
TASBE: A Tool-Chain to Accelerate Synthetic Biological
Engineering

Jacob Beal1 Ron Weiss2 Douglas Densmore3 Aaron Adler1

Jonathan Babb2 Swapnil Bhatia3 Noah Davidsohn2 Traci Haddock3

Fusun Yaman1 Richard Schantz1 Joseph Loyall1
1BBN Technologies 10 Moulton Street Cambridge, MA, USA 02138

2MIT 77 Massachusetts Ave Cambridge, MA, USA 02139
3Boston University 8 Saint Mary’s St. Boston, MA, USA 02215

{jakebeal,fyaman, aadler, rschantz, jloyall}@bbn.com,
{rweiss, ndavidso, jbabb}@mit.edu, {dougd,swapnilb,thaddock}@bu.edu

1. MOTIVATION
There is a pressing need for design automation tools for

synthetic biology systems. Compared to electronic circuits,
cellular information processing has more complex elemen-
tary components and a greater complexity of interactions
among components. Moreover, chemical computation within
a cell is strongly affected both by other computations si-
multaneously occurring in the cell and by the cell’s native
metabolic processes and its external environment. This com-
plexity implies an engineering work-flow that is currently
highly iterative, error-prone, and extremely slow—critical
problems that must all be addressed in order to realize the
potential of synthetic biology.

In recent years, an assortment of tools have emerged, each
independently addressing various parts of the design au-
tomation challenge. For example, the RBS calculator[10]
helps design ribosome binding sites, the GeneDesign suite[9]
optimizes coding sequences, and TinkerCell[5] is a graphical
tool for visualizing and designing regulatory networks, to
name only a few. A few projects, such as Eugene[4], Geno-
CAD[6], GEC[8], and Proto[2], have even begun extending
design up to higher level languages. The time is now right to
begin connecting and organizing such efforts together into a
tool-chain for integrated end-to-end design and construction
of synthetic biology systems.

In the TASBE project, we are developing one such ap-
proach to factoring the problem of design and assembly into
sub-problems which can be more readily solved. Practition-
ers using our tool-chain will be able to design organisms
using high level behavior descriptions, which are automat-
ically transformed into genetic regulatory network designs,
then assembled into DNA samples ready for in vivo execu-
tion. The tool-chain is also free and open software, which
will allow researchers to incorporate their own design tools,
thereby disseminating their results to the community and
enhancing the capabilities of the tool-chain.

2. PROTOTYPE TOOL-CHAIN
TASBE is a modular tool-chain with both forward and

backward information flow, designed to support multiple

Work sponsored by DARPA I2O under contract HR0011-10-C-0168; the
views and conclusions contained in this document are those of the authors
and not DARPA or the U.S. Government.
IWBDA ’11 San Diego, California, USA

!"#$%&'()*+,+-).+'/"&012%)

34'5"$/5)6+%+1/)7+#8-$52"9):+5;2"<)

.:3)=$"5')>+?8+%/+)

3''+(4-9)@%'5"8/12%')

A+--'))

High level simulator

Coarse chemical simulator

Testing

B&#C)*+,+-).+'/"&012%)
If detect explosives:
 emit signal
If signal > threshold:
 glow red

Detailed chemical simulator

Figure 1: Prototype TASBE tool-chain architecture.

compatible workflows and integration of additional design
tools developed by the broader research community. Figure
1 shows the prototype TASBE architecture.

At the highest level, TASBE allows expression of the de-
sired system function using a biologically-focused high-level
programming language. TASBE then uses a compiler to
transform this design systematically into an abstract ge-
netic regulatory network design (AGRN), which specifies
the types of DNA parts and interactions needed to imple-
ment the network. Optimization is performed on this net-
work to allow a parsimonious realization under constraints
of metabolic load and biological part availability. The ab-
stract network is then instantiated by mapping the network
components to existing biological parts with the help of a
parts library that documents the chemical properties of such
parts. The properties of these parts are established through
a process of DNA device characterization, in which the in-
put/output transfer functions of biological devices are mea-
sured in support of abstractions such as the generalized dig-
ital static discipline. Finally, the desired DNA sequence is
assembled using standard laboratory automation robotics,

which execute an automatically generated sequence of bio-
logical protocols.

At each stage, simulation and testing tools help with sys-
tem debugging and provide a counter-flow of information
(black dotted arrows in Figure 1) to the human designer.
This approach maximizes the chance of catching design flaws
early and minimizes the number of times that an actual bio-
logical system must be assembled and tested. Our prototype
implementation contains the following components:

• A biologically-focused high-level language: A high-level
programming language is a critical component of a
tool-chain because it allows cell behavior to be de-
scribed succinctly, allowing non-biologists to partici-
pate in the design process. We have chosen Proto [1],
a spatial computing language, since it offers a unique
continuous parallel dataflow semantics that is a good
match for current biological computating models.

• BioCompiler: We have implemented a motif-based com-
piler[3] that transforms dataflow computations into AGRNs.
The BioCompiler maps Proto primitives to genetic net-
work motifs to produce an AGRN, then uses adapted
versions of traditional compiler optimizations, such as
dead code elimination and copy propagation, to reduce
AGRN complexity.

• Mapping between abstract and available DNA parts To
realize an AGRN, each AGRN element must be mapped
to an available DNA part, and this mapping must be
chosen such that the resulting network will function
correctly within the bounds of chemical, physical, and
metabolic constraints. Our MatchMaker system uses
characterization data and a generalized version of the
digital static discipline to guide a heuristic search for a
correct implementation of an AGRN, then performs a
greedy linearization of this network to yield a sequence
of available DNA parts to be assembled.

• DNA Assembly Planning Laboratory automation equip-
ment can execute DNA assembly protocols faster and
more reliably than human technicians. Our Assem-
bly Planner system, implemented in the Clotho frame-
work[7], inputs a sequence of DNA parts and a protocol
type and produces a set of assembly instructions for the
laboratory robot to execute the protocol and produce
a DNA sample ready for in vivo execution. By access-
ing laboratory inventory, this system can also optimize
the number of assembly steps and the reusability of as-
sembly mid-products.

• Robotic Assembly Finally, DNA assembly protocols are
executed on a laboratory automation robot. At present,
we are using a Tecan Evo 150, and two assembly pro-
tocols: BioBricks assembly for E. coli and a modified
Gibson/Gateway protocol that uses magnetic beads
and magnetic blocks to automate manual steps in DNA
assembly.

Figure 2 shows a simple program, “If the cell detects the
Dox molecule it fluoresces cyan, otherwise it fluoresces yel-
low,” as it passes through the stages of the tool-chain. We
have achieved an end-to-end integration of the software tools,
and have used it to produce part sequence designs equiva-
lent to known good designs executing in vivo in the Weiss

laboratory. Once our current work on assembly protocol im-
plementation is complete, these designs will be transformed
into DNA samples, providing the first end-to-end compila-
tion of high-level programs into DNA samples.

(yellow (not (cyan (Dox))))!

!"#$ %&'($ (")$ &*++",$

-)./$ 012$

34*56'$ -)./$ 3.-*$ 012$ 3.-*$ 7'%8$ 34*56'9
7'%:6:;<$

=>12$?;-@A$ A#@A$

B$ =>12$

!"#$

Figure 2: A simple program, to fluoresce cyan in the
presence of Dox and yellow in its absence, passing
through the stages of the tool-chain.

Note that although the prototype architecture is mostly
linear, linearity is not an assumption of the architecture, but
merely reflects the limited set of components in the initial
prototype. Additionally, we have chosen Clotho[7] for an im-
plementation framework for many of these components as its
“app store”API and data management model facilitate inte-
gration of these tools and potentially many others. Finally,
the components of our tool-chain are all designed for exten-
sibility: Proto and the BioCompiler accept new primitive
and motif definitions, MatchMaker can be augmented with
additional design constraints, the Assembly Planner can be
extended for new protocols, and the robotic automation sys-
tems are being controlled with a generalized API that should
be portable to other robotic systems.

3. CONTRIBUTIONS
TASBE is an initial step towards achieving automation in

synthetic biology. We have developed an initial set of pro-
totype tools that can serve as a backbone for developing a
larger, more comprehensive tool-chain. Our choice of de-
composition attempts to minimize interaction between sub-
tasks, thereby simplifying a potentially intractable problem
of design at a cost of possible increased cost and inability to
find solutions at the edge of design viability. Initial results
point toward likely success of the TASBE approach. We
intend to offer this tool-chain as an open platform for the
research community, potentially multiplying the impact of
each new design tool and significantly speeding the progress
of synthetic biology research.

4. REFERENCES

[1] J. Beal and J. Bachrach. Infrastructure for engineered
emergence in sensor/actuator networks. IEEE
Intelligent Systems, pages 10–19, March/April 2006.

[2] J. Beal and J. Bachrach. Cells are plausible targets for
high-level spatial languages. In Spatial Computing
Workshop, 2008.

[3] J. Beal, T. Lu, and R. Weiss. Automatic compilation
from high-level languages to genetic regulatory
networks. In Proceedings of IWBDA: International
Workshop on Bio-Design Automation at DAC, June
2010.

[4] Berkeley Software 2009 iGem Team. Eugene.
http://2009.igem.org/
Team:Berkeley Software/Eugene, October 2009.

[5] D. Chandran, F. Bergmann, and H. Sauro. Tinkercell:
modular cad tool for synthetic biology. Journal of
Biological Engineering, 3(1):19, 2009.

[6] M. Czar, Y. Cai, and J. Peccoud. Writing DNA with
GenoCAD. Nucleic Acids Research, 37(W40-7), 2009.

[7] D. Densmore, A. V. Devender, M. Johnson, and
N. Sritanyaratana. A platform-based design
environment for synthetic biological systems. In
TAPIA ’09, pages 24–29. ACM, 2009.

[8] M. Pedersen and A. Phillips. Towards programming
languages for genetic engineering of living cells.
Journal of the Royal Society Interface, 2009.

[9] S. Richardson, S. Wheelan, R. Yarrington, and
J. Boeke. Genedesign: rapid, automated design of
multikilobase synthetic genes. Genome Res.,
16(4):550–6, April 2006.

[10] H. Salis, E. Mirsky, and C. Voigt. Automated design
of synthetic ribosome binding sites to control protein
expression. Nature Biotechnology, 27:946–950, 2009.

