
28

Building an Open Representation for Biological Protocols

BRYAN BARTLEY, JACOB BEAL, and MILES ROGERS, Raytheon BBN Technologies, USA

DANIEL BRYCE and ROBERT P. GOLDMAN, SIFT, LLC, USA

BENJAMIN KELLER, University of Washington, USA

PETER LEE, Ginkgo Bioworks, USA

VANESSA BIGGERS and JOSHUA NOWAK, Strateos, Inc., USA

MARK WESTON, Netrias, Inc., USA

Laboratory protocols are critical to biological research and development, yet difficult to communicate and

reproduce across projects, investigators, and organizations. While many attempts have been made to address

this challenge, there is currently no available protocol representation that is unambiguous enough for pre-

cise interpretation and automation, yet simultaneously “human friendly” and abstract enough to enable reuse

and adaptation. The Laboratory Open Protocol language (LabOP) is a free and open protocol representation

aiming to address this gap, building on a foundation of UML, Autoprotocol, Aquarium, SBOL RDF, and the

Provenance Ontology. LabOP provides a linked-data representation both for protocols and for records of their

execution and the resulting data, as well as a framework for exporting from LabOP for execution by either

humans or laboratory automation. LabOP is currently implemented in the form of an RDF knowledge repre-

sentation, specification document, and Python library, and supports execution as manual “paper protocols,”

by Autoprotocol or by Opentrons. From this initial implementation, LabOP is being further developed as an

open community effort.

CCS Concepts: • Applied computing → Life and medical sciences; • Computing methodologies →
Knowledge representation and reasoning;

Additional Key Words and Phrases: Protocol, biology, representation, UML, RDF, SBOL

ACM Reference format:

Bryan Bartley, Jacob Beal, Miles Rogers, Daniel Bryce, Robert P. Goldman, Benjamin Keller, Peter Lee, Vanessa

Biggers, Joshua Nowak, and Mark Weston. 2023. Building an Open Representation for Biological Protocols.

ACM J. Emerg. Technol. Comput. Syst. 19, 3, Article 28 (June 2023), 21 pages.

https://doi.org/10.1145/3604568

This work was supported by Air Force Research Laboratory (AFRL) and DARPA contracts FA8750-17-C-0184, FA8750-17-

C-0231, and HR001117C0095.

Authors’ addresses: B. Bartley, J. Beal, and M. Rogers, Raytheon BBN Technologies, 10 Moulton Street, Cambridge,

MA 02138; emails: bryan.a.bartley@raytheon.com, jakebeal@ieee.org, miles.rogers@raytheon.com; D. Bryce and R. P.

Goldman, SIFT, LLC, 319 N. 1st Avenue, Suite 400, Minneapolis, MN 55401; emails: {dbryce, rpgoldman}@sift.net; B. Keller,

University of Washington, 185 Stevens Way, Seattle, WA 98195; email: bjkeller@uw.edu; P. Lee, Ginkgo Bioworks, 27 Dry-

dock Avenue, 8th Floor, Boston, MA 02210; email: plee@ginkgobioworks.com; V. Biggers and J. Nowak, Strateos, Inc., 3565

Haven Ave Suite 3, Menlo Park, CA 94025; emails: {vanessa.biggers, josh.nowak}@strateos.com; M. Weston, Netrias, Inc.,

One Broadway, 14th Floor, Cambridge, MA 02142; email: weston@netrias.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1550-4832/2023/06-ART28 $15.00

https://doi.org/10.1145/3604568

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 3, Article 28. Publication date: June 2023.

https://orcid.org/0000-0002-1597-4022
https://orcid.org/0000-0002-1663-5102
https://orcid.org/0000-0003-2804-880X
https://orcid.org/0000-0001-5809-3658
https://orcid.org/0000-0002-5851-4851
https://orcid.org/0000-0001-7377-6051
https://orcid.org/0000-0002-5553-9041
https://orcid.org/0009-0002-6576-2797
https://orcid.org/0000-0001-7865-1485
https://orcid.org/0000-0002-1333-2130
https://doi.org/10.1145/3604568
mailto:permissions@acm.org
https://doi.org/10.1145/3604568
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3604568&domain=pdf&date_stamp=2023-06-23

28:2 B. Bartley et al.

1 INTRODUCTION

Laboratory protocols are critical to biological research and development. However, protocols are
often difficult to communicate or reproduce, given the differences in context, skills, instruments,
and other resources between different projects, investigators, and organizations. One of the precon-
ditions for addressing these challenges is for there to be a commonly used data representation for
describing laboratory protocols that is unambiguous enough for precise interpretation and automa-
tion, yet simultaneously “human friendly” and abstract enough to support reuse and adaptation.

While there has been much prior work on representations for protocols, prior approaches have
generally been limited either by their dependence on natural language, which may be ambiguous
or lacking crucial detail, or the expressiveness of their representation, which may be overly specific
to an organization’s execution environment. Currently, many protocol representations focus on
simplifying the capture and distribution of descriptions in natural language. Such representations
include protocols.io [34] and the many commercial electronic laboratory notebook products. A
similar approach is used for recording protocol execution information with community-defined
minimum information standards such as MIAME [8], MIFlowCyt [20], and STRENDA [35]. Much
of the information in such approaches is encoded using natural language, a “human friendly”
option that is much easier to elicit from experimentalists, at the expense of machine interpretabil-
ity. Consequently, protocols and protocol execution records captured with such representations
cannot be automatically validated and are often ambiguous, incorrect, or lack key information.
For the same reasons, such protocols cannot generally be executed by laboratory automation
systems.

Other protocol representations have focused on automation-assisted execution. In many cases,
these are highly bespoke solutions catering to particular hardware, which in turn is often propri-
etary and vendor-specific. Some representations have been made applicable to a broader set of
automation systems, however, such as Autoprotocol [23] and Antha [31], or instead use labora-
tory technicians as their automation, as in the case of Aquarium [38]. All of these representations
have been generally “low level” in their description of protocols, focusing on very specific details
of each operation. This specificity, which, on the one hand, enables automated execution, on the
other hand, imposes barriers to adoption and to generalization and reuse, since this level of detail
often obscures understanding and is too tied to the specifics of a particular laboratory to readily
transfer into different environments. Such representations are typically also difficult to translate
into more “human-friendly” forms.

Finally, there are a number of workflow languages that solve similar problems in business logic
or information processing, such as Unified Modeling Language (UML) [26], the Common Work-
flow Language [1], Taverna [39], and Cromwell [9], not to mention biology-specific workflow sys-
tems such as Toil [37] and Galaxy [16]. The execution models of such systems are in some cases
general enough to be applied to the description and execution of laboratory protocols, but to the
best of our knowledge no such application has been implemented. Further, the very generality of
these approaches can make it more difficult for a biological domain expert to comprehend how
to apply them to protocols, given the large gap between abstract task execution concepts and the
specifics of particular tasks that must be performed in a laboratory.

Critically, none of this prior work simultaneously supports all three of these key requirements:
(1) translation into “human-friendly” natural language descriptions of protocols, (2) transferring
protocols across heterogeneous automation platforms, and (3) generality of workflows. These re-
quirements became critically apparent to the authors during the DARPA Synergistic Discov-

ery and Design (SD2) program, which aimed to develop data-driven discovery and design for
laboratory-based disciplines such as synthetic biology. With more than 100 researchers across
more than 20 organizations, several of which ran experimental facilities with different forms of

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 3, Article 28. Publication date: June 2023.

Building an Open Representation for Biological Protocols 28:3

high-throughput automation, participants were forced to confront challenges around protocol
sharing, experiment reproducibility, automation heterogeneity, and communication between do-
main experts and automation experts. The lessons learned in tackling these challenges led directly
to identification of the three key requirements above and the development of the protocol repre-
sentation presented here.

We thus present a unified approach to protocol representation that bridges prior approaches
through the development of the Laboratory Open Protocol language (LabOP), a free and open
protocol representation building on a foundation of UML [26], Autoprotocol [23], Aquarium [38],
the Synthetic Biology Open Language (SBOL) [2, 22], and the Provenance Ontology (PROV-

O) [24]. In Section 2, we introduce the high-level requirements for a common protocol language
that were established in stakeholder discussions. In Section 3, we introduce the technological
foundations of LabOP as a linked-data standard, followed by a higher-level overview of how
protocols are represented. Section 4 discusses the current prototype software implementations of
LabOP, and Section 5 provides examples of how LabOP supports each of the design requirements.
Finally, Section 6 discusses ongoing development by the LabOP community and plans for future
development.

2 DESIGN REQUIREMENTS

Information about laboratory protocols is used for a wide range of purposes in research and de-
velopment at many different stages of experiment design, execution, data analysis, interpretation,
and communication and sharing with other groups. Through our bioprotocols working group dis-
cussions, including representatives from industrial labs, academic labs, and biofoundries, we iden-
tified the following set of design requirements necessary for a broadly applicable representation
of biological protocols:

• Execution by either humans or machines: When available, laboratory automation can
greatly improve the productivity of researchers, so protocols should be specified in sufficient
detail to enable them to be mapped for machine execution. Many laboratories, however, do
not have automation available. Moreover, even when some degree of automation is available,
it is common for protocols to incorporate both automated and manual stages, so protocols
also need to be able to be presented in a succinct and human-friendly form.
• Mapping protocols from one laboratory environment to another: Protocol replication

and reuse requires the ability to map a protocol from one laboratory to another, despite their
differences in equipment, inventory, and information systems.
• Representation of diverse workflow patterns: A protocol representation must be gen-

eral enough to span the wide variety of activities and workflow patterns used in protocols.
It must be possible to extend it to activities and workflow patterns not considered when the
representation was designed.
• Maintaining execution records and associated metadata markup: When a protocol is

executed, it is important to be able to record the specific time of execution, the laboratory
and personnel that executed the protocol, equipment used, and so on. Information in the
protocol can be used to automatically tag measurements with metadata, such as the entities
being measured, their roles in the experimental design, units of measurement, and so on.
• Recording modifications of protocols and the relationship between different

versions: Protocols are likely to be the subject of ongoing improvement and maintenance.
For example, a protocol may be modified to make the protocol simpler to execute or more
reliable, enable it to be executed at a lab with different equipment, to scale it up or down, and
so on.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 3, Article 28. Publication date: June 2023.

28:4 B. Bartley et al.

• Verification and validation of protocol completeness and coherence: Authoring a
protocol requires substantial care and effort, and the usefulness of the protocol is compro-
mised if its specification is ill-formed, erroneous, or incomplete (e.g., the classic “inadequate
methods section” issue in scientific publications).
• Planning, scheduling, and allocation of laboratory resources: Laboratory resources

are valuable, and some organizations will want to be able to optimize their use. To do so,
a protocol representation should support (at least) extraction of resource requirements and
estimated durations from activities in the protocol.

Note that the first three requirements correspond to the key requirements of “human-
friendliness,” transfer between heterogenous environments, and generality, while the latter four
requirements are more generic automation capabilities. In Section 5 below, we provide concrete
examples that demonstrate how LabOP meets each of these requirements.

3 REPRESENTATIONAL FOUNDATIONS

To make LabOP effective as a broadly shared community standard, we have adopted a principle of
building upon existing standards to maximize compatibility and interoperability, taking advantage
of existing tooling, and making the implementation as lightweight as possible. The LabOP data
model thus unites representational elements that have proven useful in other protocol efforts by
our stakeholder community.

Specifically, LabOP is defined as an ontology for storing linked data and draws from represen-
tational elements found in UML [26], Autoprotocol [23], Aquarium [38], the Synthetic Biology

Open Language (SBOL) [2, 22], and the Provenance Ontology (PROV-O) [24]. In this respect,
the key virtue of LabOP is not so much any specific novelty, but rather its unifying approach,
which integrates these elements to satisfy all of the requirements in Section 2.

In this section, we provide a high-level, conceptual overview of these representational elements.
We do not attempt a detailed description of the LabOP data model here; for this, we refer readers to
the current specification document [7] or to direct inspection of the data model using an ontology
editor such as Protégé [25].

3.1 Ontology Encoding Provides a Common Linked Data Format

LabOP is fundamentally an ontology encoded in the Web Ontology Language (OWL) [6] and is
based in Semantic Web practices and resources. This means that language uses Uniform Resource

Identifiers (URIs) to unambiguously identify and define protocol elements, such as activities,
samples, datasets, and so on, and links these objects together into a graph data structure. It is, to our
knowledge, the first protocol language based on a linked-data representation. This implementation
choice has multiple advantages for supporting the requirements described above.

First, as an ontology, LabOP supports machine reasoning about conceptual abstractions (i.e.,
classes, subclasses, superclasses, etc.), explicit instances of classes, and their relationships. The
LabOP ontology thus defines a data model or “language” that organizes protocol-related concepts.
This enables it to specify protocol details (e.g., labware) at different levels of abstraction, while
using ontological inference to translate protocols into different laboratory environments, as high-
lighted later in Section 5. LabOP is also interoperable with all of the many other controlled vocabu-
laries and bio-ontologies with the same linked-data interface, including PubChem [18], ChEBI [12],
UniProt [11], and the widely used ontologies in the OBO Foundry [17] such as the Sequence On-
tology [14] and the NCI Thesaurus [32]. These are used to annotate LabOP protocols and their
execution records with standardized metadata that do not depend on vagaries of natural language
and human interpretation (e.g., unambiguously identifying a reagent via a PubChem substance
identifier).

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 3, Article 28. Publication date: June 2023.

Building an Open Representation for Biological Protocols 28:5

Fig. 1. The LabOP language specifies three layers of abstraction: operation libraries, protocols, and execu-
tions. Blue arrows denote the control flow of activities; magenta arrows, flows of input and output tokens;
and yellow arrows, an execution trace.

Furthermore, because LabOP is encoded as linked data, the history and contextual details of a
protocol execution can be reconstructed from recorded metadata. For example, given a protocol
that collects flow cytometry data on samples of different microbial strains under varying growth
conditions, the protocol specification supports automated linking of each FCS file produced by
the flow cytometer with contextual information about the strain, growth conditions, time of data
collection, calibration, and so on, of the sample from which the FCS file was produced.

3.2 UML Provides Flexible Semantics for Different Workflow Models

Because the core of a protocol is a workflow of activities to be carried out, a key design choice
in LabOP was to adopt an established standard for workflow modeling that could provide a well-
defined and general formal semantics, yet also be sufficiently abstract as to allow succinct expres-
sion and adaptation. We found such a model in Unified Modeling Language (UML) behavior
representations (specifically, the current version 2.5.1 [26]), which forms the central abstraction
layer for LabOP (“Protocols” in Figure 1). UML behaviors provide a general, domain-independent
workflow model. We have translated this portion of the UML specification into OWL, which is, to
the best of our knowledge, the first such encoding that has been developed.

UML’s execution model is universally expressive, including support for serial, parallel, non-
deterministic, and distributed execution. The execution semantics are based on a notion of token
flow similar to those of Petri nets [28]. A Petri net is a graph in which nodes have input edges and
output edges. Roughly speaking, a Petri net node is enabled to “fire,” sending a token out all of
its output edges when all of its input edges are filled with tokens; at the same time, those input
tokens are removed. The control flow semantics can support ordered steps as well as steps in par-
allel or in arbitrary order. Execution patterns may also include loops and recursions. Furthermore,
since tokens can potentially be communicated between different agents, the model also allows for
execution to be distributed, e.g., between several pieces of automation equipment, as a mixture of
human and automated execution, or even across a group of collaborating laboratories.

Another advantage of UML is that it was developed for use as a diagrammatic language as well
as a data model. Thus, it also provides a set of graphical flow control and abstraction constructs
for succinct and human-friendly communication about complex workflows. At the same time, the

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 3, Article 28. Publication date: June 2023.

28:6 B. Bartley et al.

Fig. 2. LabOP’s laboratory operations are organized into libraries based on required equipment types. The
initial collection of libraries “bundled” into the LabOP prototype are based on Autoprotocol, currently imple-
menting most functionality from that language, plus operations for defining and manipulating collections
of samples.

formal execution model provides an unambiguous semantics for verification, validation, and other
forms of machine reasoning.

3.3 Autoprotocol Provides Definitions of Laboratory Operations

As UML is abstract and domain-independent, it does not provide any definitions for laboratory
operations. For these, LabOP begins by drawing definitions from Autoprotocol [23]. Autoprotocol
describes biological protocols in terms of a sequence of instructions, and while this linear workflow
is not expressive enough (hence UML), the instructions themselves provide useful examples of
laboratory operations that can be readily mapped from one laboratory environment to another.

These instructions, such as liquid_handle, incubate, provision, and spin, have been de-
signed and refined by the authors of Autoprotocol to be a basis set for expressing the activities
of common biological protocols in a manner readily transported between different pieces of lab-
oratory automation. The Autoprotocol instructions thus provide a reasonable starting point for
building out LabOP’s collection of libraries of laboratory-independent operations.

Figure 2 shows how the current implementation of LabOP organizes operations adapted from
Autoprotocol into four libraries. Some activities commonly expressed using Autoprotocol opera-
tions are at a lower level than desirable for a human experimenter, however, such as specifying
pipette mixing as a sequence of repetitive liquid handling operations. Not only are such activities
not human-friendly, supplying such fine details makes protocols harder to translate from one lab

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 3, Article 28. Publication date: June 2023.

Building an Open Representation for Biological Protocols 28:7

to another. In cases such as these, sets of Autoprotocol instructions are replaced by more abstract
alternatives that capture an Autoprotocol use pattern.

3.4 Array-based Sample Operations Are Inspired by Aquarium

To support automated, high-throughput experimentation, LabOP’s execution model handles op-
erations on samples in a batched fashion in a manner inspired by Aquarium [38]. In contrast, in
Autoprotocol it is only possible to address one location at a time, i.e., a single container or a single
compartment within a container, such as a well on a plate. That limitation means that in Autoproto-
col any operation on multiple locations must name every location as a fixed value in the definition
of the protocol, which in turn means that protocols are often both extremely large (e.g., individu-
ally operating on every well of a 96-well plate) and rigid, since locations cannot be supplied as a
parameter value or determined dynamically at runtime.

In common practice, protocols are often described in terms of operations on physical or logical
collections of samples, such as “Wells A1 to D2 in a standard 96-well plate,” “A 6 by 3 group of
10ml tubes: three replicates each for six conditions,” or “All wells showing green fluorescence
>500 MEFL.” Being able to represent such descriptions directly allows representations to be more
compact, more intelligible to humans for both authoring and execution, and also more reusable,
since they can be communicated as parameters or determined dynamically.

3.5 SBOL Represents Experimental Materials Used in Protocols

The Synthetic Biology Open Language (SBOL) [2, 22], provides succinct representations for
all of the materials that would be used by a typical biological protocol—strains, reagents, media,
experimental sample designs, and so on—along with the ability to track and distinguish between
specific physical aliquots and replicates. On the input side of a protocol, SBOL’s combinatorial
design specifications [30] offer the ability to compactly specify combinations of experimental
conditions (e.g., “measure absorbance at 12 time points from samples of cells transformed by
10 different genetic constructs at 8 different levels of induction, 3 replicates per condition”).
SBOL also incorporates the Ontology of Units of Measure (OM) [29] for specifying and
recording measurements, as well as the W3C Provenance Ontology (PROV-O) [24] for linking
specifications, samples, and data via traces of activity records.

3.6 PROV-O Captures Execution Histories

While UML models activity flows, it does not actually provide a representation to capture activity
executions and associate traces with data. For this, we use the Provenance Ontology (PROV-O) [24].
This last is precisely complementary to our selection of UML behaviors for representing workflows,
as PROV-O leaves the actual definition of activities to users. Recall that a key objective of LabOP
is to aid in tracing the connections between datasets and the protocols that produced them—the
issue of dataset provenance. PROV-O is a well-accepted representation for encoding this kind of
information, so we use it to represent the data-producing relationship between protocols, execu-
tions of protocols, and the resulting datasets. PROV-O also specifies several annotation properties
that we adopt to mark up protocol executions, such as timestamps for the beginning and end of an
activity execution. Thus, we can use PROV-O as the basis for capturing execution traces, with the
activities in the trace defined using the UML data model, built from laboratory primitives based
on Autoprotocol, and the inputs, outputs, and data relations encoded using SBOL.

4 PROTOTYPE

Our software implementation and proof-of-concept include a Python code library (labop), a
web-based tool for visualizing, editing, and executing LabOP protocols (LabOPed), and example

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 3, Article 28. Publication date: June 2023.

28:8 B. Bartley et al.

protocols demonstrating how LabOP meets the requirements listed in Section 2. These resources
are available on Github under the Biological Protocols Working Group organization [7].

In this section and the next, we will use as a running example the iGEM LUDOX protocol for
calibration of plate reader optical density (OD) by comparing the absorbance of water and sus-
pended silica. This protocol was first introduced in the 2016 iGEM interlaboratory study [5] and
refined thereafter [4]: Specifically, we use its 2018 version as our running example. The LUDOX
calibration protocol is an extremely simple protocol consisting of three steps: Water is added to
four wells in a 96-well plate, LUDOX silica suspension is added to another four wells, and then
all eight samples are measured at some specified absorbance (600 nm in its original usage) to ob-
tain a baseline measurement of OD, validate machine behavior, and allow path-length correction.
In addition to being simple enough to be a succinct example, this protocol is an ideal case study,
as quantitative biophysical characterization and reproducibility are key goals for synthetic biol-
ogy and, to date, the protocol has been performed in hundreds of labs in the context of the iGEM
interlaboratory reproducibility studies.

4.1 The Specification Document and Python API Are Machine-generated

As introduced in Section 3, the LabOP data model is encoded as machine-readable OWL files.
These specification files are the primary source from which we automatically generate a human-
readable specification document as well as a Python API through code generation (Figure 3).
The specification document includes automatically generated class diagrams and descriptions
in addition to some static introductory material introducing the motivation and context of the
specification. This document is built nightly using automated Github actions, ensuring that it is
continually updated with respect to upstream changes in the OWL specification, and is available
for download as a workflow artifact file. Readers are referred there for a detailed technical
description of the data model [7].

The labop Python library provides an object-oriented API that enables construction of protocol
data structures using the classes in the LabOP data model. To facilitate protocol sharing and re-use,
the back-end provides serialization and parsing of protocols into a number of standard RDF file
formats, e.g., RDF/XML, Turtle, and so on. To generate the API automatically, we leverage a tool
called SBOLFactory [3] that dynamically translates an ontology file into Python class definitions
and an object-oriented API.

In addition to using OWL to specify LabOP’s class structure, we use the Shapes Constraint

Language (SHACL) to support automated validation of user-created protocol files. SHACL is
an RDF-based language that describes graph patterns to which valid RDF documents must con-
form [19]. For LabOP, we have developed a set of SHACL constraints for protocol data structures.
The labop software stack leverages the pySHACL validator tool [33] to check our set of constraints
and ensure that individual LabOP protocols are complete, consistent, and valid data structures.
By using OWL and SHACL, the LabOP data model is specified using non-ambiguous, machine-
readable languages. The use of OWL and SHACL thus decouples the specification from its imple-
mentation in any one programming language and from its formulation(s) in natural language.

Our approach of automatic generation has many advantages and may serve as a useful example
for other standards development efforts. Because the standard is still in a relatively early stage of
development and is expected to evolve, it is particularly valuable that revisions to the proposed
data model can be rapidly generated, tested, and released. Moreover, since the human-readable
specification document and the software library are generated from a single source, we avoid the
possibility of introducing discrepancies between these resources while simultaneously lowering
maintenance costs. These factors have enabled rapid development and will continue to support

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 3, Article 28. Publication date: June 2023.

Building an Open Representation for Biological Protocols 28:9

Fig. 3. The LabOP specification is fully machine-readable and encoded in OWL/SHACL from which docu-
mentation and software implementations are automatically generated.

responsive updates in our prototype implementations as new needs and use cases are identified
by the community.

4.2 The labop Python API Enables Authoring Protocols and Developing Tools for

Authoring Protocols

The labop Python API supports protocol editing operations by providing functions that build a
protocol. Protocol generation scripts execute a sequence of API functions that construct the LabOP
representation of a protocol.

For example, Figure 4 shows code implementing the iGEM LUDOX protocol Lines 5 to 7 define
the protocol and add it to an SBOL3 document (representing the protocol as RDF). Line 10 defines
an input parameter for the wavelength. Line 13 defines the SBOL3 object for double-distilled water,
grounding it in a link to a PubChem identifier. Line 19 defines a microplate object that will hold the
samples. Lines 22 to 25 identify the wells that will hold water and provision the water into those
wells. Lines 30 to 33 identify which wells to measure and then measure the absorbance. Finally,
lines 36 to 39 define the protocol output parameter for absorbance and link it to the output of the
absorbance measurement activity.

Note that while programming at the level of the LabOP API is not feasible for many experimen-
talists, programmers can use these LabOP API functions to build visual editors that support author-
ing and inspection of protocols by experimentalists. LabOPed is an example of such a visual editor.

4.3 Protocols May Be Visualized and Understood as Linked Graphs

Visualization helps to specify and understand a protocol, as well as helping understand more gen-
erally how to think about workflows using the UML Activity model upon which LabOP is based.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 3, Article 28. Publication date: June 2023.

fig:ludox_python
fig:ludox_python
fig:ludox_python
fig:ludox_python
fig:ludox_python
fig:ludox_python
fig:ludox_python
fig:ludox_python
fig:ludox_python
fig:ludox_python
fig:ludox_python

28:10 B. Bartley et al.

Fig. 4. LabOP Python script to construct a portion of the iGEM LUDOX calibration protocol. An inter-
active Jupyter notebook is available at https://colab.research.google.com/drive/1WPvQ0REjHMEsginxXM
j1ewqfFHZqSyM8?usp=sharing.

A LabOP protocol consists of a set of activities and controls (nodes) that are linked by data and
control flows (edges), all of which may be naturally visualized as a graph.

Figure 5 illustrates the rendering of the iGEM 2018 LUDOX calibration protocol via
GraphViz [15]. It includes an initial control node (filled black circle) that is followed by the
[aquire an] EmptyContainer activity node for allocating the microplate. The “followed by” rela-
tionship is denoted by a blue control edge. Activity nodes include “pins” for inputs and outputs.
For example, the EmptyContainer node has an input pin named specification and an output
pin named samples. Data flow edges, drawn as black arrows, link the activities’ pins. For example,
the EmptyContainer samples output pin links to the source input pin for PlateCoordinates,
indicating that the coordinates will reference samples within the empty container that has just
been allocated. Data flow edges link either directly or through control nodes such as a fork
node, illustrated by a black bar. Data flow edges also link protocol input—e.g., wavelength—and
output—e.g., absorbance—parameters. These parameters are drawn as rectangles with doubled
outlines.

While Figure 5 illustrates the protocol as a directed graph, in principle, LabOP can be presented
in any number of formats. For example, the protocol illustrated by Figure 5 may also be described
as a list of activities because the activities can be sorted into a total order. LabOP protocols that
are partially ordered or include decision nodes can be represented by other paradigms such as
block-based programs [21] or visual scripts [13, 36].

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 3, Article 28. Publication date: June 2023.

https://colab.research.google.com/drive/1WPvQ0REjHMEsginxXMj1ewqfFHZqSyM8?usp=sharing

Building an Open Representation for Biological Protocols 28:11

Fig. 5. LabOP prototocol for the iGEM 2018 LUDOX calibration protocol, automatically rendered by LabOP
visualizer. The graph includes protocol activities that follow a control flow denoted by blue edges and data
flow denoted by black edges. Per UML diagram conventions, the initial node is shown as a black circle, the
fork node is shown as a black bar, and the final node is shown as a double circle. The graph also illustrates
protocol input (e.g., wavelength) and output (e.g., absorbance) parameters with double boxes.

4.4 Execution Can Be Specialized for Cross-laboratory Execution

To support execution, we have developed an execution engine with an extensible framework for
third-party specializations that translate protocols into various target execution environments.
This engine translates a LabOP protocol into another representation as a side-effect of simulat-
ing the execution of the protocol. In this way, LabOP serves as an intermediate representation
for protocols enabling translation from one laboratory execution environment to another, em-
ploying different instrument platforms and execution languages. LabOP also supports conversion
to natural language and various automation formats, including other protocol languages. Note
that conversion from LabOP to other automation formats is not generally reversible, because
these other formats are less expressive. The overall procedure for protocol execution is described
below.

The execution engine uses a token-based execution semantics that implements the UML
activity model based upon Petri-nets [28]. Execution (simulation) involves tracking a set of

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 3, Article 28. Publication date: June 2023.

28:12 B. Bartley et al.

tokens generated by each activity or control node in the protocol graph. Nodes may consume
input tokens and generate output tokens, and tokens can either hold data representing objects
created by activities or can denote control. When simulating an activity node for the purpose of
translation, the engine will emit a translated description of the activity, such as one or more linked
Autoprotocol objects, thus incrementally building the translation as a side effect of the simulation
process.

After executing an activity, the execution engine non-deterministically selects one of the next
enabled nodes in the control flow. Finally, the engine invokes specialized interpreters to gener-
ate instructions specific to the target execution environment that actuate equipment (or provide
instructions to lab technicians) and that capture acquired measurement data and metadata in an
execution trace. When targeting automation, such as Autoprotocol or Opentrons, such informa-
tion can often been reported directly via the API for the automation system. When the execution
is manual or no API integration is available, however, the protocol can be run interactively and
data can be supplied back into the engine by a human operator.

Currently, our prototypes implement execution specializations that convert LabOP into Mark-
down,1 Autoprotocol [23], and Opentrons [27] formats. In principle, however, specializations
might also be configured to dynamically execute LabOP protocols by directly interfacing with
instrument-specific APIs, rather than performing a translation, further enabling cross-platform
laboratory execution. The specialization framework also includes methods for hooking into labo-
ratory information management systems, as illustrated in Section 5.2.

Given the generality of LabOP workflows, the execution engine supports hierarchical nesting,
re-use, and repetition of sub-protocols as activities within a protocol. As a consequence, serializing
LabOP protocols to more restricted target languages may require compiling away some of the
control structure. For example, control flow in Autoprotocol is limited to a strict linear step
order with no branching or sub-protocols, so a LabOP protocol must be linearized with all loops
“unrolled” and all sub-protocol invocations expanded inline to produce a linearized version of the
protocol suitable for mapping into Autoprotocol. The Autoprotocol execution engine thus unrolls
the protocol into a series of distinct executions, in which activities in sub-protocols may appear in
the execution history multiple times as they are repeated. Furthermore, a single LabOP protocol
may need to be translated into multiple Autoprotocol sequences. In such cases, a single Autopro-
tocol sub-sequence will be run to completion, and then there will have to be human intervention
to choose the appropriate next sub-sequence to run, depending on the outcomes of the previous
one.

5 DEMONSTRATION

In this section, we present examples demonstrating how the LabOP language and our current
prototype implementation fulfill the each of the design requirements laid out in Section 2. These
demonstrations use the same running example as in the previous section: the iGEM LUDOX pro-
tocol for calibration of plate reader optical density (OD) [4, 5].

5.1 Execution by Either Humans or Machines

While some labs may perform the LUDOX calibration protocol using robotic liquid handlers, more
resource-limited labs perform it using manual pipetting. LabOP is converted to either Autoprotocol
or Markdown using specialized interpreters that are invoked by the execution engine. For exam-
ple, the iGEM LUDOX calibration protocol is shown converted and rendered into Markdown and

1Markdown is a rich text format designed to be readable both in its source form and to be translatable into other widely

used formats such as HTML, PDF, and so on.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 3, Article 28. Publication date: June 2023.

Building an Open Representation for Biological Protocols 28:13

Fig. 6. (a) Markdown “paper protocol” generated from LabOP for iGEM 2018 LUDOX calibration protocol
(the version presented here has been post-processed to translate the Markdown into PDF); (b) Autoprotocol
for the iGEM LUDOX calibration protocol as generated by the Autoprotocol execution specialization.

Autoprotocol in Figure 6. The respective execution specializations collect the translated sequence
of protocol activities and also help to resolve the objects appearing in the protocol. In addition to
interpreting the steps, the specializations format the syntax needed for each target language:

The Markdown specialization interprets the protocol to construct a human-readable string that
describes each step. The specialization also makes use of Markdown syntax to embed hyperlinks
to online definitions, generated from the usages of materials or containers in the protocol. This
hyperlinking is enabled by LabOP’s linked data nature and its leveraging of existing ontologies.
For example, in Figure 6(a), each of the two materials is blue, because the Markdown includes a link
to the material’s NCBI PubChem substance definition, which in turn provides purity and supplier
information for these required reagents.

Similarly, the Autoprotocol specialization formats protocols as a list of instructions in JSON. For
example, the Autoprotocol specialization interprets the EmptyContainer activity to generate code
that will identify an available container in the Strateos laboratory information management

system (LIMS) that satisfies the specification in the protocol. In Figure 6(b), this is implemented
via lines 37–39, which declare a collection of wells named “samples” that are the targets of the
provision and spectrophotometry steps.

5.2 Mapping Protocols from One Laboratory Environment to Another

Laboratories often differ in terms of the specific equipment, inventory, labware, and reagents
that are available, even if they happen to be using the same execution platform, thus requiring
substitutions and adaptations of a protocol at runtime. For this reason, the labop library is
distributed with an ontology of labware and equipment. The purpose of this ontology is to
maintain a catalog of specific instances of labware that may be commonly used in laboratories,

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 3, Article 28. Publication date: June 2023.

28:14 B. Bartley et al.

Fig. 7. (a) LabOP supports inferential reasoning to map protocols into laboratories with different equipment
and inventory; (b) Invoking a protocol execution using the LabOP API and Opentrons specialization. The
check_lims_inventory method provides a hook to interface with laboratory inventory control.

as well as their properties, such as geometric characteristics and from which vendor they may be
procured. These labware instances belong to more general categories such as “plate,” “microfuge
tube,” and “pipette tip rack.” Like the LabOP data model, this ontology is also specified using
OWL and is queryable through the LabOP API. The labop execution specialization framework
leverages this feature to select labware items that are available in a laboratory’s inventory and
which most closely match a queried set of constraints.

For example, the LUDOX calibration protocol specifies that samples should be loaded into a “96
well plate.” A human technician ordinarily has little trouble interpreting these instructions and ob-
taining a suitable plate given the context of the protocol. However, execution on an Opentrons ro-
bot requires that the brand of 96 well plate is explicitly specified, as the robot must take into account
vendor-specific differences in labware geometry. Therefore, when the LUDOX protocol is run
using the Opentrons execution specialization, an inference is made to determine which instances
of a 96 well plate are available in the laboratory’s inventory (Figure 7(a)). An example invocation
of an Opentrons execution is shown in Figure 7(b). By overriding the check_lims_inventory
method, the user hooks the specialization into their inventory management system to select a
specific instance from a list of available labware. While this implementation currently simply
chooses an arbitrary item from a list of available labware that satisfied the provided specifica-
tion, a more nuanced user-defined check_lims_inventory could further refine its selection
process based on multiple criteria, such as cost, availability, or preference for one brand versus
another.

5.3 Representation of Diverse Workflow Patterns

Even a protocol as simple as the LUDOX protocol demonstrates how the universal workflow model
that LabOP takes from UML can support and mix workflow patterns. The workflow diagram in
Figure 5 shows sequential ordering, in which the plate must be allocated before materials are
added to the wells, which in turn must happen before absorbance is measured. The same workflow
illustrates nondeterministic ordering as well, in which the water and LUDOX can be provisioned
in any order—or, in principle, even simultaneously with two sets of pipettes.

LabOP also permits conditional (branching) execution, where the output of a condition evalua-
tion primitive flows into a decision node and the matching output of the decision node is executed.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 3, Article 28. Publication date: June 2023.

Building an Open Representation for Biological Protocols 28:15

Fig. 8. LabOP uses decision nodes (diamonds) to enable runtime branching during protocol execution. The
decision node branches execution on the return value of the measurementNominal primitive and executes a
second MeasureAbsorbance primitive when measurementNominal returns False.

Figure 8 illustrates the addition of a condition evaluation primitive measurementNominal to assess
whether the MeasureAbsorbance primitive measurements are within tolerance. If not nominal,
then the protocol executes a second MeasureAbsorbance primitive. The condition evaluation
primitive can be automated or handled by a human (providing a quality control checkpoint).

Finally, this workflow also illustrates extensibility. Of the 11 activities in the protocol workflow,
only 4 are built into the language specification: the initial node, the fork, and the input and output
variables. The other 7 activities are all taken from libraries, and while these specific libraries
happen to be bundled with the LabOP distribution, the libraries are defined and implemented

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 3, Article 28. Publication date: June 2023.

28:16 B. Bartley et al.

using the same LabOP mechanism for extensibility that anyone can use to define new libraries or
custom operations.

5.4 Maintaining Execution Records and Associated Metadata Markup

As described above, the labop execution engine includes support for creating persistent data
structures that record a specific protocol execution and for linking such execution records
back to protocol specifications. Figure 9 shows an example visualizing an execution trace for
the LUDOX protocol, including execution times for every library activity and records of every
piece of data that flowed along an edge in the protocol graph. Note that this trace also provides
all of the links necessary for metadata tagging of the data collected in the course of protocol
execution.

5.5 Recording Modifications of Protocols and the Relationship between Different

Versions

In laboratory practice, protocols are frequently updated and revised. For example, different envi-
ronmental parameters may be controlled or monitored, additional steps may be added to optimize
yields, or new reagents may be introduced. Version control for laboratory protocols may help prac-
titioners explore experimental design space more efficiently, improve scientific reproducibility, and
reduce uncertainty in interpreting experimental results.

In accordance with our principle of leveraging existing tools as much as possible, LabOP seri-
alizations may be managed like any other software using conventional revision control systems.
RDF-based serialization formats, such as RDF/XML or Turtle, are problematic for conventional
software versioning systems, because these formats do not specify a deterministic order in which
data structures are serialized. The N-triples RDF format, however, is deterministic when sorted, so
labop uses this format as a stable serialization that can be readily differenced and inspected with
standard, text-based version control tools. Figure 10(a) illustrates an example of version-control
differencing between versions of a LabOP protocol in sorted N-triples RDF.

The LabOP data model does not intrinsically manage versioning of individual protocols, but
rather relies on revision control systems. This has an added benefit of simplifying dependency man-
agement between related protocols. Groups of related protocols may be version-controlled collec-
tively in a repository, thus avoiding the difficulty of maintaining explicit version requirements (i.e.,
“pins” or “ranges”) between related protocols. However, version tags are inserted into generated
Markdown protocols to keep track of protocol hard-copies at the laboratory bench (Figure 10(b)).

Thus, LabOP allows protocols to be maintained by distributed communities of contributors using
standard software development version control such as git, as well as the larger ecosystem of
associated tooling for project management and community-driven development.

5.6 Verification and Validation of Protocol Completeness and Coherence

Supporting protocol authors in achieving correctness is an important goal for a protocol represen-
tation. While the implementation will depend on specific tooling, the representation specification
must provide guidance as to what it means for a protocol to be complete, consistent, and so on. This
is especially important for automatically executed protocols, since the control system cannot be
counted on to repair flaws in protocols on the fly, and in the worst case, an incorrect specification
could even cause damage to equipment or endanger lab personnel.

To aid the user in construction of valid protocols, the LabOP API provides a method for check-
ing these validation rules. Figure 11 shows an example of this API being invoked on a malformed
protocol, in this case for a protocol where the nodes representing its start condition, stop condi-
tion, and parameters have not been connected up to form a coherent workflow. Deeper levels of

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 3, Article 28. Publication date: June 2023.

Building an Open Representation for Biological Protocols 28:17

Fig. 9. LabOP execution trace for the iGEM 2018 LUDOX calibration protocol, layered on the protocol vi-
sualization shown in Figure 5. Yellow edges denote data flow with placeholder and computed values for an
offline execution of the protocol.

semantic validation, such as checking whether a protocol might add more liquid to a container
than it can hold, can be implemented with the aid of simulations in the execution engine.

5.7 Planning, Scheduling, and Allocation of Laboratory Resources

Protocol authors must ensure that protocols can be executed in the laboratory. To this end,
LabOP models constraints on the activities in the form of temporal constraints and container
specifications. Temporal constraints impose bounds on the temporal distance between timepoints,
such as the start and end of activities, and can be used prior and during execution to schedule
activities. For example, Figure 12 illustrates a schedule for the LUDOX calibration protocol as an

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 3, Article 28. Publication date: June 2023.

28:18 B. Bartley et al.

Fig. 10. Use text-based formats can support effective version control of both LabOP protocols and protocols
generated from LabOP for execution. For example, (a) shows a diff between versions of the LUDOX calibra-
tion protocol in LabOP, as sorted in sorted N-triples, a deterministic RDF serialization, and (b) shows a diff
between generated Markdown for the LUDOX calibration protocol.

Fig. 11. The LabOP API provides validation checking for protocols. In this example, an invalid protocol con-
tains improperly linked control flow between activity nodes.

Fig. 12. Adding temporal constraints to the LUDOX calibration protocol allows schedulers to construct a
schedule, shown here as an automatically generated Gantt chart.

automatically generated Gantt chart, where constraints between the start and end time of each
activity enforce the duration and ordering of the activities. Container specifications constrain the
types of containers that are compatible with the protocol, and, as previously described, facilitate
allocation of laboratory resources.

The specifics of resource requirements and duration estimates will likely be a function of both
the protocol and the available equipment in the laboratory in which it is to be executed (i.e.,
both the protocol and laboratory impose constraints). Which resources are limited and must be

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 3, Article 28. Publication date: June 2023.

Building an Open Representation for Biological Protocols 28:19

considered in a planner or scheduler, versus those that can be effectively treated as unlimited,
will also vary by laboratory, as will management styles and applicable policies.

6 FUTURE DIRECTIONS

The development efforts on LabOP described above have produced a representation that is simulta-
neously expressive enough and compact enough to satisfy all of the key goals that we have identi-
fied for a broadly applicable community standard. Our prototype implementation realizes this rep-
resentation in the form of an ontology, specification, and Python library, which in turn have been
used to implement test protocols and tools for visual editing and for execution, either by hand via
export to a “paper protocol” or with laboratory robotics via export to Autoprotocol or Opentrons.

The next critical stage in developing LabOP into an effective community standard for protocols
is to refine the representation and expand the set of tools through involvement of interested stake-
holders from the broader community. To that end, we organized an open community meeting at
the COMBINE 2021 standards meeting in October 2021, during the course of which participants
validated community interest in this initiative, prioritized next steps for LabOP, and began organi-
zation of an open pre-competitive community for its continued development. This community has
continued to meet regularly and organize development, and more information about its activities
may be found at http://bioprotocols.org/.

The key near-term goals for the development of LabOP, as prioritized by this community, are:

• putting LabOP to use in ongoing inter-laboratory collaborations within the stakeholder com-
munity,
• implementation of additional key execution environments, such as Emerald Cloud Lab, py-

LabRobot [10], and protocols.io [34],
• implementing reasoning about the contents of samples, and
• improved user interfaces for protocol design, editing, and inspection.

If this nascent community is able to achieve these goals, particularly using LabOP to reduce
protocol-related challenges faced by existing inter-laboratory collaborations, then it will form the
basis for further development and utilization and, ultimately, may be able to establish an effec-
tive open standard representation for biological protocols, accelerating research and development
across a broad range of fields and applications.

ACKNOWLEDGMENTS

This document does not contain technology or technical data controlled under either U.S. Inter-
national Traffic in Arms Regulation or U.S. Export Administration Regulations. Views, opinions,
and/or findings expressed are those of the author(s) and should not be interpreted as representing
the official views or policies of the Department of Defense or the U.S. Government. Approved for
Public Release, Distribution Unlimited.

REFERENCES

[1] Peter Amstutz, Michael R. Crusoe, Nebojša Tijanić, Brad Chapman, John Chilton, Michael Heuer, Andrey Kartashov,

Dan Leehr, Hervé Ménager, Maya Nedeljkovich et al. 2016. Common workflow language, v1. 0. (2016). https://doi.org/

10.6084/m9.figshare.3115156.v2

[2] Hasan Baig, Pedro Fontanarrosa, Vishwesh Kulkarni, James Alastair McLaughlin, Prashant Vaidyanathan, Chris My-

ers, Bryan Bartley, Jacob Beal, Matthew Crowther, Thomas E. Gorochowski, Raik Grunberg, Goksel Misirli, Thomas

Mitchell, Ernst Oberortner, James Scott-Brown, and Anil Wipat. 2021. Synthetic biology open language (SBOL) version

3.0.1. Retrieved from https://github.com/SynBioDex/SBOL-specification/releases/tag/v3.0.1.

[3] Bryan Bartley. 2021. SBOLFactory: Ontology-driven code generation. In HARMONY 2021. https://github.com/

SynBioDex/sbol_factory.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 3, Article 28. Publication date: June 2023.

http://bioprotocols.org/
https://doi.org/10.6084/m9.figshare.3115156.v2
https://github.com/SynBioDex/SBOL-specification/releases/tag/v3.0.1
https://github.com/SynBioDex/sbol_factory

28:20 B. Bartley et al.

[4] Jacob Beal, Geoff S. Baldwin, Natalie G. Farny, Markus Gershater, Traci Haddock-Angelli, Russell Buckley-Taylor, Ari

Dwijayanti, Daisuke Kiga, Meagan Lizarazo, John Marken et al. 2021. Comparative analysis of three studies measuring

fluorescence from engineered bacterial genetic constructs. PloS One 16, 6 (2021), e0252263.

[5] Jacob Beal, Traci Haddock-Angelli, Geoff Baldwin, Markus Gershater, Ari Dwijayanti, Marko Storch, Kim De Mora,

Meagan Lizarazo, Randy Rettberg, and iGEM Interlab Study Contributors. 2018. Quantification of bacterial fluores-

cence using independent calibrants. PloS One 13, 6 (2018), e0199432.

[6] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah L. McGuinness, Peter F. Patel-Schneider,

and Lynn Andrea Stein. 2004. OWL Web Ontology Language Reference. Retrieved from https://www.w3.org/TR/owl-

ref/.

[7] Bioprotocols Working Group. 2023. LabOP. Retrieved from https://github.com/bioprotocols.

[8] Alvis Brazma, Pascal Hingamp, John Quackenbush, Gavin Sherlock, Paul Spellman, Chris Stoeckert, John Aach, Wil-

helm Ansorge, Catherine A. Ball, Helen C. Causton et al. 2001. Minimum information about a microarray experiment

(MIAME): Toward standards for microarray data. Nat. Genet. 29, 4 (2001), 365–371.

[9] Broad Institute. 2019. The Workflow Description Language and Cromwell. Retrieved from https://software.broadin-

stitute.org/wdl.

[10] Emma J. Chory, Dana W. Gretton, Erika A. DeBenedictis, and Kevin M. Esvelt. 2021. Enabling high-throughput biology

with flexible open-source automation. Molec. Syst. Biol. 17, 3 (2021), e9942.

[11] UniProt Consortium. 2019. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 47, D1 (2019),

D506–D515.

[12] Kirill Degtyarenko, Paula de Matos, Marcus Ennis, Janna Hastings, Martin Zbinden, Alan McNaught, Rafael Alcántara,

Michael Darsow, Mickaël Guedj, and Michael Ashburner. 2008. ChEBI: A database and ontology for chemical entities

of biological interest. Nucleic Acids Res. 36 (2008), D344–D350. Retrieved from http://nar.oxfordjournals.org/content/

36/suppl_1/D344.short.

[13] Zdena Dobesova. 2011. Visual programming language in geographic information systems. In Proceedings of the 2nd

International Conference on Applied Informatics and Computing Theory. World Scientific and Engineering Academy

and Society (WSEAS), 276–280.

[14] Karen Eilbeck, Suzanna E. Lewis, Christopher J. Mungall, Mark Yandell, Lincoln Stein, Richard Durbin, and Michael

Ashburner. 2005. The sequence ontology: A tool for the unification of genome annotations. Genome Biol. 6 (2005), R44.

Retrieved from http://genomebiology.com/content/6/5/R44.

[15] John Ellson, Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and Gordon Woodhull. 2003. Graphviz and

dynagraph: Static and dynamic graph drawing tools. In Graph Drawing Software. Springer-Verlag, 127–148.

[16] Jeremy Goecks, Anton Nekrutenko, and James Taylor. 2010. Galaxy: A comprehensive approach for supporting acces-

sible, reproducible, and transparent computational research in the life sciences. Genome Biol. 11, 8 (2010), R86.

[17] Rebecca Jackson, Nicolas Matentzoglu, James A. Overton, Randi Vita, James P. Balhoff, Pier Luigi Buttigieg, Seth

Carbon, Melanie Courtot, Alexander D. Diehl, Damion M. Dooley et al. 2021. OBO foundry in 2021: Operationalizing

open data principles to evaluate ontologies. Database 2021 (Oct. 2021).

[18] Sunghwan Kim, Paul A. Thiessen, Evan E. Bolton, Jie Chen, Gang Fu, Asta Gindulyte, Lianyi Han, Jane He, Siqian He,

Benjamin A. Shoemaker et al. 2016. PubChem substance and compound databases. Nucleic Acids Res. 44, D1 (2016),

D1202–D1213.

[19] Holger Knublauch and Dimitris Kontokostas. 2017. Shapes Constraint Language (SHACL). Retrieved from https://

www.w3.org/TR/shacl/.

[20] Jamie A. Lee, Josef Spidlen, Keith Boyce, Jennifer Cai, Nicholas Crosbie, Mark Dalphin, Jeff Furlong, Maura Gasparetto,

Michael Goldberg, Elizabeth M. Goralczyk et al. 2008. MIFlowCyt: The minimum information about a flow cytometry

experiment. Cytomet. Part A: J. Int. Societ. Analyt. Cytol. 73, 10 (2008), 926–930.

[21] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn Eastmond. 2010. The Scratch programming

language and environment. ACM Trans. Comput. Educ. 10, 4 (2010), 1–15.

[22] James Alastair McLaughlin, Jacob Beal, Göksel Mısırlı, Raik Grünberg, Bryan A. Bartley, James Scott-Brown, Prashant

Vaidyanathan, Pedro Fontanarrosa, Ernst Oberortner, Anil Wipat et al. 2020. The Synthetic Biology Open Language

(SBOL) version 3: Simplified data exchange for bioengineering. Front. Bioeng. Biotechnol. 8 (2020), 1009.

[23] Ben Miles and Peter L. Lee. 2018. Achieving reproducibility and closed-loop automation in biological experimentation

with an IoT-enabled lab of the future. SLAS Technol. 23, 5 (2018), 432–439.

[24] Paolo Missier, Khalid Belhajjame, and James Cheney. 2013. The W3C PROV family of specifications for modelling

provenance metadata. In Proceedings of the 16th International Conference on Extending Database Technology. ACM,

773–776.

[25] Mark A. Musen. 2015. The protégé project: A look back and a look forward. AI Matters 1, 4 (2015), 4–12.

[26] Object Management Group. 2017. OMG Unified Modeling Language (OMG UML) Version 2.5.1. Retrieved from

https://www.omg.org/spec/UML/.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 3, Article 28. Publication date: June 2023.

https://www.w3.org/TR/owl-ref/
https://github.com/bioprotocols
https://software.broadin-stitute.org/wdl
http://nar.oxfordjournals.org/content/36/suppl_1/D344.short
http://genomebiology.com/content/6/5/R44
https://www.w3.org/TR/shacl/
https://www.omg.org/spec/UML/

Building an Open Representation for Biological Protocols 28:21

[27] Opentrons. 2020. OT-2 Python Protocol API Version 2. Retrieved from https://docs.opentrons.com/v2/.

[28] Carl Adam Petri. 1966. Communication with Automata. Ph.D. Dissertation. Universitat Hamburg.

[29] Hajo Rijgersberg, Don Willems, Xin-Ying Ren, Mari Wigham, and Jan Top. 2021. Ontology of units of Measure (OM),

version 2.0.31. Retrieved from http://www.ontology-of-units-of-measure.org/resource/om-2.

[30] Nicholas Roehner, Bryan Bartley, Jacob Beal, James McLaughlin, Matthew Pocock, Michael Zhang, Zach Zundel, and

Chris J. Myers. 2019. Specifying combinatorial designs with the Synthetic Biology Open Language (SBOL). ACS Synth.

Biol. 8, 7 (2019), 1519–1523.

[31] Michael I. Sadowski, Chris Grant, and Tim S. Fell. 2016. Harnessing QbD, programming languages, and automation

for reproducible biology. Trends Biotechnol. 34, 3 (2016), 214–227.

[32] Nicholas Sioutos, Sherri de Coronado, Margaret W. Haber, Frank W. Hartel, Wen-Ling Shaiu, and Lawrence W. Wright.

2007. NCI Thesaurus: A semantic model integrating cancer-related clinical and molecular information. J. Biomed.

Inform. 40, 1 (2007), 30–43.

[33] Ashley Sommer and Nicholas Car. 2021. pySHACL. DOI:https://doi.org/10.5281/zenodo.4750840

[34] Leonid Teytelman, Alexei Stoliartchouk, Lori Kindler, and Bonnie L. Hurwitz. 2016. Protocols.io: Virtual communities

for protocol development and discussion. PLoS Biol. 14, 8 (2016), e1002538.

[35] Keith F. Tipton, Richard N. Armstrong, Barbara M. Bakker, Amos Bairoch, Athel Cornish-Bowden, Peter J. Halling,

Jan-Hendrik Hofmeyr, Thomas S. Leyh, Carsten Kettner, Frank M. Raushel et al. 2014. Standards for reporting enzyme

data: The STRENDA consortium: What it aims to do and why it should be helpful. Perspect. Sci. 1, 1-6 (2014), 131–137.

[36] Unity. 2023. Unity Visual Scripting. Retrieved from https://unity.com/products/unity-visual-scripting.

[37] John Vivian, Arjun Arkal Rao, Frank Austin Nothaft, Christopher Ketchum, Joel Armstrong, Adam Novak, Jacob Pfeil,

Jake Narkizian, Alden D. Deran, Audrey Musselman-Brown et al. 2017. Toil enables reproducible, open source, big

biomedical data analyses. Nat. Biotechnol. 35, 4 (2017), 314.

[38] Justin Vrana, Orlando de Lange, Yaoyu Yang, Garrett Newman, Ayesha Saleem, Abraham Miller, Cameron Cordray,

Samer Halabiya, Michelle Parks, Eriberto Lopez et al. 2021. Aquarium: Open-source laboratory software for design,

execution and data management. Synth. Biol. 6, 1 (2021), ysab006.

[39] Katherine Wolstencroft, Robert Haines, Donal Fellows, Alan Williams, David Withers, Stuart Owen, Stian Soiland-

Reyes, Ian Dunlop, Aleksandra Nenadic, Paul Fisher et al. 2013. The Taverna workflow suite: Designing and executing

workflows of web services on the desktop, web or in the cloud. Nucleic Acids Res. 41, W1 (2013), W557–W561.

Received 17 December 2021; revised 20 January 2023; accepted 26 May 2023

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 3, Article 28. Publication date: June 2023.

https://docs.opentrons.com/v2/
http://www.ontology-of-units-of-measure.org/resource/om-2
https://doi.org/10.5281/zenodo.4750840
https://unity.com/products/unity-visual-scripting

