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Abstract. The Learnable Task Modeling Language (LTML) was developed by
combining features of OWL, OWL-S, and PDDL, using a more compact and
readable syntax than OWL/RDF to create human readable representations of web
service procedures and hierarchical task models. Our goal was in part to develop
a more robust and developer-friendly language based on the principles and design
that led to OWL-S and demonstrate that such a language also provided the basis
for developing tools that could learn web service procedures by demonstration.
LTML’s initial and driving use is as an interlingua for the learning and procedure
execution components of POIROT, a system that learns web service workflow
procedures from ‘observations’ of one or a small number of semantic web service
traces. The LTML language uses an s-expression based syntax for improved read-
ability but has parsers and generators that translate the surface forms into RDF for
storage in a SESAME triple store implementing POIROT’s internal blackboard.
All language elements are grounded in a set of OWL ontologies. The language
encompasses and extends coverage of the OWL-S process and grounding models,
and introduces elements to support sets of hierarchical task methods indexed by
goals, semantic execution traces, and internal tasks and learning goals. This short
paper gives an overview of LTML and describes the areas where LTML diverges
from or extends OWL-S and PDDL.

1 Introduction

The Learnable Task Modeling Language (LTML) was developed to provide human and
machine readable representations of semantic web service procedures and hierarchical
task models suitable for use by a workflow learning and execution system. POIROT
(Plan Order Induction by Reasoning from One Trial) [1] is the system for which LTML
was initially designed and by which it’s utility has been demonstrated. POIROT uti-
lizes an RDF-based blackboard architecture and meta-controller to orchestrate a multi-
strategy learning process that analyzes semantic web service execution traces and learns
web service procedures. Specifically, POIROT learns and can then execute hierarchi-
cal task models given an execution trace of a single demonstration of a repetitive web
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Public Release, Distribution Unlimited.
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service task. Here, traces are OWL representations of sequences of instances of seman-
tic web service calls. The services (atomic processes) are represented using OWL-S.
The hierarchical task models that POIROT learns can then be executed by SHOPPER
[2], a component of POIROT that interprets LTML procedures and calls web services.
SHOPPER in turn uses a version of the OWL Virtual Machine (OVM) [3] to invoke the
individual semantic web services. Figure 1 shows the overall structure of the POIROT
system.

Fig. 1. Overview of POIROT Architecture

The workflow models that POIROT as a whole learns are the result of combining a
number of incomplete models learned by POIROT components that reason about

– segmentation of the trace into subtasks (YAPPR [4]),
– causal explanations of related trace elements (XPLAIN [5]),
– dataflow (service output to other service input) dependencies (IODA),
– overall temporal ordering structure (WIT [6]),
– loops and conditional branches (DISTILL [7]).

The different learned products are merged together in a two step process by the Stitcher,
which reasons about parallel structures, and ReSHOP (based on SHOP2), which reasons
about goal achievement.
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POIROT processing starts when the system receives one or more traces of human
task performance. A trace is an example of a human operator carrying out some partic-
ular workflow, captured by intercepting the inputs and outputs of a set of web services.
The trace will be analyzed by Yappr and XPLAIN, each of which will write its analysis,
in LTML, into the POIROT blackboard. The blackboard contents will be analyzed by
IODA, WIT, and DISTILL, which will write partial method definitions learned from
the trace and its analysis, into the blackboard. The different method definitions are
then merged by the Stitcher. Finally, in order to experiment with the learned method
definitions, ReSHOP will be activated to assemble the methods into a goal-achieving
workflow, which will be fed to SHOPPER for execution.

POIROT components share open learning goals, hypotheses, internal tasks and learned
workflow models via a central blackboard that is implemented as an RDF store (SESAME).
All communication with that store is in one of several ‘dialects’ of LTML. Traces,
methods (hierarchical procedures), class definitions and service definitions use sytactic
forms hide complex or repetitive idioms required to express the content in OWL and
make them more readable/editable by people. Most other aspects of the communication
use what we call the ‘striped’ form of LTML which is an s-expression variant of N3[8],
a compact notation for RDF, relying directly on OWL concepts and properties.

In this paper we will briefly present some of the syntactic forms that were used to
make what is at heart an extension of the OWL-S procedure language more accessible,
and then describe some of the extensions to the language and ontology that we found
necessary to represent the procedures that we were learning.

2 Background: OWL-S to LTML

Briefly, OWL-S (Owl for Services) [9, 10] is a set of OWL [11] ontologies for describ-
ing web services and web service procedures. It has three main subparts: Profile, Pro-
cess and Grounding. The OWL-S Profile ontology is used to represent what the service
is used for and when its use is appropriate, including issues such as quality of service.
The Process ontology describes what the service does (its inputs, outputs and effects)
and the Grounding ontology describes how it is executed, specifically how parts of the
process ontology relate to a specific model of how it is called by relating the semantic
model to a more syntactic calling specification like WSDL[12] or SOAP[13]. This has
typically included a mapping described using XSLT[14].

LTML is mainly concerned with Process representations4 It currenly uses OWL-
S groundings directly. The OWL-S process ontology describes atomic and composite
processes, which represent, respectively, the elements of individual service calls, and
combinations of service calls connected by data and control flow constructs. Though
somewhat different in some of its details, the LTML process ontology borrows heavily
from that model. An example of the difference is that it represents sequences of steps
using lists modeled as sets of instances with numbered elements rather than a first/rest
structure. We will mention several other differences shortly. Atomic processes on the

4 One could argue that its means of associating goals with methods (the to-achieve form) is
similar to one function of Profiles.
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other hand are modeled nearly identically, allowing us to use the OWL Virtual Machine
to execute atomic services.

The main purpose of the LTML language is to be able to capture semantic web ser-
vice execution traces and workflow descriptions that are learned from those traces by
POIROT’s learning processes. The traces and workflows reference semantic descrip-
tions of web services, which in OWL-S were called atomic processes. We needed a
more compact surface notation than OWL/XML to be able to work effectively with the
complex OWL-S procedure models being generated by POIROT, and we also needed
to extend the language in several ways to make it possible to represent all of the as-
pects of the procedures and traces that POIROT was reasoning over. LTML’s surface
syntax provides notations for workflows (composite processes) and traces to simplify
their textual form and make them more readable to developers such as those reviewing
what the POIROT components have learned about the traces that were demonstrated. It
borrows some ideas from an initial design for a surface syntax for OWL-S developed
by McDermott [15].

We required a language that was both human and machine readable, and could be
interpreted in both LISP and JavaTM so that it could be used as an interlingua between
components written in either language to learn about, planning with or executing web
service procedures. What developed was an considerably easier-to-use s-expression
oriented surface notation for something very close to OWL and OWL-S descriptions
of web services, web service procedures and the ontologies supporting their descrip-
tion of specific domains processes. Additional ontologies and some language features
were then added to capture other parts of the the AI planning competition language
PDDL [16]5 and the SHOP-2 hierarchical task network planning language [17].

LTML encompasses the expressive power of OWL by providing syntactic forms
that are directly translatable into OWL class and property definitions and descriptions
of individuals. LTML’s primitive service definitions capture both conventional planning
operators (as in PDDL) and OWL-S atomic processes, while providing a few additional
features to overcome shortcomings of OWL-S representations, especially for service ef-
fects. Finally, LTML adds higher-level control flow constructs to compose these atomic
actions into methods, similar to OWL-S composite processes, and uses these forms to
describe web service workflows.

All LTML surface syntactic forms for processes have translations into OWL us-
ing an OWL ontology very similar to the OWL-S Process ontology. Other OWL con-
cepts are used to describe event sequences, specifically service execution traces. In the
POIROT system, all LTML surface forms are translated, using these ontologies, into
RDF triples for storage in an RDF triple-store (SESAME), and all ontologies are trans-
lated to and represented in OWL Full. This allows these forms to be easily combined
with other OWL representations for such things as sets of methods (subprocedures) that
comprise a learner’s hypothesis about how to perform an observed procedure.

5 Note that, as an extension of PDDL, LTML is also able to capture conventional AI planning
problems.
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3 LTML Language Overview

LTML has a Lisp-like syntax, or rather two syntaxes. LTML has a surface form intended
for human readability and writeability. LTML also may be written in striped notation.
Striped notation is a Lisp-like notation for RDF triples, essentially equivalent to N3 [8].
The syntax for striped descriptions is simply:

(Classname instanceName (propertyName value)*)

where the value is another description, and Classname, instanceName and property-
Name are LTML symbols. LTML symbols consist of a namespace abbreviation, an ‘@’,
and a local namestring. The ‘@’ replaces the OWL ‘:’.

Striped syntax translates into RDF in the obvious way. The pattern creates an RDF
description for instanceName, declaring it of type Classname, with properties specified
by propertyName and with corresponding values. So, for example,

(animals@Dog Fido (pet@belongsTo Mark)
(pet@chases (animals@Cat Trixie)))

translates to the RDF/XML:

<animals:Dog rdf:ID="Fido">
<pet:belongsTo rdf:resource="Mark">
<pet:chases>

<animals:Cat rdf:resource="Trixie"/>
</pet:chases>

</animal:Dog>

The rest of the paper focuses on the compact surface form.

Classes and properties LTML provides a syntax for describing classes and properties.
Again, the “@” is a namespace separator. LTML namespace abbreviations map to XML
namespace abbreviations in the obvious way.

(in-namespace trans)
(Class Airport

(subClassOf loc@Location)
(subClassOf top@Entity)
(restrict airportLocationID (cardinality 1) - LocationID))

For comparison, here is the definition of Airport translated into OWL/XML6

<owl:Class rdf:ID="Airport">
<rdfs:subClassOf rdf:resource="&loc;#Location"/>

6 For brevity, we use entity abreviations for the namespaces.
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<rdfs:subClassOf rdf:resource="&top;#Entity"/>
<rdf:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="&loc;#airportLocationID"/>
<owl:allValuesFrom rdf:resource="&loc;#LocationID"/>
<owl:cardinality
rdf:datatype=
"&xsd;#nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>
</rdf:subClassOf>

</owl:Class>

The main “syntactic sugar” here is the simplified form for property restrictions on
classes. The restrict keyword is followed by a property name, an optional cardinal-
ity description and a type restrictions in a single ordered expression. As in other places
in the language, type restrictions are indicated by a dash ‘-’ followed by a type. The
restict clause also declares a new property if it was not previously defined.

Properties are defined in a similar way. ObjectProperties and DatatypeProperties are
recognized based on their range.

(Property airportLocationID
(domain Airport)
(range LocationID))

Atomic process definition Figure 2 is an example of an LTML atomic process (semantic
web service) definition. As with methods, services have inputs and outputs. In addition,
however they have preconditions and results.7

(AtomicProcess reserveSeat
(inputs flightNo - travel@FlightID

passengerID - travel@PassengerID
confirmationCode - travel@ConfirmCode)

(outputs outcomeFlag - svc@ResultCode
reservationID - airSvc@ReservationID)

(precondition
(travel@paymentRcvd passengerID flightNo confirmationCode))

(result
(when (svc@Success outcomeFlag)
(ThereIs ((p (referent travel@Passenger passengerID))

(f (referent travel@Flight flightNo)))
(trans@hasReservedSeat p f reservationID)
(increment-fluent (travel@passengers f) 1)))))

Fig. 2. Sample web service definition in LTML.

7 Methods can also have preconditions and effects, but they are normally derived from their
consitituents.
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This definition includes what an invoking agent should provide to the web service
(inputs), the service precondition, which is the condition that the agent should check
and make sure is true before invoking the service, and what the agent can expect back
(outputs). Other conditions on successful service execution that are based on infor-
mation known to the service provider appear in conditional effects. For example, for
the reserveSeat service, a reservation failure due to seat capacity being exceeded
would be expressed as a conditional effect since the agent making the reservation would
not be expected to know the plane’s capacity or number of pre-existing reservations be-
fore attempting to call the service.

The markup also tells the agent what it can infer about the state of the world after
invocation of the web service (result). Service results are typically a set of conditional
statements, principly based on the service outputs and what the agent believes about
the state of the world. In this case, that knowledge is limited to what happens if the
service is invoked successfully; if it’s unsuccessful, the agent can infer nothing. The
language for expressing results in LTML is a superset of what is defined for OWL-S.
Note particularly the use of the Thereis and referent construct. The combination of
these gives an “exists uniquely” kind of quantification — if the agent knows the patient
that is the referent of patientID, it should bind p to that patient; otherwise, the agent
can infer the existence of such a patient with that ID, and a skolem for that entity is
created.

Method definitions Figure 3 shows an example of an LTML Method. This example
was crafted so as to demonstrate most key elements of the process language. Methods
and atomic processes have sets of inputs and outputs, which are process variables that
bind to entities of a given type. All variables preceding a dash are typed with the class
following the dash. The inputs passenger are the arguments to the method, and the
outputs (loc1, loc2, deptime are the variables bound to whatever is produced.
A method has a body which consists of a single control construct.

An LTML Workflow is simply a top-level method definition. It has no inputs or
outputs, and serves the same function as the main() routine in a conventional pro-
gramming language.

Methods have a body consisting of an instance of a control construct. The main
compositional control constructs are seq, loop and branch. In the figure, it is a se-
quence(seq) of four steps (the last being a loop). Each control construct provides for
the declaration of links which are essentially write-once local variables over the scope
of the construct. Single step control constructs are perform, used to invoke an atomic
services or another method by name, achieve, used to invoke a method indexed by its
goal and values, used to bind values to links or method output parameters.

The initial keyword (shown in bold) for all control constructs is immediately fol-
lowed by a tag which is simply a name for the instance of the construct. In translation to
RDF, each bare tag is composed with a context marking string to make a unique URL.
For example, seq0 becomes example3@FindFlight.seq0 and step0 becomes
example3@FindFlight.seq0.step0. Parameter and link variables are auto-
matically translated by the same mechanism, so that subsequent references to steps
or variables in markup intended to annotate or comment on those descriptions will be
unambiguous.
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(in-namespace example3)
(Method FindFlight
(inputs passenger - base@Person

loc1 loc2 - base@Location
deptime - base@Time)

(outputs foundFlt - travel@Flight)
(body
(seq seq0

(links apt1 apt2 - travel@Airport
flights - travel@FlightSet
flight - travel@Flight)

(acts
(perform step0 ;; find a departure airport

(airSvc@findAirport (loc <= loc1))
(put (found => apt1)))

(perform step1 ;; find an arrival airport
(airSvc@findAirport (loc <= loc2))
(put (found => apt2)))

(perform step2 ;; find flights from apt1 to apt2
(when (exp@and (bound apt1) (bound apt2))
(airSvc@findFlights (origin <= apt1)

(destination <= apt2)
(onDay <= (exp@propval date depTime)))

(put (fltList => flights)))
(loop step3 ;; loop over flights - find one early enough

(links (flt (over flights) - travel@Flight))
(while (exp@not (exp@bound foundFlt)))
(body

(branch branch1
(test (base@time< (exp@propval departTime flt)

deptime))
(values step4 (foundFlt := flt)))))))))

Fig. 3. Sample method definition in LTML.

The ability to reference elements of methods uniquely so that one could annotate
them with information useful during learning, and relate them to altermative hypotheses
was a key objective of LTML.

Branch test, loop while or until and perform when clauses all take expression
forms, which are conventional prefix-notation formulas. Expressions are reified in trans-
lation to RDF, and are composed of instantiated exp@Predicate subclasses. and,
or, and not keywords may be used in the normal way in expressions. Links declared
in the same control construct as the expression are treated as variables to be bound by
the expression, which are treated as a queries against a Prolog-like model of the cur-
rent state of the world that is maintained during execution. This essentially follows the
approach adopted by OWL-S, and does not resolve the problem that class names and
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properties frequently appear in such expressions as unary and binary predicates, though
these expressions are not normal OWL descriptions.

Trace descriptions LTML also represents traces, which capture sequences of service
activations. Traces are the primary inputs to the POIROT learning components. Trace
elements include the service called, its inputs and outputs, and its effects, which is
a grounded instantiation of the result description from each service called. Figure 4
shows an initial fragment of an example consistent with Figure 3 having been called.
The syntax of traces is close to striped except that input and output keywords are
followed by lists of parameter-value pairs rather than properties. If present, the result
keyword is followed by a list of predicate terms, resulting from the interpretation of the
service result.

(Trace x@Trace1
(agent x@Demonstrator1)
(elt

(TraceElt x@Trace1Elt1
(eltPosition 1)
(timestamp "0:00:00")
(eventType airSvc@findAirport)
(input
(airSvc@findAirport.loc

(base@Loc x@Loc1
(base@locationName "Boston"))))

(output
(airSvc@findAirport.found

(trvl@Airport x@Airport1
(trvl@airportLocID

(trvl@AirportLocID x@AirportLocID1
(base@value "BOS")))))

(svc@outcomeFlag (svc@Success svc@Success1)))
(serviceResult

((trvl@Airport x@Airport1)
(trvl@airportLocID x@Airport1 x@AirportLocID1)
(trvl@nearTo x@Loc1 x@Airport1))))

. . .

Fig. 4. Sample web service definition in LTML

Figure 5 shows the scale of examples that POIROT learned as LTML method sets
during the first year of the project. As of the end of the second year, this had grown
considerably, and POIROT was able to execute examples that were hundreds of steps
long.
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Methods Learned by POIROT 

Fig. 5. Workflow Learned by POIROT using LTML

4 Execution Model

LTML provides an executable model of web-based workflow, and we have developed
an LTML interpreter, SHOPPER[2], as one component of the POIROT system.

LTML is purely functional: its variables (referred to as “links” or “parameters”)
are write-once entities (except for loop links). LTML is unusual in featuring, in addi-
tion to conventional expressions (e.g., (islessthan Number Number)), logic-
programming style queries. Any simple predication in a query context, for example
(trans@scheduled patient flight), is treated as a boolean query against
the agent’s current beliefs. Queries are variable-binding operations if they refer to un-
bound links in the same LTML control construct. So if a branch declares links then
its test may bind that link for use during the execution of the branch. Similarly, links
declared in a perform may be bound by the when clause for use as inputs to the
called action.

LTML has a state-based execution model like that assumed by AI planning sys-
tems [18]. Calls to web services return not only results (called outputs) in the usual
sense of subroutine invocation, but also a service result or set of facts to be incorpo-
rated into the knowledge state. Subsequent queries are then based against the newly
updated knowledge state, and built-in functions can also operate on this state.
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5 Beyond OWL-S

LTML moves beyond OWL-S in features and expressivity in several ways. Most of
these have resulted from our project’s needs in representing complex workflows in a
way that allowed them to be learned, annotated, compared, combined and executed.

A key feature of LTML models is their radical decomposability. The intent is that
different authors (including programs) be able to combine their products into individual
control structures. For example, one program might compose a loop that would process
a collection, and a different program would dictate the order in which elements of the
collection were processed. This required us to be careful about how tags were created
to refer to these elements. We now expand tag names so that they are effectively scoped
lexically.

The way perform steps bind their input and output parameters to and from links
is different from OWL-S dataflow, where inputs were merely expressions on other step
outputs. This construct makes it possible to follow the dataflow much like in a normal
programming language. We introduced when conditions on steps (performs) that
act as local step guards and bind step input parameters based on facts in the current
state of the world. We also introdced the values construct to allow links to be bound
to calculations based on other links. This is especially useful for drilling down into
complex objects to find and bind values.

Though not discussed here for lack of space, we have also extended the process
model to address HTN planning directly. to-achieve and to-execute forms as-
sociate methods with goals (with to-achieve) or abstract procedures (to-execute).

LTML signals support exception returns from service calls. This was still on the
to-do list when OWL-S development ceased.

We have identified the need for the language to have atomic actions for assert and
query to enable the workflows to record decisions and check for ‘mental notes’ that
enable workflows to progress properly. These facts cannot be asserted by results of
atomic service definitions if they are specific to the composite process and the atomic
services are developed by other parties.

6 Conclusions and future work

LTML was developed in an attempt to make a more robust, usable web service proce-
dure language using which we might even automatically learn these procedures, com-
pare them, integrate them and critique them using automated learning and reasoning
techniques. POIROT demonstrates the basic feasibility of this approach. LTML is con-
tinuing to evolve, although more slowly. We are moving toward applications of POIROT
that will involve training naive users with procedures that POIROT has learned. This
will likely require us to use partial order step constructs more extensively, so that fol-
lowing procedures during the training is not overly restrictive.
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