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Abstract—Nanopore sequencing offers promising potential for
rapid and target-agnostic sensing and diagnostics in field appli-
cations. However, realizing this potential necessitates addressing
not only sample collection and processing challenges but also
concerns related to information security and privacy when de-
ployed in field devices. We thus introduce the Secure Bloom-Filter
Analysis and Compression (SB-FAC) architecture, which breaks
bioinformatics computations into a Bloom-filter-based field pre-
processing stage that identifies regions of interest in the raw read
data and a server-side interpretation stage that combines and
interprets these identified regions. Sensitive information encoded
in the Bloom filter can be protected from extraction by the use
of a cryptographic hash paired with a salt in a Trusted Platform
Module (TPM). We experimentally validate the predicted scaling
of this approach, confirming that cost per operation linear in salt
length, while reverse engineering cost is exponential.

Index Terms—Bioinformatics; Bloom filter; Security

I. INTRODUCTION

Nucleic acid sequencing methods have advanced rapidly in
recent years, becoming faster, more robust, and more afford-
able. Nanopore sequencing, in particular, offers a combination
of high speed and low resource requirements that make it
attractive for a variety of point-of-need applications, such as
environmental sensing, disease surveillance, and diagnostic
testing [1], [2]. These devices are particularly valuable for
conducting untargeted genomics or transcriptomics, which can
allow a fielded capability to be reconfigured, e.g., for emerging
pathogens or new biomarkers of interest, without the need for
new reagents. Realizing this potential will require addressing
a number of well-understood challenges related to sample
collection and processing, including sample preparation [3],
error rate [2], and bioinformatic processing [1].

For bioinformatic processing, the substantial data volumes
generated by nanopore sequencing present challenges regard-
ing the processing location. These computations often involve
sensitive information, pertaining to biosecurity or privacy
concerns. While cryptographic computational techniques, such
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Fig. 1. Secure Bloom-Filter Analysis and Compression (SB-FAC) architec-
ture: sequencing data is preprocessed in the field using a secure Bloom filter
to identify data of interest, and only this filtered subset is related to the data
center for interpretation.

as homomorphic encryption [4], [5], offer secure processing at
the data generation point, they are often prohibitively compu-
tationally intensive, rendering them impractical for most bioin-
formatic applications. Alternatively, if bioinformatics com-
putations are not performed in the field, significant hurdles
arise due to the necessity of transferring large volumes of
sequencing data from the generation site to a secure data
center.

Here we propose an alternative approach, the Secure Bloom-
Filter Analysis and Compression (SB-FAC) architecture (Fig-
ure 1), which aims to allow secure fieldable bioinformatics
by encoding bioinformatics functions as Bloom filters [6] in
a manner that is difficult to reverse engineer. In Section II,
we describe the SB-FAC architecture and its relationship to
prior work. Section III analyzes potential security concerns,
identifying protection of the contents of the Bloom filter as
the key challenge not already addressed by conventional se-
curity methods. Section IV then considers potential mitigation
strategies and their relative costs and benefits. From this, we
select an approach of cryptographic hashing with an added salt
value using a Trusted Platform Module (TPM), and analyze
its scaling properties in Section V, which are then verified
experimentally in Section VI. Finally, Section VII summarizes
contributions and potential directions for future work.
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II. BLOOM-FILTER FACTORING OF BIOINFORMATICS

A Bloom filter [6] is a data structure that uses hash functions
for fast probabilistic testing for whether a query item is a
member of a set. Set members are encoded by setting bits at
locations determined by multiple hash functions; conversely,
a query item is tested for membership by checking to see
whether all of the bit locations determined by the hash
functions have been set. If any bit location that is hashed
to is not set, this is a negative response that indicates the
query item is definitely not part of the set. If all of the bit
locations are set, on the other hand, this indicates either that
the query item is part of the set or else a false positive due
to hash collisions, where the probability of a false positive is
determined by the size of the Bloom filter, the number of hash
functions, and the density of bits that are set. Many variants
of this database structure exist, including Counting Bloom
Filters [7], Invertible Bloom Filters [8], and Approximate State
Machines [9], each with its own strengths and weaknesses.

Mathematically, every function can in principle be trans-
formed into a sequence of tests for set membership, but such
a transformation is only practical for some functions. In recent
years, a number of bioinformatic tools based on Bloom filters
have been developed (e.g., [10]–[15]), along with applications
to a wide range of bioinformatics applications (e.g., [16]–[21]).

In our own prior work, the FAST-NA biosecurity sys-
tem [22], [23] breaks the challenge of identifying controlled
pathogens or toxins into two stages. First, a pre-processing
stage uses a Bloom filter to rapidly and cheaply identify all
k-mer fragments of a nucleic acid sequence that may belong to
controlled pathogens or toxins. Second, an interpretation stage
takes this much smaller stream of fragments and removes false
positives, then reconstructs and interprets regions of interest.
This Bloom filter architecture is fast enough to keep up with
a MinION sequencer in real-time [24].

The Secure Bloom-Filter Analysis and Compression (SB-
FAC) architecture (Figure 1) derives from the insights that:
1) these two stages need not run on the same machine, 2)
many other bioinformatic functions can similarly be factored
into a “high data, low knowledge” filtering stage followed by a
“low data, high knowledge” interpretation stage, and 3) Bloom
filters are, by their nature, inherently opaque and difficult to
reverse engineer.

Many bioinformatic computations that are useful for field
applications can be readily factored to map into the field and
server components of the SB-FAC architecture following two
general patterns, matching and subtraction (Figure 2). For
matching functions, a Bloom filter is constructed using k-
mers unique to sequences of interest. Input sequencing data
is then broken down into k-mers and compared to the Bloom
filter. A Boolean value of present or absent is determined for
each k-mer, generating a list of matching k-mers. Either just
these k-mers or any read containing at least one matching
k-mer are then sent to the data center, where the matches
are validated by comparison to the original sequences of
interest, then further processed to provide summary results

Signatures 
of interest

Signature 
database

Input K-mer/read 
matches

Computation over
reconstructed 

matching regions

(a) Matching

Background 
‘omics data

Contrasting 
database

Input Unique 
k-mer/read

Computation over 
reconstructed novel 

sequence regions

(b) Subtraction

Fig. 2. Two useful patterns for implementing bioinformatics functions via
Bloom filters are matching (a), in which computations are performed on
sequences that match against a Bloom filter encoding a database of signatures,
and subtraction (b), in which computations are performed on sequences that
do not match a Bloom filter encoding a database of background materials to
be removed.

for interpretation. Examples of matching functions include
screening for pathogens or toxins, detection of engineering
markers, tests for health-related biomarkers, and taxonomy
identification (e.g., by rRNA matching).

Subtraction functions are the converse: a Bloom filter is
constructed using k-mers that identify sequences that are not
of interest, such as host DNA in a diagnostic sample. As with
matching, input sequencing data is broken into k-mers and
tested for presence or absence in the Bloom filter. In this
case, however, it is the matching k-mers that are removed,
and the non-matching k-mer sequences or reads containing
them that are sent to the data center for validation and further
processing. Examples of subtraction functions include con-
tamination filtering, variant calling, and identification of novel
sequence material. Finally, we note that some functions may
use both matching and subtraction, which can be implemented
simply by using two Bloom filters. For example, a diagnostic
process might want to both remove host sequence and perform
taxonomic identification on the remaining material.

III. SECURITY CONCERNS

In terms of security analysis for Bloom filters [9], various
metrics are employed. In a deployed system, an adversary
gaining physical access to the hardware might have access to
both the code and the Bloom filter, which differs from certain
privacy analyses presuming the Bloom filter is secured within
a server [10].

Given such access, an adversary could attempt to extract in-
formation from the Bloom filter. This extraction could involve
estimating the number of entries by examining the fraction
of set bits and testing for the presence of specific k-mers.
However, both of these properties can be made more obscure
in our scenario through specific measures (outlined below).

It is important to note that if cryptographic hash functions
are employed, the only feasible method for an adversary to
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Fig. 3. Information flow for SB-FAC, marking key vulnerabilities in red.

extract the complete set stored in a Bloom filter is through
brute force [9]. This is due to cryptographic hash functions
possessing crucial properties, such as pre-image resistance
attained through the uniform distribution of results.

The goals of the attacker will depend on the application and
the manner in which the SB-FAC system is being employed.
Applications include but are not limited to:

• Set membership
• Identification of controlled pathogens and toxins
• Taxonomic classification
• Identification of engineered sequences
• Health biomarkers
• Extract novel sequences

At a high level, attackers goals may include:

• Learning about the mission being conducted
• Identifying mission goals and targets
• Interpreting results obtained during the mission
• Learning about the bioinformatics function implemented

We consider attackers with various levels of access to the SB-
FAC system, sorted from least to most:

1) Attacker has access to the field environment (pre-
mission, during mission, and/or post-mission), allowing
them to evaluate and/or disperse environmental biolog-
ical material and monitor wireless transmissions

2) Attacker has access to the fieldable device (post-
mission), adding the ability to input samples with known
content and monitor device activity level (e.g., power
consumption)

3) Attacker has access to SB-FAC API (post-mission),
adding the ability to input specific sequences and receive
unencrypted device outputs

4) Attacker has access to SB-FAC source code and data
(post-mission), providing knowledge of all functionality
not encoded in Bloom filter with the ability to test for
inclusion of specific sequences in Bloom filter

Note that normal physical security methods can attempt to
prevent level 3-4 access, but these are imperfect, so we will
assume level 3-4 access is possible for a highly capable
attacker.

For many of the above applications, the specific technical
goals include:

• Capturing the contents of the samples being tested (Goal
1, 3)

• Finding out as large a portion of the k-mers contained in
the Bloom filter as possible (Goal 2,3,4)

• Checking whether k-mers of concern to the attacker are
contained in the Bloom filter (Goal 2)

• Determining what matches are found for a particular
sample (Goal 1, 2, 3)

• Injecting either positive or negative samples into the input
stream (Goal 2)

• Forcing the system to take unwanted actions (e.g. alert
on a negative sample, deny a synthesizer permission to
synthesize a sequence, etc.) (Goal 2b)

• Force a misclassification of a sample (Goal 2b)

A. Analysis of Information Flows and Vulnerabilities

The diagram above (Figure 3) is a block diagram of an
SB-FAC system from a security perspective. At the highest
level, it shows that the system runs on two hosts (these may
be containers, VMs, or other instances). The first machine is
the client, which is distributed to users and is thus easier to
compromise since every user has a copy of the data and exe-
cutable. Therefore, the goal is to both make its operations as
minimal as possible and for it to expose minimal information.
Maximal intelligence is placed on the server to extract as much
as possible from the results sent by the client.

At the next level, we analyze the inputs and outputs of the
two machines. The field device takes two inputs and has only
one output. The inputs and output for the field device are:

Bloom Filter - The server generates a distinct per-client
Bloom filter, incorporating keys and potentially employing
unique watermarking specific to each client. While multiple
clients could theoretically receive identical Bloom filters in
terms of functionality, creating individualized Bloom filters
offers several advantages. These include the implementation
of per-user watermarking to prevent and trace data exfiltration,
as well as the utilization of customer-specific keys to obscure
data.

Under normal security measures, access to this input is
restricted for attacker access levels 1-3. However, at attacker
access level 4, complete access to the contents of the Bloom
filter becomes available.

Input Sequence Data - The input data, encompassing biolog-
ical sequences like nucleic acids or proteins, is user-provided.
Attacker access levels determine the extent of control over
input samples:

• Level 1: Potential acquisition of sample distribution
through independent environmental sampling.

• Level 2: Indirect control via providing known-content
biological material.

• Levels 3-4: Full direct control over input samples, en-
abling comprehensive manipulation.

Filtered Sequencing Data - This is the output from the Bloom
filter, possibly consisting of raw match sequences and offsets,
possibly post-processed. An attacker with access level 1-2 can
observe traffic patterns. An attacker with access level 3 has
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complete observation of output match results. An attacker with
access level 4 has complete access to raw match results and
their transformation for transmission.

Given the levels of access, relative to the attacker goals
above, we can see that most of the system and its oper-
ations can be effectively defended with standard network
and datacenter security methods. The critical elements of the
fielded system that need additional consideration are the output
matches and the Bloom filter itself.

IV. MITIGATION STRATEGIES

Taking into account the analysis of attack types and the
crucial data requiring protection, we explored diverse de-
fense strategies. Initially, we address methods safeguarding
the match output, followed by an exploration of mechanisms
aimed at defending the Bloom filter’s contents.

A. Increase False Positive Rate

In the face of brute force attacks, increasing the number
of false positives in the match stream requires the attacker to
filter through all positives emitted by the system to find the true
positives. This makes the attacker’s task more difficult whether
they can only see match results, results and sample data, data
from multiple clients, or even when they have access to the
Bloom filter and are trying brute force searches on their own.
All Bloom filters have false positives, but the rates can be set
to be extremely low, and this is typically the preferred mode of
operation. The obscuration advantage of the false positive rate
thus needs to be weighed against the increase in field system
to server traffic. Below we discuss various mechanisms for
increasing false positive rates.

1) Setting Random Bits: If additional bits are randomly set
in the Bloom filter, the number of false positives will increase.
Per [25], the false positive rate for a Bloom filter is f =
(b/m)k, where f is the false positive rate, b is the number of
bits on in the Bloom filter, and m is the total number of bits
in the Bloom filter. For example, with 17 hash functions (the
number used in FAST-NA [22], [23]) and 40% of the bits on,
the false positive rate is f = 1.7× 10−7. If random bits area
added until the fraction on is raised to 50% of the bits, then
the false positive rate rises to f = 7.6 × 10−6, a factor of
about 44x.

2) Reducing Number of Hash Functions: As an alternative
to adding random bits, the false positive rate can also be
increased by reducing the number of hash functions k. For
example, k is reduced from 17 down to 10, then at 40% of
bits set that false positive rate rises to f = 1.0 × 10−4, a
factor of about 610x. However, one needs a sharp reduction
in number of hash functions to achieve significantly higher FP
rates.

3) Using Decoy Hash Functions: Another approach, based
on adding rather than removing hash functions, can add far
more false positives without actually increasing the number of
bits that are set in the Bloom filter. For this approach, instead
of using k hash functions, we use k+d hash functions, letting
d be the number of decoy hashes, but set bits in the Bloom

filter at a randomly chosen subset of only k of the locations.
To query items in the Bloom filter, locations are tested using
all k+ d hash functions, and a match is reported whenever at
least k of the k+ d bits are set. The number of combinations
that will give a positive result is determined by the binomial
coefficient, thus increasing the false positive rate by that factor
without turning on any more bits would be used with only k
hash functions. For example using k = 17 and d = 3, for
a total of 20 hash functions, the apparent false positive rate
would be 1.9 × 10−4 and 4.47 × 10−3, orders of magnitude
higher than by adding bits or reducing the number of hash
functions.

4) Adding Structured Decoy K-mers: Finally, it is important
to note that all of the above techniques will produce random
false positives. Since actual sequencing data is structured,
however, genuine hits will often come in clusters as a matched
region of size n > k produces a sequence of n − k + 1
overlapping k-mer matches. An attacker could thus discard
matches that are isolated and do not overlap with other nearby
matches. To address this issue, it is necessary to incorporate
structured decoy material into the Bloom filter. This material
should execute an unrelated function, possessing an arbitrary
and non-sensitive nature.

B. Cryptographic Hash Functions

Cryptographic hash functions have high uniformity, which
makes them ideal for using in a Bloom filter and intractable
to reverse. Their computational cost, however, is typically
significantly higher than that of other hash function alter-
natives, which can make it costly to calculate large num-
bers of cryptographic hash values, e.g., k = 17 for FAST-
NA [22], [23]. A result from Kirsch & Mitzenmacher [26],
[27], however, shots that given only two hash functions, an
arbitrary number can be simulated using linead combinations
of the form gi = h1 + ih2, where h1 and h2 are the two
independently calculated hash values. For SB-FAC, we can
thus take two cryptographic hash functions (e.g., SHA-2 and
SHA-3, or SHA-2 with two different prefixes) and turn them
into all k of the hash functions required for a desired false
positive rate.

C. Adding Secret Key Salt Prefixes or Hashes

To heighten the difficulty of reverse engineering the Bloom
filter, one approach involves prefixing each string intended for
addition to the Bloom filter with a confidential key (essentially
acting as a salt) before the hashing process. This necessitates
the client machine’s awareness of the key to access a k-
mer, while emphasizing the need to safeguard this key from
potential access by adversaries.

Our proposed solution involves encapsulating both the se-
cret key and the execution of hash functions utilizing that
key within specialized hardware, such as a Trusted Platform
Module (TPM). The TPM, a chip or board designed for storing
keys and other confidential data in a tamper-resistant manner,
ensures enhanced security measures.
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Extracting keys from a TPM, even when an attacker has
physical possession of the hardware, is widely recognized as
an exceptionally challenging task.

V. ANALYSIS OF MITIGATION STRATEGIES

In this section, we analyze the expected efficacy of the
combination of mitigation strategies, beginning by defining
a worst case scenario, then analyzing the mitigation costs for
both system and attacker in this scenario.

A. Worse-Case Scenario Security Metric
As mentioned previously, our analysis of potential security

issues has identified that most of the potential security issues
for the SB-FAC architecture can be addressed with existing
methods, i.e., no research is necessary to address these issues.
The key question remaining is whether an adversary can they
be prevented from extracting potentially sensitive data that is
encoded in the Bloom filter.

In general, the structured nature of biological sequence
information means that the data stored in a Bloom filter is
expected to have a significant degree of clustering. An attacker
can thus potentially use domain knowledge to greatly reduce
the amount of effort needed to extract the k-mers in a particular
cluster, beginning with some form of “seed” based on known
or predicted Bloom filter contents. An example is the overlap
k-mer problem discussed above in Section IV-A4: once a
single matching k-mer has been identified as belonging to
the filter, it is likely that other overlapping k-mers are also
included in the Bloom filter.

To measure our ability to defend against such attacks, we
will thus make the following worst case assumptions:

• The adversary has complete access to the system, includ-
ing the Bloom filter and the code, including the number
and nature of hash functions for the Bloom filter, except
for a single salt value that is S bits long, access to
which is protected by a standard Trusted Platform Module
(TPM).

• The adversary knows the length of the salt S, but not its
value.

• The adversary can test for inclusion of k-mers in the
Bloom filter.

• The adversary can use biological knowledge to identify
some number of k-mers that must be stored in the Bloom
filter.

• The false positive rate has not been enhanced (i.e., none
of the methods in Section IV-A are in use).

The adversary can then extract information from the Bloom
filter if they can identify the value of the salt. This value, in
turn, can be brute forced by performing queries on k-mers
known to be included in the Bloom filter until the adversary
finds a salt value that consistently produces hits on included
k-mers.

B. Numerical Analysis
Given these definitions, we define the system to be infea-

sible to reverse engineer if it has the following two scaling
properties:

• Time per Bloom filter insertion or query T is at most
linear in the length of a k-mer L plus the length of the
salt, i.e., T = O(L+ S)

• Identifying a salt value (thus allowing information extrac-
tion from the Bloom filter) requires an expected number
of queries Q at least exponential in the length of the salt,
i.e., Q = Ω(2S).

If we can establish these two scaling properties, then there is
little constraint on the salt length S and an SB-FAC system
can be secured against reverse engineering by choosing S such
that performing Q queries is far beyond the capabilities of any
plausible attacker.

The first property, linear insertion or query, is trivial to
establish: common cryptographic hash functions such as SHA-
2 and SHA-3 all require at most linear time with respect to
the string to be hashed, so the property T = O(L+S) can be
assumed.

We now analyze the expected required number of queries
Q to discover a salt. Given a Bloom filter with false positive
rate F that is known to include a particular k-mer, testing
all potential values for a salt with S bits requires Q1 = 2S

queries, where Q1 is the number of queries for testing potential
salt values for this first known k-mer. This set of queries is
expected to produce one true salt value and K1 = QF false
salt values.

To increase the likelihood of identifying the correct salt, the
number of potential false salt values K1 can be reduced by
testing for additional known k-mers. For a second k-mer, only
the K1 + 1 salts from the first k-mer need to be checked, not
the whole space of possible salts. For a third, only those salts
that satisfy both of the first two, etc.

Given a uniform hash function, false salts can be assumed to
be independent. This means that the number of potential false
salt values reduces geometrically by F with each iteration,
such that after X iterations the number of false salt values
remaining to be eliminated is expected to be KX = Q1(F

X),
and that the number of queries required at each iteration is
Qi = Q1(F

X−1) = Ki−1.
Let us consider the salt to be sufficiently well identified if

there is at least a 50% chance of it being correctly identified.
To solve for 50% certainty, then, we set KX = 1, which
implies:

1

Q1
= FX

−log(Q1) = X · log(F )

X = − log(Q1)

log(F )

The total number of queries Q to determine the salt is thus
expected to be:

Q =

X∑
i=1

Qi = Q1

X−1∑
i=0

F i

By the sum of geometric series, the value of Q is thus bounded:

Q1 < Q < Q1
1

(1− F )
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2S < Q <
2S

(1− F )

For any practical Bloom filter, the value of F should be small,
i.e., F << 1, and thus the expected number of queries required
is Q = Θ(2S), satisfying the required property.

Given this analysis, testing whether a given k-mer is stored
in the Bloom filter equivalent to determining the salt for the
Bloom filter. As such, extracting data from a Bloom filter is
also at least as difficult as determining the salt, i.e., Q =
Ω(2S), since any given data extraction goal will involve testing
the Bloom storage for at least one k-mer, and possibly many
more.

Finally, we can ask what value of S is sufficient for strong
protection. Here, we will compare against one of the current
US government standards, the Advanced Encryption Standard
(AES) algorithm. The current recommended distribution of
AES in the Commercial National Security Algorithm Suite
(CNSA) uses 256-bit keys. We can thus conclude that S = 256
bits should be a sufficiently large salt for SB-FAC to prevent
brute-forcing, at least matching this state-of-the-art encryption
standard (and in fact, SB-FAC is likely to be more difficult
to brute force due to false positives in the Bloom filter).
Our prior work with Bloom filters has used k-mers that are
strings of length 14 (112 bits) to 42 (336 bits) [22], [23],
so given the linear scaling of insertion and query operations,
the computational cost for using 256-bit salts is predicted to
be only a modest increase, in the range of 1.8x - 3.3x, and
might be significantly less for hash algorithms with a high
constant overhead. Thus, SB-FAC should be able to use salts
of sufficient length to provide security at a computational cost
reasonable for fieldable hardware.

VI. EXPERIMENTAL VALIDATION

Having established that an appropriate choice of hash func-
tions should in theory allow secure field operations of Bloom
filters with reasonable overhead, we now validate those design
decisions with empirical investigation of the uniformity of the
selected hash functions and of cost scaling with respect to salt
length. For these experiments, we used an implementation of
the SB-FAC architecture written in Python.

A. Hash Function Uniformity

The resistance of a Bloom filter to reverse engineering is
similar to the resistance of its core component, the set of hash
functions used. The security of a hash function is frequently
characterized by its pre-image resistance [28]. An important
characteristic of pre-image resistance is the uniformity of the
generated values. In terms of Bloom filters, this means that
if we divide the regions of the Bloom filter into “buckets”,
each containing a small number of bits relative to the entire
Bloom filter bit array, we can assess uniformity based on the
distribution of number of bits on per bucket.

If a small number of insertions are made into the Bloom
filter, most buckets will have either zero or one bits on. If
large numbers of bits are on, most buckets will have close to
m/N , where m is the number of bits set in the Bloom filter
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Fig. 4. Comparison of experimental and theoretical results for Bloom filter
uniformity for two classes of hash functions. (a) shows the results for the two
cryptographic hash using K&M and (b) shows the results for the Murmur
hash set. (c) shows a synthesized bias case where 1000 of the bins are zeroed
out and each of their neighbors is or’ed with their content

and N is the number of buckets. If regions of the Bloom filter
are under or over populated, this demonstrates a bias on the
part of the set of Bloom filters which an attacker could use to
reduce the search space when looking for an entry.

In order to validate our selection of hash functions used
to build the Bloom filter, we analyzed the uniformity of bits
for various numbers of insertions into small Bloom filters,
comparing against a mathematical model of uniform bit dis-
tribution.

The model is derived from the balls dropped randomly into
N buckets problem. The probability is given by the binomial
distribution:
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Pr(X = x) =

(
k

x

)
pk (1− p)

k−x

where k is the number of balls to insert, each Bloom filter
insertion adding h balls, where h is the number of hash
functions, x is the value of the number of balls in a bucket,
and p is the probability of insertion into any bucket. If we
assume equal probability of 1

N for all buckets, the equation
becomes:

Pr(X = x) =

(
k

x

)
(N − 1)k−x

Nk

In order to get the number of bins with x balls in them, we
simply multiply by N , giving:

Nballs in bin(x) = NPr(X = x)

Finally, the above model would be correct if we could
always be sure that new balls would accumulate in a receiving
bucket. But, of course, this is not true since some bits that we
try to turn on will already be on and these collisions won’t
accumulate new “balls”. We can correct for how often that
will happen by reducing the effective number of balls that we
insert. A well known result for approximating the probability
of a random bit in a Bloom filter still being zero after n
insertions is given by [29]: e−kn/m

But this is only the incremental probability when n inser-
tions have already taken place. The amount of reduction (R)
due to collisions as we fill up the Bloom filter from empty to
ninsertions is given by the integral of the above quantity:

R =

∫ n

0

e−kx/mdx

and the reduced number of balls is given by:

keffective = m(1− e−kx/m)

We have experimented with two types of hashes:
1) Murmur hash, full set - these are non-cryptographic hash

functions where new hashes are produces as needed by
using different seeds, using in our prior work [22], [23].

2) Two cryptographic hashes combined using the Kirsch &
Mitzenmacher algorithm - here we use only two hash
functions, SHA-256 and MD5, combined in a linear
function as specified in [26], [27]

Figure 4 compares model predictions to experimental re-
sults from 10 independent trials on a Bloom filter sized to
hold 24,000 items with false positive p = 0.0001 and 10%
occupancy, segmented into 4096 bins of 128 bits each, for
the Murmur hash (Figure 4a), the Kirsch & Mitzenmacher
synthesis of cryptographic hashes (Figure 4b), and for a
biased set constructed by setting 1000 bins to zero and or’ing
their neighbors with their content. For both the Murmur hash
and the Kirsch & Mitzenmacher synthesis of cryptographic
hashes, the observed and theoretical values are relatively close,
without a clear bias in distribution as is shown in the third
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(b) Linear Cost of Operations

Fig. 5. Comparison of exponential cost to crack a salted Bloom filter and the
linear cost to utilize insertion and query operations. (a) Exponential scaling
of number of queries required to identify a salt given that the attacker has
knowledge of a subset of the Bloom filter data. (b) Linear scaling of the cost
of inserting (write) and querying (read) values in a Bloom filter. Note that
cryptographic hashing with 256-bit salts with the Kirsch & Mitzenmacher
optimization is significantly faster than the unsalted Murmur hash. Both
graphs show the average over ten runs per condition, plus/minus one standard
deviation.

case. This criteria thus shows no significant different in pre-
image resistance between the two hash function alternatives
investigated. It is possible however, that the linear combination
of cryptographic hashes may have adverse effects on their
uniformity, which is a question for further investigation in the
future.

B. Cost Scaling With Salt Length

We next checked whether cost scaling for both brute force
information extraction and normal operations matches the
predictions in Section V. To evaluate the cost of brute force
identification of a salt value, we ran trials with a range of
salt lengths from 1 to 20 bits, in which salts were guessed
sequentially until one allowed identification of known item in
the Bloom filter. Figure 5(a) shows the result of 10 independent
trials on a Bloom filter sized to hold 24,000 items with false
positive p = 0.0001, each holding 10 k-mers of 28 base pairs
each, one of which is known to attacker. As expected, the
scaling is exponential, and closely hews to the specific value
predicted in Section V.
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To evaluate the cost of operations, we tested the Kirsch
& Mitzenmacher synthesis of cryptographic hashes with salt
lengths ranging from 128 to 8192 bits, as well as the unsalted
Murmur hash function using in prior work. Figure 5(b) shows
the result of 10 independent trials on a Bloom filter sized to
hold 106 items with false positive p = 0.0001, first writing 106

random sequences, followed by 106 reads for the same set of
sequences. As expected, both insertion and query times scale
linearly with the length of the salt. Notably, the overhead cost
of adding salts is minimal, as the Kirsch & Mitzenmacher
synthesis allows the salted cryptographic hash to run more
quickly than the Murmur algorithm until lengths far longer
than the currently-intended 256-bit length of the salt.

VII. CONCLUSION

In this paper, we have explored how analysis of sequencing
data can be facilitated by using Bloom filters to imple-
ment secure in-the-field pre-processing and data compression.
Specifically, we have detailed our proposed SB-FAC archi-
tecture for such a system, along with analysis of security
concerns, attacker goals, and a range of mitigation strategies,
including obfuscation of match values by increasing the false
positive rate and protection of Bloom filter contents through
salted cryptographic hashing. Mathematical analysis of salted
cryptographic hashing indicates that it provides the desired
scaling properties. Finally, experimental results show 1) that
both cryptographic hash function pairs using either a Kirsch &
Mitzenmacher synthesis of hash algorithm sand the Murmur
hash algorithm have good uniformity in values, indicating re-
sistance to pre-image attacks and 2) that attackers are expected
to incur exponential costs to identify secret salts while the
addition of salts adds minimal burden on insertion and query
times. Potential future directions for this work include, red-
teaming to identify potential weaknesses in the architecture
and further enhancements to mitigation methods, as well as
exploring the range of bioinformatic functions that can be
protected in this manner.
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