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1. MOTIVATION
There are a wide range of applications in which it would

be useful to have a small synthetic biology circuit that could
reliably classify cell state. For example, in [5], the authors
propose cancer therapy based on a circuit that uses miRNA
markers to test whether a cell belongs to a particular type
of cancer and then kills only those cells. The authors then
demonstrate an miRNA classifier that can distinguish be-
tween HeLa cells and several other cell lines. This same
approach might be applied to therapeutics for many other
diseases, as well as for high-precision assays that can mon-
itor the cell-by-cell progress of a disease being studied, and
for many other possible applications.

There are a very large number of possible markers and an
even greater number of combinatorial circuits that can be
used to test for particular cell states of interest. Effective de-
sign and optimization of such circuits therefore demands the
application of design automation techniques. We are devel-
oping an information-based technique for designing cell class
detectors, which is further compatible with the automated
design approaches presented in [1] and [2], thereby offering
the potential for rapid design and prototyping of cell-state
classifier applications.

2. FINDING CANDIDATE MARKERS
We began by evaluating the information content of indi-

vidual miRNA markers from the data set in [4] of cancerous
and healthy cell types in humans. This data set contains
172 cell types and 708 miRNA markers. We evaluated in-
formation content with respect to the problem of fully dif-
ferentiating all cell lines, both cancerous and healthy. For
this evaluation, we used a standard measure of information
gain and a multiplicative Gaussian noise model for threshold
testing. With each marker, we considered all thresholds at
the geometric mean of two data points and selected the best
threshold for each of a logarithmically scaled range of noise
levels from σ = 0 to σ = 10.

The available information is shown in Figure 1, which
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Figure 1: Bits for miRNAs in data set from [4] vs
noise model, sorted by miRNA rank.

plots rank-sorted information level of miRNAs vs. noise.
Importantly, we find that there are a large number of high-
information candidate miRNA markers, and the information
content of most of these markers does not degrade rapidly
with the injection of noise. This means that the cell-state
detection approach of [5] is likely to be applicable to a broad
spectrum of cell classes, and that automated techniques are
likely to be able to design such detectors well.

3. DESIGN OF CELL CLASS DETECTORS
Having determined that there was a large supply of miR-

NAs likely to be good detectors of cell state, we next con-
structed a method for automatic construction of a detector
for a class of cells. Our preliminary method for constructing
detectors uses greedy elimination, as follows:

1. Partition cells into k classes to be distinguished.

2. Compute candidate marker information gain and op-
timal thresholds with respect to these classes.

3. Discard all except for the C candidates with the high-
est information.

4. Determine which candidate can be discarded with min-
imal rise in the predicted misclassification rate, and
discard that candidate.

5. Repeat until there are only n candidate markers re-
maining or until misclassification rate would rise be-
yond acceptable limits.
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Figure 2: Automated design of a 5-marker detec-
tor to differentiate “B-ALL” cancer (red) from nor-
mal cells (blue), using our preliminary method for
threshold selection, produces a circuit expected to
produce no false positives (blue > 0.2) and a mod-
erate number of false negatives (red < 0.2).

We tested this method by constructing a detector for dif-
ferentiating the “B-ALL” class of cancers from all healthy
cells in the data set from [4], using C = 50 and n = 5. Fig-
ure 2 shows the result of applying the model used in [5] to the
thresholds computed using a digital test model. Our detec-
tor is predicted to produce no false positives and a moderate
number of false negatives. Moreover, adjusting the method
to match the threshold selection model with the computa-
tional model is expected to greatly reduce the number of
false negatives.

This design approach could easily be combined with the
automatic compilation techniques presented in [1]. The tem-
plate for thresholded miRNA sensor tests might be expressed
in Proto as:

(def miRNA< (mir|symbol threshold|scalar) boolean
:grn-motif ((RXN mir|scalar represses value)

(P|threshold value T)))

(def miRNA> (mir|symbol threshold|scalar) boolean
:grn-motif ((RXN mir|scalar represses value)

(RXN mir|scalar represses ?X)
(P|threshold ?X T)
(P R- ?X value T)))

and the full detector circuit as:

(and (miRNA< ’hsa-let-7c 5.0)
(miRNA> ’hsa-miR-130a 0.3)
(miRNA< ’hsa-miR-29b 27.0)
(miRNA< ’hsa-miR-154 0.3)
(miRNA< ’hsa-miR-197 0.3))

Linking marker selection to program synthesis and GRN
design in this way would then allow a tool-chain approach
(e.g., [2]) to rapidly construct plasmids for candidate detec-
tor circuits with a high probability of correct operation.

4. APPLICATION TO OTHER DISEASES
Although the data set discussed so far deals only with hu-

man cancers, the approach is expected to generalize. Since
cell state is generally tightly linked with gene expression, it is
likely that the same approach should be applicable to detect
a broad spectrum of other cell states of interest, including
many types of disease in many types of organisms.

To test this hypothesis, we applied our algorithm for de-
tecting candidate markers to a transcriptome data set for a
different disease. In particular, we consider Series GSE12254
RNA microarray data on the progress of LCMV arenavirus
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Figure 3: The highest information mRNAs in mi-
croarray data for macaques infected with arenavirus
are all strongly correlated with disease states (label
describes samples in above-threshold box).

in the liver of macaques, from [3]. Note that this data set
contains mRNA rather than miRNA markers, and hence
would require different sensor designs, though the approach
is otherwise the same.

As with the human cancer data set, our algorithm finds
a number of high-information candidate markers. Particu-
larly interestingly, even when classification targets are not
provided, the disease shows up quite clearly in this data
set. Figure 3 shows the top four candidates, all of which are
strongly correlated with particular disease states.

5. CONTRIBUTIONS AND FUTURE WORK
We have demonstrated that it is possible to use infor-

mational measures to design candidate cell-state detection
circuits from miRNA array data. We are already working
towards the clear next steps in developing this approach: 1)
tuning the circuit thresholds for better compatibility with
available sensors and computational parts and 2) realiza-
tion of cell-state detector designs into plasmids that can be
used for testing of the circuits under transfection into living
cells. We expect that this capability, when fully developed,
may enable a wide array of high-fidelity disease assays and
possible new therapeutic approaches.
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