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Abstract—Opportunistic managed access to local in-network
compute resources can improve the performance of distributed
applications and reduce the dependence on shared network
resources. Instead of backhauling application data to a central-
ized cloud data center for processing, networked services may
be adaptively and continuously dispersed into shared compute
resources that are closer to the source of need. While this
approach has several benefits, support for mission-aware access
to computation is often an afterthought, and is implemented as
a brittle extension over traditional load-balancer solutions.

In this work, we investigate the design of two priority-aware
resource allocation strategies and two load-balancing dispatching
strategies as first class citizens in an open-source dispersed
computing middleware. We present a control theoretic analysis
of these load-balancing primitives to identify weaknesses and
strengths in our design, and recommend future directions. In
parallel, we prototype two priority-aware allocation algorithms
to validate our priority predictions. In initial experiments our
prototype shows substantial gains in processing prioritized load.
Finally, we make our source-code and experimental configura-
tions open source.
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I. INTRODUCTION

Cloud and edge computing models support dynamic compu-
tational needs by coupling elastic pools of low-cost centrally
located compute resources alongside pre-positioned and pro-
visioned edge resources. Applications that require low-latency
processing or publish large amounts of sensed data can be
handled locally in edge clusters, where excess traffic may be
overflowed into cloud data centers when edge resources are
constrained. As adoption of this model evolves and powerful
computation and memory resources emerge within the network
itself, the computational boundary is further blurred enabling
widely-distributed opportunistic dispersal of computation into
the network instead of just clustered resources.
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Edge and fog computing [1] describe dispersed computa-
tional networks that smear the boundaries of edge-clusters and
centralized clouds. Examples include emerging urban wire-
less networks [2] interspersing compute resources and access
points, edge cloudlets [3], [4], and mixed tiered compute-as-
a-service hierarchies proposed by telecoms and ISPs [5]. All
share the notion of a distributed, reservable, and programmable
network compute point (NCP), which can benefit individual
application quality-of-service (QoS) and collective mission
operation in face of highly dynamic deployments.

Building upon NCPs, benefits are envisioned for a broad
set of locavore applications, ranging from waste and water
management to smarter retail store automation [6]. Parallel
use cases exist in the defense domain, where scheduling
and mission aware access to resources is paramount. For
example, NCPs can provide bandwidth efficient low-latency
compute bridges for tactical and dynamic multi-actor digital
world building for situational awareness, or for federated
search missions (e.g., threat identification or rescue) in remote
and austere environments. One can envision scenarios where
success is predicated on resource access. For example, a
critical search and characterization mission relying on sensed
aggregation and filtering to identify and classify emergent
threats would be favored over a lower-priority world building
operation, e.g., a drone-based orthomosaic image stitching
map augmentation service.

To enable mission effective utilization of NCPs, operators
require middleware infrastructure to natively support inter-
related functions. First, it must provide optimized, adaptive
placement of data and services to minimize backhauled traffic
and application latency. Second, resource monitoring and input
curation, decision making algorithms, and actuation of service
placements (plan execution), must be accurate, robust, and
resilient in face of emergent failures, overload, and other
network events. Finally, it must support prioritized resource
allocation and dispatching operations as first order citizens,
where mission operators can define aspects such as service
importance to a mission collective and the middleware design
is then fully capable of enforcing prioritized resource access.

In this work, we design, analyze, and prototype two priority-



aware resource allocation and dispatching strategies in the
Mission-oriented Adaptive Placement (MAP) middleware [7].
MAP is a distributed, multi-layer decision making and re-
source management middleware. It has shown promise in dis-
tributing computational services in a scalable and resilient way
to minimize backhaul traffic and improve client performance,
even in face of changes in demand and availability of network
and computing resources [8]. Unlike state-of-the-art resource
allocation middleware [9], [10] that rely upon proven and
external hardware and software load balancers [11], [12], [13],
MAP manages both resource allocation and client assignment
(dispatching) in a unified scheduler and management domain.
This makes it easy to design, analyze, implement prioritized
load-balancing over both allocation and dispatching operators.

We make the following four contributions. First, we design
and prototype greedy and reservation-based priority-aware
resource allocation strategies in an open-source agent-based
middleware. Second, in a theoretic analysis, we characterize,
identify, and enumerate the strengths and weaknesses of two
priority-based allocation and two dispatching strategies. We
show how demand prediction can improve outcomes in future
work. Third, we present empirical results on a networked
testbed that verifies the observations in our analysis, and
further shows variable improvements up to a 4.1x improvement
in processing of prioritized load over a baseline case. Fourth,
we open-source our code and experiment configurations.

This paper is structured as follows. Section two provides
background on MAP and describes our priority-aware allo-
cation designs. Section three characterizes the strengths and
weaknesses of allocation and dispatching operators. Section
four presents experimental results supporting our analytic
observations. Section five discusses our contributions in the
context of related work. In the final section we summarize
our findings and discuss next steps.

II. BACKGROUND AND PRIORITY-AWARE ALLOCATION

To support varied dispersed computing needs, we imple-
ment a greedy and reservation-based priority-aware allocation
algorithm in the regional load-balancing gateway (RLG) com-
ponent of MAP [7], [8]. In MAP (Figure 1), a RLG manages
a pool of tightly connected NCPs, referred to as a region. A
region can be thought of as a set of NCPs, such as clusters on
rooftops in a dense urban area [14] or compute racks mounted
on defense vehicles (e.g., L-ATVs [15]). Within a region, the
RLG assumes that NCPs are client- or edge-facing and that the
connectivity (i.e., bandwidth, loss-rates) between clients and
NCPs is of similar quality. While outside of the scope of this
paper, to manage very large scale global compute networks,
MAP uses a divide-and-conquer approach employing DCOP
algorithms [16], [17] to manage many regions.

A RLG is a sensor-sink and actuator that monitors NCP
states and applies best-fit bin-packing and DNS-based load-
balancing to manage client load. It manages service allocation
or how a limited number of NCPs are allocated to a particular
service type (e.g., a web app) and dispatching or how clients
should be load-balanced into a number of NCPs running a

Fig. 1. MAP Middleware. Network organization, agent internals, and
supporting services. Middleware as blue boxes.

requested service. We implement service priority support as
a relative importance of a given service type with respect to
other services that might be executing at the same time. We
use a simple numeric scale where higher numbers indicate
more importance, where the complexity of evaluating utility
to a mission-collective is placed in the allocation algorithm.

We design and implement two priority-aware resource allo-
cation algorithms. In the spirit of fair queuing approaches, a
Priority Weighted Reservation algorithm grants active services
a weighted fair share of an upper-bound of available NCP
resources to prevent starvation of lower-priority services. In
contrast, a Greedy Group algorithm provides best possible
resource access to support demand for high-priority services
over lower priority services. We list pseudo-code for these
designs here, and make our source code for this work available
at https://github.com/map-dcomp.

Algorithm 1 Priority Weighted Reservation
RC ← NumRegionContainers
SS ← ServiceSpecificationList < service >
PS ← PriorityOrderActiveServiceList < service >
AM ← AllocationMap < service, containers >
for all S in SS do
AM.addContainers(S, 1)
RC ← (RC − 1)

PW ← calcPriProportionalWeightMAP (PS,RC)
for all S in PS do
WCF ← Floor(RC ∗ PW (S))
AM.addContainers(S,WCF )
RC ← (RC −WCF )

for all S in PS such that RC > 0 do
WC ← RC ∗ PW (S)
WCF ← Floor(WC)
if Modulo(WCF,WC) > 0 then
AM.addContainers(S, 1)
RC ← (RC − 1)

{For brevity, we omit fraction tie-breaking procedures.}

Listing 1 summarizes the priority-weighted reservation al-



gorithm. As inputs, the algorithm takes a number of regional
containers (i.e., a compartmentalized resource slice of an NCP)
available for hosting services, the list of all services that are
specified as potentially active (e.g., required for a mission),
and a list of active services, or those that are currently under
client load. As an output, the algorithm will populate an
allocation map that defines the number of container resources
available for each service. For listing brevity, we assume the
active service list is pre-sorted in descending priority order.

As a minimal requirement, each specified service at config-
uration time is allocated a single container at run time. The
calcPriProportionalWeightMAP method weights each active
services target priority as a fraction of the total priority of the
active set of services within the region, and then calculates
a share of the remaining containers for allocation. This is
stored in a map PW<service,float>, where the float
represents the number of containers to allocate for each
service. A second-pass allocation step assigns the Floor
of the float value to each priority service and updates the
remaining regional containers counter. A final series of steps
allocate fractional weightings to services in descending order
of priority while regional resources remain. As a result, this
algorithm will create a fair-share of an upper-allocation bound
across the pool of active services.

Algorithm 2 Greedy Group
RC ← NumRegionContainers
SS ← ServiceSpecificationList < service >
AM ← AllocationMap < service, containers >
PM ← PriorityGroupMapDescendingOrder <
priority, List < service >>
for all S in SS do

AM.addContainers(S, 1)
RC ← (RC − 1)

for all G in PM such that RC > 0 do
GD ← sumServiceDemandInGroup(G)
AC ←Min(RC,F loor(GD))
for all S in PM(G).getServiceList() do
NT = AC/S.listSize()
AM.addContainers(S,NT )

RC ← (RC −AC)
{For brevity, we omit handling for multiple service types at
the same priority and for fractional allocation targets.}

Listing 2 shows the greedy group algorithm. As inputs
it takes the number of regional containers and the service
specification list. Greedy also produces an allocation map as an
output. Since greedy works over priority groups, this algorithm
is provided a priority group map as an input that can be iterated
over in descending order of priority. The priority group map
further indexes service lists by priority group. A first step of
the algorithm preforms a base allocation of one container for
each service in the specification list.

This implementation will traverse the priority group map
in descending order while containers can still be allocated.

(a) Faster drop by round robin (b) Slower drop by proportional

Fig. 2. Round robin vs. proportional distribution without container allocation
and with slow processing (no request completed). Capacity is 50 req/container.
In this case, L1(0) = 30 and L2(0) = 5. In left figure, container 1 drops
at time t = 5. In right figure, L1(t) ≥ L2(t) for t < 5, and proportional
distribution will drop at time t = 7. Stars indicate dropping.

At each iteration, it will look at the sum of service demand
across all service instances within the priority group, and then
take a minimum of the remaining regional containers and the
sum total to determine an allocation target for the group. This
minimum result is then used as an allocation target for the
service set. The algorithm will then split that group allocation
target equally across different service types within the priority
group. For brevity, we omit logic that addresses handling of
factions and more than one service type in the same priority
group. As an outcome, this algorithm will greedily allocate
resources to higher-priority services first, potentially starving
lower-priority services.

III. ANALYSIS OF ALLOCATION AND DISPATCHING

Here our analysis considers two RLG roles: allocation -
to spin or decommission containers when the load exceeds or
falls below designated proportions of capacity, and dispatching
- to publish client-associating DNS plans. We first examine
possible RLG heuristics for publishing plans for DNS to dis-
tribute incoming demand - without heed to service priorities.

The two heuristics are: round robin, where incoming load
is assigned to containers in succession, without considering
available capacity. The second is proportional distribution
where loads are assigned to containers in proportion to their
available capacity. With round robin the container with the
highest initial load will retain the largest load, proportional
tends to equalize loads across the containers. As a result, in
extreme cases the first container will fill up quickly leading
to service drops (e.g., decreased QoS). Figure 2, with Li(t)
as the load in container i at time t, depicts a scenario where
no containers are spun and shows proportional droping later.
Figure 3 depicts container spinning: round robin drops before
total capacity is exceeded but proportional does not.

We now consider services with different priorities com-
paring (A) greedy allocations, where the needs of a higher
priority service are met first; and (B) proportional reservation
where services are given a capacity slice based upon prior-
ity. Allocation is in proportion to the slice with no service
allocated more than it needs. Figure 4 assumes that 100
containers are available for allocation between three services
with priorities 5, 3, and 2. As shown in the second column, at
time t they need 30%, 45%, and 60% of the 100 containers,



(a) Faster drop by round robin (b) Slower drop by proportional

Fig. 3. Round robin vs. proportional with container allocation. Capacity is 50
req/container. Container 1 gets close to capacity at time t = 0, and two more
containers are spun up. Under proportional distribution, in 3b, jobs drop only
after all containers are exhausted. Under round robin, 3a, the first container
will drop jobs before others are full. Stars indicate dropping.

Fig. 4. Comparisons of priority resource allocation strategies: outcomes and
prediction recommendation. First three columns illustrate scenario, middle two
show MAP allocation, and final two illustrate a predictive recommendation.

respectively. Accordingly, as shown in the fifth column, service
1 is assigned its required 30 containers as it has a max reserve
of 50 (proportional to service 2 and 3). However, services 2
and 3 are granted 3/5 and 2/5 of the remaining 70 containers,
and as a result service 2 is given only 42 of the 45 it requires,
while service 3 gets 28. The resulting priority inversion is a
disadvantage of (B). In contrast, under greedy allocations, in
the sixth column, services 1 and 2 are assigned all they need,
with the remaining going to low. Herein lies the key difference
between (A) and (B). While (B) leads to priority inversion,
(A) does not. Yet in the absence of demand prediction, greedy
allocations may end up assigning more to a higher priority
service than it needs, starving others of needed resources. This
can lead to suboptimal performance when edge resources are
consumed, and outflow is required to the datacenter.

As an example of the suboptimal performance, Figure 5
depicts two regions (edge and cloud) with 12 containers
each and services A, B, and C in priority order. Suppose
a proportional reservation of five, three and one containers,
according to service priorities are made in the edge region for
A, B and C, respectively, followed by two successive units of
C arrive in successive times. After the second arrival, having
exhausted its reserved containers in the edge, C is suboptimally
assigned to the cloud, even though, neither higher priority
service has utilized the empty containers assigned to them.

Much of this conservatism can be reduced through pre-
dicting not just arrival rates but also processing rates, or
equivalently the net rate of change. Indeed the absence of such
prediction may even cause instabilities through unnecessary
service drops. Thus consider a scenario where all containers
are assigned to a high priority service. Then as these are
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Two regions, each region has one NCP, each NCP has 12 containers
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Fig. 5. Conservatism of proportional reservation with only load prediction.
Edge and cloud regions each with one NCP and 12 containers. Service A has
high priority, followed by B, and C. Initially 5, 3, and 1 containers in the
edge region are reserved for A, B, and C. Two successive units of C arrive
in successive times. After the second arrival, having exhausted its reserved
containers in the first region, C is suboptimally assigned to the cloud.

Temporal Reserve
Two regions, each region has one NCP, each NCP has 12 containers
A is growing at 1/round, B and C at 3/round
C takes 1 round to complete B takes 7 rounds to complete
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Fig. 6. Reduced conservatism due to prediction of arrivals and processing
(identical setup to Fig. 5). A is predicted to grow at one units per round, and
B and C at three units per round. Further, C takes one round to complete,
while B takes 7 rounds to complete. Thus C is accommodated in round 2.
Numbers in green are the containers that will be eventually given to A.

occupied at the start of a round, new low priority services
will be denied containers in the next round even if in the
intervening period all load is processed.

The lack of conservatism due to such prediction is depicted
in Figure 6. In this case A is predicted to grow at one unit per
round, and B and C at three units per round. Further, C takes
one round to complete, while B takes 7 rounds to complete.
Then even though nine containers have been reserved for A
(depicted in green), the arrival of three units of C and two of
B in the next round does not preclude their being assigned
containers from the edge, reducing the amount of suboptimal
allocations. The effect of prediction is further illustrated in
Figure 4, where column four linearly depicts the estimated
load for each service (40, 55, and 90 for A, B, and C)
in the next round. Accordingly, greedy allocation at time t
and reservations for t+1 depicted in the last two columns,
respectively, show the avoidance of priority inversion.

A. The Role of Prediction

Reasonable prediction of both the arrival rate and the pro-
cessing rate can further supplement proportional assignment
which postpones and even prevents job drops. Both predictions
are equally important. For example suppose a job is initially
assigned two containers A and B, and incoming demand fills



Fig. 7. Stress test demand for increasingly important services.

them up. Containers C and D will spin up, and absent estimates
of processing rates, will assign no jobs to A and B in the next
cycle assuming they are full. This despite the fact that A and B
may be emptied by the time of advent of the next cycle. This
could lead to C and D dropping jobs even though the NCP
has space left, and in some scenarios under constant demand,
to oscillatory behavior with periodic and frequent job drops.

Predictions regarding processing rates can in fact be as
simple as monitoring the incoming load and the change in
the load from each cycle to the next. Or one can use a longer
historical record to make more sophisticated predictions. For
example one can choose the net predicted change in available
capacity as a weighted average of previous changes. If needed,
the weights can be chosen adaptively, e.g., by minimizing the
square of the prediction error.

IV. EXPERIMENTAL VALIDATION

Results from experiments with the greedy and priority
weighted implementations confirm our priority analysis. We
also compare the performance of our work against a no-MAP
baseline. We use PC3000s on Emulab [18] as a testbed, with a
single container/vCPU/node. We use 40 NCPs and 40 clients
sparsely connected as a topology. For stimulus, edge client
hardware executes 20 clients in parallel for each priority group
under test. In our preliminary tests we use 5 priority groups,
which means 100 client threads per node, for a total of 4,000
clients. Client threads for each priority group are uniformly
distributed across the topology. Individual client requests are
specified to minimally impact the network, as such, they do
not suffer impacts common in network-bound scenarios.

In Figure 7 we graph the input demand scenario for this
test (log scale y-axis). The 40 container processing potential
is shown as the dashed black line. Any shaded area above
the black line is excess demand. This scenario is designed as
a stress test where the effects of prioritization will be readily
apparent. Each client request is an attempt to apply a 20% CPU
load for 60 seconds. For a prioritized service, we implement a
thread-per connection server backed by the FakeLoad library
[19]. This experimental design allows a service ”hard-fit”
client requests (e.g., 5 20% requests will succeed in a window,
a 6th request will fail). This ensures that both the experiment
setup and analysis tasks are easy to understand.

Figure 8 shows two complementary trace views from three
experimental configurations. The top row shows how contain-
ers are allocated for one of five priority services over time.
The bottom row graphs load across the collective CPUs were
for each service type over time. From right to left, the columns
show a trace of a greedy experiment, a reservation experiment,
and a no map experiment. In all graphs, the black dotted
line at 40, shows the ceiling for processing or allocation. The
color shaded areas in the graphs correspond to measurements
collected for one of five service priority groups. These plots
illustrate some fine points of these experiments. First, the no
map baseline statically allocates resources, much like how
an operator might provision an edge cluster. Second, unlike
the no-map configurations, the with-map configurations are
dynamic and control both the (de)allocation and dispatching,
thus the scale sloped up in the with map graphs for both
allocation and load processed. Third, by visually comparing
the greedy and reservation runs, it is easy to see (i) how
priority inversion manifests in the reservation configuration
for priority waves P2-P5 given the demand input shown in
Figure 7 and (ii) how the greedy configuration will starve
any lower priority service in the demand mix. Fourth, as
designed, the priority prototypes faithful reflect the behaviors
we expected in both intent and our analysis in Section III.

In Figure 9 we compare application load processed under
the two priority algorithms against a static pre-allocation of
8 containers for each of the 5 priority waves. To make this
comparison, we calculate a load ratio between MAP and no-
MAP experiments. We curate this data by summing the load
processed from the start of a service priority grouping until the
planned preemption of that grouping. As an example, we look
at load across the 40 NCP topology for P1 from 5 minutes,
until P2 starts at 35 minutes. Considering our test scenario,
this means P1 - P4 are active for 30 minutes under this data
analysis approach, while P5 is active 90 minutes.

With this metric we see processed load gains vary from
156% to 408%. Ratio gains are a function of topology and
configuration, and how rapidly MAP adapts to the flow of
prioritized client demands. On the one hand, the baseline
does not amortize the allocation cost of scaling up and
down container resources, this means it is ready to process
client requests the instant they arrive. In contrast, the datasets
supporting MAP roll-up all of the allocation and deallocation
costs associated with adapting to each new wave. Similarly,
if we restrict the baseline to a single NCP per-priority appli-
cation in this topology (i.e., fixed edge cluster versus a truly
dispersed compute environment), we would observe an 8-fold
improvement in gains with MAP between 1,250% and 3,250%.

While Figure 9 offers insight against the baseline, additional
analysis is needed to assess the two designs. Within the P1
wave both designs will be on equal footing because they start
from the same blank slate. We expect the two algorithms to
produce similar results in this wave, and they are within 1%
difference. The small variance shown here is the result of
averaging load data across three iterations. We use three runs
here due to a number of practical considerations, e.g., experi-



Fig. 8. Experimental traces for greedy, reservation, and no map experiments. Two row shows allocated containers for each service priority type. Bottom row
shows load generated on containers within network. Peak resource line is shown in black at 40 NCPs.

Fig. 9. Load processed in each of five priority waves - comparison of
prioritized work for greedy and reservation runs against no-map.

Fig. 10. Load processed in each of five priority waves - summary of total
work for no-map and priority algorithms (log-scale y-axis).

mentation on real hardware like Emulab is time consuming and
subject to resource contention with other researchers, but more
importantly because the observed sum load variance was both
minimal and stable across runs. Further examining the greedy
waves P2-P4, we see approximately similar gains, as expected.
This implies the priority implementations are both effectively
and efficiently and predictable in allocation and deallocation
behaviors. As mentioned before, P5 runs longer by design, so
its gains are larger than the first four waves.

Figure 9 appears to show greedy outperforming reservation
for the P2-P5 waves. Based upon the metric definition, this is

expected. By design, greedy will always reallocate resources to
the highest priority group, in contrast, the reservation approach
is offering a fairer share to competing priority groups. That
means as more and more stressful load accumulates on the
system and the reservation approach divides resources, and as
a result there is less compute power to service the next wave.
The descending pattern in this figure illustrates this point.

In Figure 10 we examine the sum of raw load processed. On
the y-axis, in log-scale, we average the sum of load processed
for each priority service across the three iterations of each
experimental configuration. The x-axis shows priority service
grouping, comparing the greedy, reservation, and no-map
datasets. Examining this data we see a few trends. First, in the
no-map case, the load processed by each successive priority
group declines. This can be explained when considering that
resources are held constant for each priority group and the
experimental time for each priority group is less than the
next. Second, in the greedy data set, for groups P1-P4, the
amount of work done for each group has little variance. This
is expected as the greedy algorithm artificially limits both the
time and resources available to process any planned demand.
Furthermore, it illustrates a small variance across groups, this
further supports the credibility of the smaller sample size.
Third, in reservation, with the exception of the P5 group
all services process more load than the greedy and no-map
configurations. Similar to the time and allocation observations
above, this is because the reservation approach allows lower
priority services to continue working, both through allocation
and dispatching, they enjoy a better degree of service.

A. Discussion

These experiments support our analytic analysis and show
substantial improvements over the configured baseline. How-
ever, experimental application to targeted scenarios will help
to better understand the value from these enhancements. For
example, given these outcomes, is there a community or
operational preference for one of the two algorithms, and
more generally, is the base-design of compute priority as
an importance a satisfactory complement to prioritization
schemes in other infrastructure (e.g., the networks). Further-
more, while our previous work has evaluated MAP’s per-
formance a number of generic deployment graphs, would
operators requiring prioritization desire support for more spe-



cialized or challenging computational graphs (e.g., extremely
limited connectivity, or with mobile aspects). Another area of
experimental investigation should look at direct comparisons
to the state-of-practice ecosystem for resource management of
truly dispersed compute resources. As described in Section V,
to our knowledge MAP’s unified scheduling and management
domain is sufficiency unique. This makes direct comparisons
of the presented priority schemes to both the tightly controlled
cluster management software and their disjoint dispatching
routines - that would enable comparable dispersed computing
capabilities - a serious undertaking.

V. RELATED WORK

Recent resource management challenges in dispersed com-
puting is extensively covered in survey literature [20], [21],
[1]. These works recognize many ongoing and open challenges
in managing dispersed heterogeneous devices and scheduling
resource access in face of shifting compute networks. They
further suggest a wide variety of applications and use-cases
for networked compute environments. Perhaps most striking
is that collectively these works survey over 400 publications,
but only list a single reference of priority-support in the
middleware [22] and load-balancing area. While less surpris-
ing, there were no mentions of mission or mission-awareness,
which is more often used in defense settings.

While not explicitly called out in surveys, load-balancing
with priority support is an active area of interest [23], [24],
[25], [26], [27], [28]. Unlike work presented here, these focus
on the centralized cloud environment, which is complementary
to our work. Futher afield, in application-specific domains and
IoT settings, there is solution-focused middleware with priority
support [29], [30]. Our study of tightly coupled and general
strategies for performing prioritized-dispatching and allocation
complements these works.

In state-of-practice, cloud and cluster management plat-
forms such as OpenStack with Nova and Neutron [10] and
Kubernetes [9] are commonly used tools for orchestrating
shared resource access and scaling applications within tightly
clustered compute environments. They are also make up part
of the currently recommended solutions to address emerging
5G compute concerns [14]. Since the MAP prototype is
most related to container virtualization and wide-area load-
balancing, which is an active area of interest in defense areas
[31], [32], we narrow our related works discussion to describe
research and solutions related to the latter technology.

Scalable containerized deployment within Kubernetes is
efficient and effective and well adopted. Unlike the widely
dispersed computing environments that MAP’s algorithms are
attempting to target, Kubernetes is mostly focused on cluster
management. While Pods’ do support priority, like much of
this infrastructure’s design, Pod’s are always co-located and
co-scheduled. As such it relies on a centralized scheduler
called kube-scheduler, that performs a two step assignment
process of filtering available resources by application re-
quirements followed by scoring to rank suitable assignments
to control allocation. Over the years, this technology has

considered approaches to federation support [33] and the
research community has also look at the proposed designs
in some detail. In [34], the authors identify limitations to
load-balancing across V1 federation. They further presented a
compelling architecture and implementation of a portable load
balancer for supporting load migration across distinct clusters.
At the time of this writing, Kubernetes has since abandoned
the design cited in Takahashi’s work and still maintains limited
load-balancing support naively.

By design, Kubernetes delegates load-balancing of clients to
hardware or software load-balancers. In the former case, this
is often hardware provided by the cluster provisioner/leaser.
In the latter case, the community tends to leverage proven
load-balancing techniques, such as software proxies [11],
[12], [13]. Behind these cluster-facing load-balancers, many
solutions further employ DNS-based load-balancing, which is
has been extensively covered in literature [35], [36], [37],
[38]. As a state-of-practice solution, this implies that users
requiring end-to-end support for prioritized resource allocation
and dispatching will need to thread such a construct through
multiple component systems. This can lead to brittle outcomes.

VI. CONCLUSION AND DISCUSSION

Combining scalable orchestration middleware with software
load-balancers results in efficient and effective response to
client load in concentrated computational pools. However, as
decoupled components, such solutions often support priori-
tized service placement and dispatching only in extensions
for truly dispersed environments. Furthermore, while mission-
critical scenarios (e.g., disaster recovery) make heavy use of
off-the-shelf orchestration frameworks, they also require prior-
itize access to limited non-centralized resources in such highly
dynamic settings. This often leads to inefficient outcomes
such as over-or-under provisioned edge resources or requiring
manual orchestration of prioritized trade-offs in brittle ways
and at slow timescales. As a result, such scenarios will likely
make little to no use of additional dynamic resources available
within the network itself.

We design, analyze, and prototype priority-aware resource
allocation and dispatching as first-order citizens in an agent-
based middleware for adaptively managing in-network com-
pute resources. We analytically describe the strengths and
weaknesses of these designs to show a clear benefit from
proportional load dispatching over round-robin solutions. We
suggest incorporating prediction to enhance the proposed
solutions, and validate analytic findings on a network testbed.
Experimental scenarios show marked improvement up to 4.1x
over a baseline centralized case. Finally, we open source
our source code and experimental configurations, in part, to
support independent corroboration of our results.

This work suggests immediate next steps. First, as our
analysis shows, to more accurately manage priority workflows
reactive load-balancing solutions will benefit from a prediction
module capable of quantifying the amount of work in future
steps. One approach we have considered is to use a Martingale
model to characterize workloads that users might care about.



Second, in the spirit of large-scale dispersal with multi-layer
systems such as MAP, algorithmic decision making will need
to be carefully designed and analyzed to allow prioritization
decisions to flow down across layer, especially in face of novel
compute environments and application mixtures. We plan to
leverage defense/commercial dual-use scenarios and use-cases,
e.g., user-plane virtual network function placement in 5G
environments, to motivate such large scale investigations.
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