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1 INTRODUCTION

During the last decade, new technologies have been developed
for the combinatorial assembly of genetic parts [8, 9], enabling
synthetic biologists to more readily generate libraries of genetic
construct variants. These types of combinatorial libraries can play
an important role in genetic design by allowing designers to explore
the impact of part choice, order, and orientation on construct behav-
ior. In order to support the design of such libraries, new tools and
formalisms have been developed to enable the specification, permu-
tation, and sampling of combinatorial genetic design spaces [1, 2].
In turn, these formalisms have given rise to the need for a stan-
dard representation of combinatorial genetic designs in order to
enable sharing of such designs between tools and laboratories and
to simplify human and machine reasoning over them.

As a basis for this representation, we have chosen the Synthetic
Biology Open Language (SBOL), an existing community standard
for representing both structural and functional aspects of genetic
designs [4, 7]. SBOL has support for hierarchical design, modu-
lar composition, and partial specification, making it a natural fit
for representing combinatorial design templates and variables. Ac-
cordingly, we have developed an extension of SBOL to represent
combinatorial designs, and we have incorporated this extension
into the SBOL 2.2 specification [3] and SBOL software libraries
(www.sbolstandard.org/libsbol). Here we briefly summarize the
data model for this extension and discuss its application in two ex-
ample use cases: a library of pathway variants to optimize enzyme
expression [5], and a library of genetic circuit variants to optimize
logic gate function [6, 9].

2 REPRESENTING COMBINATORIAL DESIGN

Building on the core data model of SBOL, the representation of
combinatorial design is a relatively lightweight extension. Namely,
its representational semantics involve the specification of a design
template and any constraints on its structure, the variable portions
of the template and their cardinality, and the variants or values that
these variables can assume. SBOL does not require any particular
algorithm or data structure to be used in enumerating designs from
a combinatorial specification, but provides rules and best practices
to validate whether these designs are a correct realization of their
specification.

There are two classes in the new SBOL 2.2 combinatorial data
model: the CombinatorialDerivation class and the VariableCompo-
nent class (Figure 1). The CombinatorialDerivation class is used to
specify a template for a library of combinatorial designs and to link
that template to a collection of variables and values that will fill in
the template to form specific combinations. The template is defined
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Figure 1: Combinatorial designs can be specified in SBOL 2.2
using two new classes: CombinatorialDerivation and Vari-
ableComponent.

using a ComponentDefinition: ComponentDefinition is a base class
of SBOL used to specify the structure of a biopolymer in a modular,
hierarchical manner, along with constraints on this structure. For
instance, the ComponentDefinition for an abstract transcriptional
unit (TU) would likely contain sub-Component objects for a pro-
moter, coding sequence (CDS), and terminator without sequences
and a set of SequenceConstraint objects to assert their relative or-
dering and orientations. The CombinatorialDerivation class can
also be used to broadly recommend how many individual designs to
derive from the template by setting its strategy property. At present,
two strategy values are defined: either exhaustive enumeration of
every possible design or sampling an unspecified subset.

The other class, VariableComponent, is used to specify the way
in which a CombinatorialDerivation template is filled in to create
fully instantiated designs. Each instance of the VariableComponent
class specifies a set of available ComponentDefinition variants that
can define a Component from the template. These variants can be
aggregated individually or as part of an SBOL Collection, or can
be derived in accordance with another CombinatorialDerivation,
enabling the specification of a hierarchical combinatorial design.
The operator property then specifies how many Component objects
are expected to be derived from the template Component (one, zero-
or-one, zero-or-more, or one-or-more). A more detailed description
of the CombinatorialDerivation and VariableComponent classes
can be found in the SBOL 2.2 technical specification [3].

3 EXAMPLE USE CASES

Use Case: Pathway Design. Figure 2 demonstrates how SBOL
can be used to encode the combinatorial design of a library of
3,125 violacein pathway variants originally designed by the Dueber
lab [5]. The SBOL representation consists of a two-level hierarchy
of ComponentDefinition and CombinatorialDerivation objects. The
root ComponentDefinition is a template that specifies the complete
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Figure 2: Representation of violacein pathway combinato-
rial design using SBOL.

ordering of five generic TUs, each defined by the same Compo-
nentDefinition containing a promoter followed by a CDS and a
terminator, all with the same orientation. The root Combinatori-
alDerivation then specifies that each of the five TUs in the template
should be filled in with one of five possible TUs with different
promoters as specified by a leaf CombinatorialDerivation. Each
leaf CombinatorialDerivation refers to the same set of five pro-
moter variants but refers to a different enzyme CDS in the violacein
pathway.

Use Case: Genetic Circuit Design. Figure 3 demonstrates how
SBOL can be used to encode the combinatorial design of all 103
genetic circuit variants that can be constructed from the Cello gate
NOR/NOT gate library. The key differences between this combi-
natorial design and that of the violacein pathway are that its root
CombinatorialDerivation does not specify the relative order or ori-
entation of any of its ten generic TUs, nor does it require that each
of these TUs be filled in (because each VariableComponent has a
zero-or-one operator). Consequently, the circuit derived from this
combinatorial design can contain any number of TUs up to ten,
and these TUs can have any ordering or orientation. In addition,
each leaf CombinatorialDerivation has a single zero-or-one Vari-
ableComponent corresponding to the first promoter in the template
TU ComponentDefinition, thus capturing the fact that each derived
TU can have NOT or NOR logic (one promoter or two promoters).

4 DISCUSSION AND CONTRIBUTIONS

Currently, SBOL’s representation of combinatorial design is equiva-
lent in expressive power to a regular language. Though not demon-
strated by these use cases, SBOL can be used to represent design
patterns in which a particular component or motif is repeated an
indefinite number of times. For example, this could be used to rep-
resent the design of a promoter with a variable number of operator
sites. Should the need arise to represent palindromic design pat-
terns, such as with a context-free language, SBOL can be extended
with additional types of constraints to assert that the same number
of components must be derived from different parts of the template.
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Figure 3: Representation of Cello circuit combinatorial de-
sign using SBOL.

Many key cases of combinatorial library design can be repre-
sented using SBOL with the new combinatorial design extension,
ranging from existing industrial applications in optimizing biosyn-
thetic pathways to current research in controlling biological sys-
tems. This improves over prior representations by integrating com-
binatorial design with hierarchical, ontology-supported represen-
tation, allowing unambiguous reasoning about complete designs,
as well as their relationship to information sources, experimental
products, and other designs. We thus anticipate that SBOL repre-
sentation of combinatorial design will support improved tooling
and workflows, facilitating better reuse and attribution of designs,
faster engineering of circuits and components, and novel applica-
tions across many domains of synthetic biology.
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