problems of laboratory management and protocol automa-
tion (e.g., [18, 19, 31, 35]), there is an increasing interest in pro-
gramming languages to assist in the design and composition of
biological constructs. The range of languages developed to date in-
cludes functional [4, 29], declarative [8, 24], and graphical [11, 13]
approaches—though to date no significant imperative language has
been developed for the design of biological constructs

The lack of an imperative language may be due in part to the de-
sign challenge facing all synthetic biology programming languages
(Figure 1): a high-level specification must produce a concrete bio-
logical realization—typically one or more DNA sequences imple-
menting a genetic regulatory network—which then interacts with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FPCDSL ’13, September 22, 2013, Boston, MA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2380-2/13/09. . . $15.00.
http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2505351.2505356

Detect bacterial toxin!
Detect immune response !
If only one is present !
 fluoresce red!

!"#$%&$'()*+ ,#'-%.'()*+
/0,12+

Alfa1

Bravo2

Dox rtTA

EBFP2

Hotel

IPTG LacI

India

Kilo

EBFP2rtTA LacI

Alfa1

Bravo2

Hotel

Hotel

India

Kilo

3#--+4#5'6%)7+

Figure 1. High-level specification of a biological system must pro-
duce both a concrete realization (typically as DNA implementing a
genetic regulatory network) and the desired behavior in context in
cells.

the chemical context and machinery of a living cell to produce a
desired behavior.

Most synthetic biology programming languages have avoided
the synthesis problem of mapping from biological realization to
desired behavior, focusing on specifying the realization, leaving
the problem of linking realization and behavior to the designer.
To date only one programming language, BioProto [4], has been
demonstrated to correctly map high-level behavior specifications
into equivalent behaviors realized with actual cells in the labora-
tory1. BioProto, a purely functional domain-specific-language first
proposed in [2] and realized fully in [4], has recently been demon-
strated as the highest-level component of an end-to-end toolchain
for automation-assisted production of engineered cells from a high-
level behavior specification [6].

Prior publications related to BioProto have been written from
the primarily biological perspective, treating the language infor-
mally and ignoring the engineering details of its implementation.
This paper, in contrast, aims to provide the first formal exploration
of BioProto as a domain-specific language, intended to be of use
both as a formalization of the language and as a case study of DSL
implementation for a domain far outside of the typical range of pro-
gramming language targets. We begin with an explanatory review
of the class of biological constructs considered by BioProto, and
provide a formalization of that class. We then develop a syntax and
semantics for BioProto, discuss its realization as a plug-in for MIT
Proto [26], and discuss the challenges that must be overcome for its
correctness to be meaningfully provable.

2. Transcriptional Logic Networks
The target for BioProto compilation is the design of genetic reg-
ulatory networks, to be implemented in DNA and executed by in-
sertion of that DNA into living cells. Both natural and engineered
biological systems exhibit an extremely wide variety of genetic reg-
ulatory networks, encompassing many different mechanisms of by
which gene expression is regulated.

1 The closest similar work of which we are aware is SBROME [21], a
graphical programming language that has experimentally verified results,
but only minimal support for behavioral specification.

Proteins)

1)

2)

3)

RNA)DNA)

promoter)

Degrada6on)
&)Dilu6on)

4)

RNA$polymerase$

ribosome$

Figure 2. Transcriptional regulation by proteins: 1) transcription
copies DNA to RNA, then 2) translation decodes the RNA to pro-
duce proteins. 3) Protein concentration is lost to degradation of
the protein molecules and to their dilution by cell growth. Proteins
carry out or regulate many cellular functions including 4) interact-
ing with promoters to increase or decrease the rate at which partic-
ular DNA sequences are trancribed.

In its current incarnation, BioProto focuses on a restricted class
of genetic regulatory networks, transcription logic networks, which
are both widely used and depend on relatively well understood bi-
ological mechanisms. Although this covers only a small portion of
systems and mechanisms under investigation by synthetic biolo-
gists2, this limitation is due primarily to the current implementa-
tion, and this approach should also be extensible to other biological
systems and mechanisms, as we will discuss below.

In the remainder of this section, we first review the core biolog-
ical mechanism of transcriptional regulation that BioProto uses to
realize designs. We then explain how digital logic computations can
be implemented with transcriptional regulation, then finally give a
formal model of transcriptional logic networks that will be the com-
pilation target of BioProto.

2.1 Central Mechanism: Transcriptional Regulation
The central biological mechanism in this model is the regulation
of DNA transcription by proteins, as illustrated in Figure 2. First,
the process of transcription copies a stretch of DNA that includes a
coding sequence for a protein into complementary RNA. The pro-
cess of translation then decodes the sequence of nucleotides in the
RNA to produce proteins. Proteins, in turn, are the molecular ma-
chinery used by the cell to carry out most of its functions. This in-
cludes regulating protein expression: proteins known as transcrip-
tion factors bind to operator sites associated with the promoter re-
gion “upstream” of a coding sequence, thereby either increasing
(“activating”) or decreasing (“repressing”) the rate of transcription
for the coding sequence “downstream” of the promoter. In gen-
eral, the higher the concentration of the transcription factor is, the
stronger the regulatory effect.

The dynamics of this process depend on the balance between
production, degradation, and dilution. The concentration of RNA
and proteins in a cell increases over time at a rate determined
by the rates of transcription and translation. At the same time,
the concentration is generally decreased by two processes: the
degradation of RNA and proteins back into their primitive building
blocks and their dilution as the cell grows and divides.

Transcription and translation are carried out by natively occur-
ing molecules in a cell (RNA polymerase and ribosomes, respec-
tively), so an engineered network can in many cases be “powered”

2 Omitted classes include analog computation, dynamic modification of
DNA sequences, cell-to-cell communication, biological nanostructures, and
metabolic engineering.

simply by inserting a DNA sequence or sequences encoding it into
a cell.

Because DNA sequences can be assembled together arbitrar-
ily, it is possible to place any given set of coding sequences
“downstream” from any promoter/operator region. In principle,
this means that any transcription factor can be used to regulate any
coding sequence (though there are exceptions to this rule). A col-
lection of interacting promoters and coding sequences thus form a
regulatory network. A transcriptional logic network is such a net-
work where the high and low concentration are being interpreted
as Boolean true and false values.

2.2 Computing with Transcriptional Logic Networks
Building on this basic model, synthetic biologists have identified
and experimentally verified the designs for a wide variety of digital
logic gates (see, for example, the seminal work in [34], [33], [16],
and [17]).

For example, a NOT gate can be implemented with a transcrip-
tion factor that represses a promoter. The transcription factor is the
input to the NOT gate, and the coding sequences regulated by the
promoter is its output. When the concentration of transcription fac-
tor is high, transcription at the promoter is repressed and the con-
centrations of its products will be low. When the concentration of
transcription factor is low, transcription at the promoter is active
and the concentrations of its products will be high. For purposes
of this paper and BioProto, we will consider the logical signal to
be encoded in terms of the chemical concentration, though alter-
nate proposals have been made, such as the rates of transcription
(PoPS) or translation (RiPS) [12].

Unlike voltages, chemical concentrations produced by different
sources superpose. Thus, a NOT gate can be transformed into a
multi-input NOR gate by having each input produce the same
repressing transcription factor. This also means that each chemical
can generally only be used once in a given genetic regulatory
network: multiple uses will interfere with one another unless they
are isolated in different compartments, which is not practical in
most circumstances with current technology.

The output of one logic gate is “wired” to the input of second
logic gate by placing the coding sequence for the second under con-
trol of the promoter from the first. Computation then evolves at all
gates simultaneously in parallel, just as in a combinational elec-
tronic circuit. The time scales are quite different, however: transi-
tions between high and low expression levels typically occur on a
scale of hours to days. The speed is typically limited by the high-
to-low transition, which depends on the dilution and degradation
rates, which are organism and construct specific. For example, a
fast degrading protein in E. coli may effectively switch states in a
single hour, while a stable protein in a slow-dividing mammalian
cell may take a week or more. While this means pure computation
in cells will never rival silicon, the value of cell computation comes
from using it for sensing and control of chemical and structural
properties on the nanoscale.

Sensors and actuators in this model are also implemented with
proteins. Sensor proteins are typically transcription factors that un-
dergo a chemical reaction changing their regulatory activity when
exposed to the stimuli that they react to, such as light, pressure, or
small signalling molecules. Actuators are generally not transcrip-
tion factors but proteins that implement some other form of phys-
ical effect, such as fluorescing, controlling the cell’s metabolic ac-
tivity, or generating a voltage across the cell membrane.

2.3 Formal Model
We can formalize the class of typical transcriptional logic net-
works with the syntactic model given in Figure 3. This model is
a textualization of a subset of standard diagrammatic models used

TranscriptionalLogicNetwork = {"(", FunctionalUnit | Reaction, ")"};
FunctionalUnit = {Operator}, Promoter, {Operator}, {CodingSequence}, ["terminator"];

Promoter = "High Basal Activity Promoter" | "Low Basal Activity Promoter";
Operator = ChemicalSpecies, LogicalRegulation;

CodingSequence = "produces", ChemicalSpecies;
Reaction = ChemicalSpecies, LogicalRegulation, ChemicalSpecies;

LogicalRegulation = "activates" | "represses"
ChemicalSpecies = "[", SpeciesName, ",", LogicalType, "]"

SpeciesName = sequence of any visible ASCII characters except ,[]
LogicalType = "boolean"

Figure 3. Syntax in EBNF for specification of a transcriptional logic networks as a set of DNA functional units, each comprising a regulatory
region followed by a set of coding sequences and a transcriptional terminator.

by biologists to describe and design genetic regulatory networks.
In essence, this model specifies directed graphs with two classes
of nodes, FunctionalUnit and ChemicalSpecies, and three
classes of edges: activates, represses, and produces The
activates and represses relations go from a ChemicalSpecies
to either type of node, while produces relations go only from a
FunctionalUnit to a ChemicalSpecies.

Each ChemicalSpecies is a pair associating a name and a type
(though for logical genetic regulatory networks the type can only
be a Boolean).

The FunctionalUnit nodes, on the other hand, have a stereo-
typed substructure going from “upstream” to “downstream” in
the direction of transcription on a DNA sequence. First comes a
Promoter with either a high or low base rate of transcription,
which may be flanked on either side by Operator sites that regu-
late it. Downstream of this comes a sequence of CodingSequence
sites for the proteins produced by this functional unit3, and finally a
terminator sequence (needed in some organisms but not others)
that marks the end of the region that is transcribed to RNA.

Note that there is no guarantee that all members of the class
specified by this model are pragmatically realizable, merely that
all practically realizable transcriptional logic networks belong to
this class. Likewise, note that this model does not specify how or
whether multiple functional units are to be linearized onto DNA
strands, only the linearization of the components within a func-
tional unit.

One issue with this formalization is that the relation between
multiple operators is not clear: if a promoter is activated by some
species but repressed by others, which should dominate? The rea-
son this is unclear in the representation is because there is no scien-
tific consensus in this question. For our current purposes, we will
consider the behavior of a promoter that is both activated and re-
pressed to be well-defined only if it has only two operators, such
that the basal activity of the promoter can be used to tie-break be-
tween them (i.e., with high basal activity the activator overrides the
repressor, while with low basal activity it is the other way around).

2.4 Transcriptional Logic Network Example
Let us illustrate the formal model with an example of a simple
network, which fluoresces by expressing Green Fluorescent Protein
(GFP) whenever there is a low concentration of anhydrotetracycline
(aTc), an analogue of the antibiotic tetracycline:

(High_Basal_Activity_Promoter
produces TetR|boolean terminator)

(aTc|boolean represses TetR)
(High_Basal_Activity_Promoter TetR represses

produces LacI|boolean terminator)

3 Any additional necessary machinery around the coding sequence, such
as ribosome binding sites or 2A sequences for polycistronic expression, is
implicit.

LacI

GFP

TetRaTc

GFP

TetR

LacI

Figure 4. Diagram of a simple transcriptional logic network,
which fluoresces green by expressing GFP whenever the small
molecule aTc is not present. Red bars indicate repression, and the
blue line indicates production of a protein with side effects—in this
case, fluorescence.

(High_Basal_Activity_Promoter LacI represses
produces GFP|boolean terminator)

The first statement specifies unregulated expression of a transcrip-
tion factor called TetR that reacts to the presence of aTc. When
aTc binds to TetR, it represses the activity of the transcription fac-
tor, effectively nullifying it, as expressed by the second statement.
TetR, when not nullified, is itself a repressor, so aTc repressing a
repressor is a double negation, corresponds to a positive sensor for
aTc. The third statement links a promoter responding to this TetR
to production of another transcription factor named LacI, so that
LacI is produced when aTc is present at a high concentration and
repressing TetR, but is not produced when aTc is not. Note that for
cases like this, where the operator needs to follow the promoter on
the DNA, the pseudo-English is unfortunately “backwards” as “P...
TetR represses” rather than “TetR represses P...” LacI, in turn, re-
presses the production of GFP. Thus, when aTc is present at a high
concentration, LacI is produced and represses GFP. When the con-
centration of aTc is low, TetR represses LacI and GFP is free to
be expressed. Finally, note that every chemical species is marked
at least once with the type boolean, indicating that we interpret-
ing these concentrations as Boolean values and expect them to be
markedly high or low, and not generally at intermediate values.

For reasons of space, we cannot include a larger example in this
text; for several such examples, including a large circuit implement-
ing a two-bit adder, the reader is referred to [4].

3. BioProto Syntax
The functional dataflow model of computation is a good fit for
specifying the design of a transcriptional logic network. If the flows
in a dataflow graph are taken as analogous to the flows of regula-
tion, then a specification of a dataflow computation treats both the
realization and behavior levels of Figure 1: the computation is the
behavior and the dataflow is the genetic regulatory network realiza-
tion. Dataflow is also inherently parallel, which matches well with
the simultaneous evolution of all elements in a genetic regulatory
network. Moreover, functional programming languges allow a sim-
ple specification of dataflow graphs, since functional composition
translates transparently to dataflow relations.

Our basic approach, as described in [4] is to associate fragments
of transcriptional logic network with in a higher level primitive
operators. A dataflow graph specification in a higher-level language
can then be transformed into a transcriptional logic network by
mapping each edge in the dataflow graph to a unique transcription
factor and each operator in the dataflow graph to its associated
fragment of transcriptional logic network.

Proto [3] is a functional dataflow language that aligns particu-
larly well with the design of transcriptional logic networks, since
the dataflow graphs it specifies are defined to operate constantly,
evolving their values over continuous time, just as a transcriptional
logic network must. Proto also has the advantage of being intended
for succinct specification of programs for aggregates composed
of large numbers of locally-interacting individual computational
devices—it is, in fact, one of only a few general purpose spatial lan-
guages [7]. Many populations of cells, such as colonies, biofilms,
or tissues in multicellular organisms, can be viewed as such locally-
interacting aggregates, meaning that Proto has the potential to even-
tually allow simple specification of designs for complex biological
aggregates.

The efficacy of the match between Proto and genetic regulatory
networks has been explored extensively in [2] and demonstrated
in [4], including the automated design and simulation of large and
complicated genetic regulatory networks. It has also been demon-
strated with the realization of small BioProto programs executed by
actual living cells [6]. Note, however, that the present implementa-
tion of BioProto supports cell-to-cell communication only implic-
itly, such that it is not yet possible to take full advantage of Proto’s
aggregate programming capabilities.

By the classification of domain-specific languages in [25], Bio-
Proto is a piggyback language on Proto. This means that its design
and implementation is simplified by building off of the existing lan-
guage, adding some features and restricting others. In particular,
BioProto modifies Proto as follows:

• Primitives can be annotated with genetic regulatory network
specifications, and

• Only a restricted subset of Proto is used, excluding all non-
Boolean types, all operations that require non-Boolean types,
and all operations over space or time.

3.1 Genetic Regulatory Network Specifications
Figure 5 shows the syntax for specifying genetic regulatory net-
works in BioProto (neglecting the use of whitespace to aid in tok-
enization). This syntax is intentionally nearly identical to the for-
mal model of transcriptional logic networks presented in 3. The
differences between the two are:

• A number of small permutations of surface syntax are made
with the aim of making code more compact (e.g. T instead
of terminator) or more explicit (e.g., starting reactions with
RXN).

• BioProto inherits from Proto a tighter restriction on the charac-
ters that can make up names of chemical species.

• The type of a chemical species can be set indirectly, as being
equal to the type of another species. Although all are Boolean,
the equality relation also allows inference about constant values
by network optimizers.

Note that although at present this only supports specification
of transcriptional logic networks, it is designed for expansion to a
wider range of genetic regulatory networks by adding more types,
more classes of promoter and operator, etc.

One other key difference is not apparent at the syntactic level:
the identifier for a chemical species may be either a literal that
names a particular class of molecule, or a placeholder variable to

be filled in later. Which case this is depends on evaluation context,
however, and will be discussed further when we consider program
semantics in Section 4.

3.2 Functional Specification of Behavior
The restricted subset of Proto used by BioProto is shown in Fig-
ure 6. This subset has the same syntax as presented in [32], but
without any of Proto’s distinctive space-time constructs. It might
be argued that such a language is no longer meaningfully Proto,
but for the roadmap laid out in [2] for reintegrating those constructs
later, after more progress has been made on some of the challenges
that we will discuss in Section 6.

The without Proto’s space-time constructs, the restricted syntax
of BioProto is a simple LISP-like language based on S-expressions.
A program consists of a sequence of declarations, followed by
precisely one expression, which determines what the program will
compute.

Primitive operators are declared with the primitive construct,
associating an operator name and typed function signature with a
map from annotation type to S-expression. Annotations recognized
and used by BioProto are:

• :grn-motif, which associates a primitive with a genetic regu-
latory network fragment, specified using the genetic regulatory
network syntax in Figure 5

• :side-effect, a standard Proto annotation marking a primi-
tive as having side-effects that should not be optimized away.

• :type-constraint, another standard Proto annotation that
declares identities between the types of variables, for use in
compilation and optimization.

The annotate construct simply adds annotations to an existing
primitive, possibly replacing some of those already declared.

Expressions follow the LISP conventions of S-expressons: a tree
of function applications indicated by parentheses, leaves consisting
of variables or constants, and variables declared in let constructs.
Finally, def constructs can declare functions or global variables,
abstracting and wrapping expressions respectively.

Taken together with the genetic regulatory network syntax in
Figure 5, these form the totality of syntax for the BioProto domain-
specific language.

3.3 BioProto Example
The transcriptional logic network example in Section 2.4 could be
specified in BioProto as follows:

(primitive aTc () boolean
:grn-motif ((P high TetR|boolean T)

(RXN (aTc|boolean) represses TetR)
(P high R- TetR value T)))

(primitive not (boolean) boolean
:grn-motif ((P high R- arg0 value T)))

(primitive green (boolean) boolean
:side-effect
:type-constraints ((= value arg0))
:grn-motif ((P R+ arg0 GFP|arg0 value T)))

(green (not (aTc)))

The network is now specified in terms of three basic capabilities,
sensing aTc, inverting a logical value, and expressing green fluo-
rescence. These are then connected together to form a composite
behavior specification, (green (not (aTc))), which might be
read as “fluoresce green when not sensing aTc.” We will examine
how such a specification is interpreted to produce a genetic regula-
tory network in the next section.

GeneticRegulatoryNetwork = {"(", FunctionalUnit | Reaction, ")"};
FunctionalUnit = {Operator}, Promoter, {Operator}, {CodingSequence}, [Terminator];

Promoter = "P", ["high" | "low"];
Operator = ("R+" | "R-"), ChemicalSpecies;

CodingSequence = ChemicalSpecies;
Terminator = "T";

Reaction = "RXN", ChemicalSpecies, ("activates" | "represses"), ChemicalSpecies;
ChemicalSpecies = ProtoIdentifier, ["|", (ProtoIdentifier | ProtoType)]

| "(", ChemicalSpecies, ")";
ProtoType = "boolean";

ProtoIdentifier = any sequence of alphanumeric and * + \ - . / < = > ? & : characters,
except those sequences that parse as a number

Figure 5. Syntax in EBNF for specification of genetic regulatory network fragments in BioProto, closely derived from the transcriptional
regulatory network syntactic model in Figure 3

BioProtoProgram = { Primitive | Annotate | Variable | Function }, Expression;
Primitive = "(", "primitive", ProtoIdentifier, Signature, {Annotation}, ")";
Signature = "(", {Argument}, ")", Argument;
Argument = ProtoType | ProtoIdentifier, ["|", ProtoType];
Annotate = "(", "annotate", ProtoIdentifier, {Annotation}, ")";

Annotation = ":grn-motif", "(", GeneticRegulatoryNetwork, ")"
| ":side-effect"
| ":type-constraints", "(", {"(", "=", ProtoIdentifier, ProtoIdentifier, ")"}, ")";

Expression = "(", Expression, ")"
| ProtoIdentifier
| Constant;
| "(", "let" "(" { "(", ProtoIdentifier, Expression, ")" } ")" { Expression } ")";

Constant = "true" | "false";
Variable = "(", "def", ProtoIdentifier, Expression, ")";
Function = "(", "def", ProtoIdentifier, "(", {Argument}, ")", {Expression}, ")";

Figure 6. Syntax in EBNF for remainder of BioProto beyond specification of genetic regulatory network fragments; this language is a
restriction of general Proto syntax.

One noteworthy aspect of this specification is that the aTc oper-
ator includes multiple interacting elements in its :grn-motif an-
notation, illustrating that these annotations are complete network
fragments, not just single functional units. Also of note is the fact
that green produces a value as well as expressing green fluorescent
protein (GFP). This is because Proto requires all functions to pro-
duce some value; green is thus set up as a “pass-through” actuator,
which returns a copy of the value on which it was invoked. This is
reflected in the :type-constraint annotation, which, along with
the | arg0 equality typing on GFP, sets up type identity relations
that can be used for optimization.

Working in the opposite direction, the :side-effect anno-
tation ensures that BioProto knows that this network fragment is
important for functionality and not just computation, and thus its
protein literal GFP must not be optimized away.

This example also illustrates why optimization is needed and a
potential down-side to higher-level specifications: the specification
of green requires an activation regulation, R+ arg0, that is not in
the network in 2.4, in order to copy the concentration of an input
protein to the concentration of GFP, since it cannot a priori know
the context in which the primitive will be used. Thus, BioProto
requires optimization in order to be able to remedies inefficiencies
such as this one that are introduced by using a higher level of
representational abstraction.

4. Interpretation Semantics
In specifying the semantics of BioProto, we will concentrate on the
unique aspects of the language. To that end, we make the following
assumptions:

• The BioProto program has already parsed correctly, such that
we can safely assume syntax compliance.

• All primitives and annotations declarations are have been
parsed into a mapP of tuples (p, v, e) that associate each primi-
tive p identifier with its signature v and :grn-motif expression
e. Each element in the signature is a name, defaulting to argk
for the kth argument and value for the return if they are speci-
fied with only types rather than names.

• Function calls and variables have already been inlined.

To map from BioProto to transcriptional logic networks under these
assumptions, our semantics thus only needs to treat interpretation
of Expression and :grn-motif expressions.

The semantics we develop uses a small-step transition model
based on [22]. Rules are shown with the transition → that they
implement on the bottom and preconditions on the top. Success-
ful evaluation is indicated by production of a single expression
matching the TranscriptionalLogicNetwork syntax from Fig-
ure 3. These rules also have a progress property (not proven here
for reasons of space), such that for any expression for which such
a production is possible, every sequence of rule matches advances
monotonically toward the same final network expression.

We will designate variables in italics (e.g., v), sequences with
an overbar (e.g., v). Interpration state is represented using a pars-
ing placeholder [] and triple of 〈M : E : T 〉. In this state,
M ∈ {C,G,P} is a mode marker used to swap between three
modes: interpretation of chemicals, genetic regulatory networks,
and Proto expressions. The E state is an evaluation enviroment con-
sisting of a mixed sequence of variable bindings x ⇒ y and typed

chemicals [c, t], where t is either boolean or not yet typed, which
we designate as ∅. We annotate extraction of a value from the en-
vironment as v ⊗ E , which matches environments containing v as
well as pulling it to the front of the sequence. Finally, stateN is the
current transciptional logic network.

Interpretation of a BioProto program begins with the state 〈P :
∅ : ∅〉e: no environment bindings, no network contents, and the
entire program expression e.

L(E, e) →∗ E′ : [c, t]
〈C : E : N〉e → 〈C : E′ : N〉[c, t]

[Chemical]

t ∈ ProtoType t′ ∈ {t, ∅}
〈C : [c, t′], E : N〉|t → 〈C : [c, t], E : N〉[c, t]

[TypeChemical]

Figure 7. Rules for interpretation of chemicals

In both sublanguages, chemical parsing and typing is handled
by the rules shown in Figure 7. Rule [CHEMICAL] uses a lookup
subfunction:

L(E , c,) =

8><>:
L(E , c′) if c ⇒ c′ ∈ E
[c, t]⊗ E : [c, t] if [c, t] ∈ E
[c, ∅], E : [c, ∅] otherwise

(1)

to follow variable bindings and extract a chemical from the evalua-
tion environment if it exists there, and to add it if it does not. Rule
[TypeChemical] can only be invoked immediately after a chemical
is looked up, per the syntactic rules, and asserts the type on the
chemical.

�G : E : N �e →∗ �G : E�
: N �i’

�G : E : N �(i [] e e’) → �G : E�
: N �(i i’ [] e’)

[Traverse]

�G : E : N �([] e) →∗ �G : E : N �(e [])

�G : E : N �[] (e) → �G : E : N �(e) []
[Recurse]

−
�G : E : N �P → �G : E : N �Low Basal Activity Promoter

[P:Default]

−
�G : E : N �P low → �G : E : N �Low Basal Activity Promoter

[P:Low]

−
�G : E : N �P high → �G : E : N �High Basal Activity Promoter

[P:High]

�C : E : N �e →∗ �C : E�
: N �i

�G : E : N �R+ e → �G : E�
: N �i activates [Activate]

�C : E : N �e →∗ �C : E�
: N �i

�G : E : N �R- e → �G : E�
: N �i represses [Repress]

−
�G : E : N �T → �G : E : N �terminator [Terminate]

e0 /∈ {R+, R-, P, T, RXN} �C : E : N �e →∗ �C : E�
: N �i

�G : E : N �e → �G : E�
: N �produces i

[Coding]

e� ∈ {activates, represses}
�C : E : N �e →∗ �C : E�

: N �i
�C : E�

: N �e” →∗ �C : E��
: N �i’

�G : E : N �RXN e e’ e” → �G : E��
: N �i e’ i’

[Reaction]

1

Figure 8. BioProto interpretation rules for genetic regulatory net-
work specifications.

The semantics of interpreting a dataflow graph fragment are
given in Figure 8. Rules [Traverse] and [Recurse] walk the dataflow
graph, moving the parsing placeholder token ahead as each element
is interpreted. The remainder of the rules perform the minor tran-
formations necessary to map the dataflow graph specification into a
transcrptional logic network, looking up and/or creating chemicals
in the environment as needed

Finally, the rules for interpreting Proto expressions are given in
Figure 9. These semantics depend on the fact that every primitive,
and thus every expression, has precisely one chemical associated as

〈P : E : N〉e →∗ 〈P : E′ : N ′〉i
〈P : E : N〉(i [] e e’) → 〈P : E′ : N ′〉(i i’ [] e’)

[P:Traverse]

〈P : E : N〉(p [] e) →∗ 〈P : E : N ′〉i []
〈P : E : N〉[] (p e) → 〈P : E : N ′〉i []

[P:Recurse]

(p, v, e) ∈ P 〈G : v ⇒ i, φ : N〉e →∗ 〈G : E′ : N〉i
〈P : E : N〉(p v []) → 〈P : φ, E : N i〉φ []

[Primitive]

i = (High Basal Activity Promoter produces [φ, boolean])
〈P : E : N〉true → 〈P : [φ, boolean], E : N i〉i [TRUE]

i = (Low Basal Activity Promoter produces [φ, boolean])
〈P : E : N〉false → 〈P : [φ, boolean], E : N i〉i [FALSE]

for each x, y, n ∈ e, i,N ′ 〈P : E :〉x →∗ 〈P : E′ : n〉y
〈P : E : N〉let [] ((v e)) e’ → 〈P : v ⇒ i, E : N N ′〉[] e’

[Let]

−
〈P : e ⇒ i⊗ E : N〉e → 〈P : e ⇒ i⊗ E : N〉i [Variable]

Figure 9. BioProto interpretation rules for Proto subset.

its return value. We use φ to designate the creation of a new unique
return chemical, guaranteed to not collide with any other chem-
ical in the system. As the [Proto:Traverse] and [Proto:Recurse]
rules traverse the expression tree, they replace expressions with the
chemical return values of their subexpressions.

The [Primitive] rule takes these chemical values, binds it to
the arguments of the primitive being invoked, creates a fresh re-
turn chemical, and evaluates the associated genetic regulatory net-
work against these chemical bindings. The resulting network is
then added to the network accumulated so far. The [TRUE] and
[FALSE] rules do the same for a fixed motif implementing their
primitive values. Finally, the [LET] rule evaluates subexpressions
and binds their chemicals to variables in the environment, where
they can be looked up by rule [VARIABLE].

Together, these three sets of rules implement the full current
semantics of BioProto.

5. Implementation Details
We have implemented BioProto as a plug-in for the MIT Proto [26]
distribution of Proto, which is free and open software. MIT Proto
has a flexible architecture designed for extensibility, including the
ability to emit code for different platforms.

Figure 10 shows the structure of the MIT Proto compiler,
along with the BioProto plug-in: Proto code is first parsed into S-
expressions that are then interpreted to produce a dataflow-graph.
This dataflow graph is transformed from aggregate-level to local
operations (which has no effect on the restricted subset of Proto
currently used in BioProto).

Finally, the local dataflow graph is sent to an emitter to be trans-
formed into platform-specific executable code. This defaults to an
assembler for the Proto virtual machine [1], but can be switched
to plug-in provided platforms by a command-line argument. For
BioProto, we thus provide a plug-in emitter that produces a genetic
regulatory network as its output. This genetic regulatory network
can then either be tested in simulation (as shown for complex net-
works in [4]) or progress through further realization stages: first a
“technology mapping” that determines the DNA sequence or se-
quences used to realize the GRN, then synthesis and assembly to
construct physical samples of those sequences, and finally inser-
tion into living cells for execution. This realization was recently
successfully demonstrated with a simple stimulus-response system
for both E. coli and mammalian cells in [6].

BioProto requires only one extension over the base language of
Proto: the :grn-motif annotation. Proto already includes an anno-

!"#$%#&

'()%#*#%)%#&

+,,#%,")%&
)-&.-/"0&

!#-)-12&
3456%#&

75-!#-)-&
3456%#&

8*945:%&

8*945:%&

!"#$#%&#'(%

!"#$#%)*%
+,$(&#'(%

-(.(/&%
0(1234$#",%
5($6#"7%

89:;<"(==>#.=%

?11"(14$(%@A-%

B#&43%@A-%

C(&D.#3#1,%*4<<>.1%

@5?%?==(E+3,%

:;(&2/#.%>.%B>F>.1%G(33=%

GD(E>&43%
8>E234/#.%

Figure 10. Our BioProto implementation builds on the MIT Proto
compiler: earlier stages of the compiler interpret Proto code into a
local dataflow graph representation. The emitter stage, which trans-
forms a dataflow graph into an executable implementation, allows
selection of alternate target platforms, and BioProto is implemented
primarily as an emitter for transforming the dataflow graph IR into
a genetic regulatory network, which can then be tested in simula-
tion or further processed for execution in living cells.

tation facility, which allows arbitrary tokens beginning with : and
optionally followed by an S-expression; unrecognized annotations
are simply ignored. BioProto’s genetic regulatory network sublan-
guage is constructed to comply with this format, so all that was
necessary was to implement handling of the annotation within the
BioProto emitter plugin. Similarly, forced inlining of functions is
already an option in MIT Proto, so no change was needed for that.

The restrictions on Proto for BioProto are implemented solely
in the emitter: any Proto primitive that the BioProto emitter en-
counters that does not have a :grn-motif annotation produces a
compilation error, as does any literal that is not a Boolean. Thus, we
simply declare and/or annotate only those primitives that are cur-
rently supported; future expansions of BioProto to larger subsets
of Proto can thus be handled simply by declaring/annotating the
missing primitives or by adding the missing types to the language.

The BioProto emitter also implements a collection of optimiza-
tion methods, as documented in [4]. These are largely biology-
adapted versions of standard heuristic program optimizations (e.g.,
copy propagation, dead code elimination), but also including some
biology-specific optimizations, such as using the fact that chemical
concentrations can be superposed to compress NOR patterns.

Hosting BioProto within MIT Proto as a plug-in in this way is
advantageous because it means that it can use all of the facilities of
Proto without requiring any branch from the original distribution.
This also allows a light-weight debugging of BioProto programs,
which is important because chemical simulation of a genetic reg-
ulatory network is often computationally expensive. Early rounds
of debugging, to ensure that the program correctly captures the in-

tent of the designer, can take advantage of emitter modularity and
be carried out in the Proto VM rather that with a simulated ge-
netic regulatory network. Then, once the designer is satisfied that
the program is correct, they can move forward to more expensive
simulations to verify that the genetic regulatory network produced
by the BioProto plug-in maintains that correctness.

6. Challenges to Proving Correctness
Correct synthesis of a transcriptional logic network from a Bio-
Proto description, according to the semantics presented above, can
be proved in a relatively straightforward but lengthy manner. In
sketch: the specification of genetic regulatory network fragments
has only shallow differences from the transcriptional logic network
model that it targets, proof of the well-definedness of the dataflow
semantics can be adapted from the proofs in [5], and it only remains
to be demonstrated that the “stitching” between these two aspects
links variables correctly.

The more important and difficult question, however, is whether
any transcriptional logic network can be realized in cells such that it
faithfully implements the behavior that has been specified. The root
problem here is the fundamental concept of a transcriptional logic
network itself. The appropriateness of this model for describing
biological systems is much more tenuous than the appropriateness
of the digital logic model for describing electronic systems.

First, transcription factors vary wildly in their dynamics and
the properties of their regulatory relationships. Selecting particular
transcription factors to realize a regulatory network requires match-
ing regulatory relations to find compatible pairings. Although many
attempts at quantification have been made (e.g., [10, 15, 20, 28,
33]), making even coarse predictions of the behavior of transcrip-
tional logic networks has been problematic. Important reasons for
this include the difficulty in obtaining correct coefficients for chem-
ical reaction models and an incomplete understanding of the “cross-
talk” interactions of the components of engineered genetic regula-
tory networks with each other and the cellular context in which they
operate. Recent results based on black-box modeling [14] offer the
potential to change this, but there are many challenges and open
questions to be dealt with before quantitative prediction of network
behavior can be considered reliable.

Even once the behavior of transcriptional regulation is measured
and can be used to predict the behavior of a network, transcription
factors are often far from ideal, with high noise and low amplifica-
tion. In many cases, it may be impossible to establish a true digital
abstraction with signal restoration ensuring that outputs have better
signal than inputs, though some recent results offer the potential
for much more “digital” gates [9]. Networks with poor amplifica-
tion, however, can only have a limited depth of regulatory relations,
beyond which the signal to noise ratio is too low to be effective.

Finally, the number of transcription factors available to engineer
with is still quite small, meaning that transcriptional logic networks
with more than a few elements cannot currently be realized at all.
Recent developments in synthetic combinatorial protein families,
however, such as TALE [27] and zinc finger [23] proteins are likely
to greatly expand the number of available parts in the future.

These are not problems with transcriptional logic networks, but
rather come from the general early stage of synthetic biology as
an engineering discipline. Similar or worse problems attend other
forms of genetic regulatory network design. The bottom line is this:
the correctness of a genetic regulatory network designed by Bio-
Proto is largely moot unless it can actually be implemented. At
present, the state of biological science is such that we generally
cannot prove this in any way except by testing particular instances
of networks. The challenges preventing broader guarantees, how-
ever, are areas of highly active research, however, and enabling
progress is likely to be made in the near future.

7. Contributions
This paper has provided the first formal treatment of the BioProto
functional dataflow language, analyzing it as a piggy-back domain-
specific language on the Proto general-purpose spatial language.
We have provided both syntax and semantics for BioProto, showing
how these align with a formal model of transcriptional logic net-
works that can be implemented in enginered biological organisms.
We also discuss key engineering decisions in the implementation
of BioProto and the pragmatic challenges to proving correctness of
designs synthetized with BioProto.

In addition to the utility of this work for synthetic biology, we
hope that this paper also provides an accessible case study of do-
main specific language implementation for computations executed
in an environment very different from modern electronic comput-
ers, as well as an example of a functional language well suited for
its domain not only for reasons of programming succinctness, but
also due to the close representational alignment between dataflow
models and the physical realization of the program.

Acknowledgments
This work was partially funded by DARPA; views and conclusions
contained in this document are those of the authors and not DARPA
or the U.S. Government.

References
[1] J. Bachrach and J. Beal. Building spatial computers. Technical Report

MIT-CSAIL-TR-2007-017, MIT, March 2007.

[2] J. Beal and J. Bachrach. Cells are plausible targets for high-level
spatial languages. In IEEE SASO 2008 Workshops, 284–291.

[3] J. Beal and J. Bachrach. Infrastructure for engineered emergence
in sensor/actuator networks. IEEE Intelligent Systems, 21:10–19,
March/April 2006.

[4] J. Beal, T. Lu, and R. Weiss. Automatic compilation from high-
level biologically-oriented programming language to genetic regula-
tory networks. PLoS ONE, 6(8):e22490, August 2011.

[5] J. Beal, K. Usbeck, and B. Benyo. On the evaluation of space-time
functions. The Computer Journal, 2012. .

[6] J. Beal, R. Weiss, D. Densmore, A. Adler, E. Appleton, J. Babb,
S. Bhatia, N. Davidsohn, T. Haddock, J. Loyall, et al. An end-to-
end workflow for engineering of biological networks from high-level
specifications. ACS Synthetic Biology, 1(8):317–331, 2012.

[7] J. Beal, S. Dulman, K. Usbeck, M. Viroli, and N. Correll. Organizing
the aggregate: Languages for spatial computing. In M. Mernik, editor,
Formal and Practical Aspects of Domain-Specific Languages: Recent
Developments, chapter 16, pages 436–501. IGI Global, 2013.

[8] L. Bilitchenko, A. Liu, S. Cheung, E. Weeding, B. Xia, M. Leguia,
J. C. Anderson, and D. Densmore. Eugene: A domain specific lan-
guage for specifying and constraining synthetic biological parts, de-
vices, and systems. PLoS ONE, 6(4):e18882, 2011.

[9] J. Bonnet, P. Subsoontorn, and D. Endy. Rewritable digital data stor-
age in live cells via engineered control of recombination directionality.
PNAS, 109(23):8884–8889, Jun 2012.

[10] B. Canton, A. Labno, and D. Endy. Refinement and standardization of
synthetic biological parts and devices. Nature Biotechnology, 26(7):
787–793, 2008.

[11] D. Chandran, F. Bergmann, and H. Sauro. Tinkercell: modular cad
tool for synthetic biology. J. of Biological Engineering, 3(1):19, 2009.

[12] C. Conboy, J. Braff, and D. Endy. Definitions and measures
of performance for standard biological parts. Technical Report
http://hdl.handle.net/1721.1/31335, MIT, March 2006.

[13] M. J. Czar, Y. Cai, and J. Peccoud. Writing dna with genocad. Nucleic
Acids Research, 37(Web Server issue):W40–W47, 2009.

[14] N. Davidsohn, J. Beal, A. Adler, F. Yaman, Y. Li, Z. Xie, and R. Weiss.
Accurate predictions of genetic circuit behavior from part characteri-
zation and modular composition. In 5th IWBDA, July 2013.

[15] T. Ellis, X. Wang, and J. Collins. Diversity-based, model-guided con-
struction of synthetic gene networks with predicted functions. Nature
biotechnology, 27(5):465–471, 2009.

[16] M. Elowitz and S. Leibler. A synthetic oscillatory network of tran-
scriptional regulators. Nature, 403(6767):335–338, 2000.

[17] T. S. Gardner, C. R. Cantor, and J. J. Collins. Construction of a genetic
toggle switch in escherichia coli. Nature, 403(6767):339–342, 2000.

[18] T. S. Ham, Z. Dmytriv, H. Plahar, J. Chen, N. J. Hillson, and J. D.
Keasling. Design, implementation and practice of jbei-ice: an open
source biological part registry platform and tools. Nucleic acids
research, 40(18):e141–e141, 2012.

[19] N. J. Hillson, R. Rosengarten, and J. D. Keasling. j5 dna assembly
design automation software. ACS Synthetic Biology, 1(1), 2012.

[20] S. Hooshangi, S. Thiberge, and R. Weiss. Ultrasensitivity and noise
propagation in a synthetic transcriptional cascade. PNAS, 102(10):
3581, 2005.

[21] L. V. Huynh, A. Tsoukalas, M. Koppe, and I. Tagkopoulos. Sbrome: A
scalable optimization and module matching framework for automated
biosystems design. ACS Synthetic Biology, February 2013.

[22] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: A min-
imal core calculus for Java and GJ. ACM Transactions on Program-
ming Languages and Systems, 23(3), 2001.

[23] A. S. Khalil, T. K. Lu, C. J. Bashor, C. L. Ramirez, N. C. Pyenson,
J. K. Joung, and J. J. Collins. A synthetic biology framework for
programming eukaryotic transcription functions. Cell, 150(3):647–
658, August 2012.

[24] M. A. Marchisio and J. Stelling. Automatic design of digital synthetic
gene circuits. PLoS Comput Biology, 7(2):e1001083, 02 2011.

[25] M. Mernik, J. Heering, and A. Sloane. When and how to develop
domain-specific languages. ACM Computing Surveys (CSUR), 37(4):
316–344, 2005.

[26] MIT Proto. MIT Proto. software available at
http://proto.bbn.com/, Retrieved June 15th, 2013.

[27] R. Morbitzer, P. Romer, J. Boch, and T. Lahaye. Regulation of
selected genome loci using de novo-engineered transcription activator-
like effector (tale)-type transcription factors. Proc Natl Acad Sci, 107
(50):21617–21622, December 2010.

[28] V. K. Mutalik, J. C. Guimaraes, G. Cambray, C. Lam, M. J. Christof-
fersen, Q.-A. Mai, A. B. Tran, M. Paull, J. D. Keasling, A. P. Arkin,
and D. Endy. Precise and reliable gene expression via standard tran-
scription and translation initiation elements. Nature Methods, 10:354–
360, April 2013.

[29] M. Pedersen and A. Phillips. Towards programming languages for
genetic engineering of living cells. Journal of the Royal Society
Interface, 6(4):S437–S450, 2009.

[30] P. E. M. Purnick and R. Weiss. The second wave of synthetic biology:
from modules to systems. Nature Reviews Molecular Cell Biology, 10
(6):410–422, 2009.

[31] S. Richardson, S. Wheelan, R. Yarrington, and J. Boeke. Genedesign:
rapid, automated design of multikilobase synthetic genes. Genome
Res., 16(4):550–6, April 2006.

[32] M. Viroli, J. Beal, and K. Usbeck. Operational semantics of Proto.
Science of Computer Programming, 2012. .

[33] R. Weiss. Cellular Computation and Communications using Engi-
neered Genetic Regulatory Networks. PhD thesis, MIT, 2001.

[34] R. Weiss, G. E. Homsy, and T. F. Knight Jr. Toward in vivo digital
circuits. In Evolution as Computation, pages 275–295. Springer, 2002.

[35] B. Xia, S. Bhatia, B. Bubenheim, M. Dadgar, D. Densmore, and J. C.
Anderson. Developers and user’s guide to clotho v2.0 a software
platform for the creation of synthetic biological systems. Methods
in Enzymology, 498:97–135, 2011.

