
Learning by Learning To Communicate

by

Jacob Stuart Michael Beal

S.B., Massachusetts Institute of Technology (2000)
M.Eng., Massachusetts Institute of Technology (2002)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2007

c© Massachusetts Institute of Technology 2007. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 24th, 2007

Certified by. .

Gerald Jay Sussman
Panasonic Professor of Electrical Engineering

Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Learning by Learning To Communicate

by

Jacob Stuart Michael Beal

Submitted to the Department of Electrical Engineering and Computer Science
on August 24th, 2007, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science and Engineering

Abstract

Human intelligence is a product of cooperation among many different specialists.
Much of this cooperation must be learned, but we do not yet have a mechanism that
explains how this might happen for the “high-level” agile cooperation that permeates
our daily lives.

I propose that the various specialists learn to cooperate by learning to commu-
nicate, basing this proposal on the phenomenon of communication bootstrapping, in
which shared experiences form a basis for agreement on a system of signals. In this
dissertation, I lay out a roadmap for investigating this hypothesis, identifying prob-
lems that must be overcome in order to understand the capabilities of communication
bootstrapping and in order to test whether it is exploited by human intelligence.

I then demonstrate progress along the course of investigation laid out in my
roadmap:

• I establish a measure of developmental cost that allows me to eliminate many
possible designs

• I develop a method of engineering devices for use in models of intelligence,
including characterizing their behavior under a wide variety of conditions and
compensating for their misbehavior using failure simplification.

• I develop mechanisms that reliably produce communication bootstrapping such
that it can be used to connect specialists in an engineered system.

• I construct a demonstration system including a simulated world and pair of
observers that learn world dynamics via communication bootstrapping.

Thesis Supervisor: Gerald Jay Sussman
Title: Panasonic Professor of Electrical Engineering

3

4

Acknowledgments

No thesis is an island. No idea is birthed outside of a network of family, friends,
colleagues, and critics that help to give it form and mold its awkward first fumblings
into maturity. So let me begin by thanking a few of the many who have had a hand
in shaping me as a researcher and in making this work a reality:

Gerry Sussman, my advisor, for the pointer to Kirby’s work that started it all,
for constructive criticism, encouragement, and argument, for explaining to me that
everybody has dry spells, and for his insights into the relationship between language,
computation, and robust engineering. Patrick Winston, for exciting me about intel-
ligence and being susceptible to my enthusiasm in return, and for his invaluable aid
in my ongoing battle to learn to speak both precisely and clearly at the same time.

Abi Harper, my wife, for teaching me ways around writer’s block, coder’s block,
and perfectionism, for being my equal, and for always having a sharper understand-
ing of my work than I expect. Jean and Jon Beal, my parents, for giving me the
foundation on which I build and for being always a safe harbor and source of support
in time of need.

David Harper and Julie Sussman, whose careful editing has greatly improved the
quality of this document. Shaun Bennett and Alice Harper for lending me places of
retreat where I could work monastically when I needed. Tim Shepard and Justin
Mazzola-Paluska, constant colleagues and sharp critics who keep me grounded and
connected to the larger world. Jessi Kleiss, for deep friendship and understanding
from 3,000 miles away.

Tom Knight, for introducing me to paths not taken, and who, along with as
others in the synthetic biology community like Drew Endy and Randy Rettberg, has
encouraged and tried to answer my naive questions. Joel Moses, for shaking my mind
with philosophical connections I am still digesting. Rod Brooks, for encouraging me
to spread dangerous ideas.

Joe Foley, Jade Wang, Richard Tibbetts, Peter Litwack, Ken Clary, and other
Assassin’s Guild members who have debated game design with me and who have
contributed to the development of failure simplification. David Houston, for pointing
me at some important insights on the nature of research, and Sara Bennett, for
giving me an appreciation of complexity, the slow struggle toward enlightenment,
and a reminder about the profound simplicity of the scientific method.

All those who have pushed me and challenged me on my ideas, asking the right
questions and criticising me when I needed it, especially Hal Abelson, Vikash Mans-
inghka, Whitman Richards, and Brian Williams.

Many other friends and colleagues deserve credit as well: Jonathan Bachrach,
Liz Baraff, Bob Berwick, Keith Bonawitz, Won Chun, Dave Cliff, Michael Coen,
Diana Dabby, Ian Eslick, Seth Gilbert, Bob Hearn, Leslie Kaelbling, Nancy Lynch,
Marvin Minsky, Radhika Nagpal, Sajit Rao, Edwina Rissland, Deb Roy, Dana Scott,
Howie Shrobe, Push Singh, Peter Szolovits, Josh Tenenbaum, Christof Teuscher, John
Wilbanks. They and many others share in the credit for this document; any blame
is mine alone.

5

6

Contents

1 Introduction 15

1.1 Communication Bootstrapping . 17

1.1.1 Learning to Communicate . 17

1.1.2 Learning by Learning to Communicate 19

1.2 Roadmap . 20

1.2.1 Precise Statement of My Hypothesis 21

1.2.2 Construct an Exploratory Engineering Domain 21

1.2.3 Extend the Range of Communication Bootstrapping 22

1.2.4 Test for Key Features in Humans 23

1.3 Organization of Dissertation . 24

2 System Overview 27

2.1 From Observation to Communication to Prediction 27

2.2 Signal Agreement and Interpretation 28

2.2.1 Agreeing on Signals . 29

2.2.2 From Signals to Predictions 29

2.3 Summary . 30

3 Example Scenario 31

3.1 Simulated Scenario . 31

3.2 Two Senses . 35

3.3 Measure of Success . 37

4 Relationship to Biology 39

4.1 Neuroscience Is Not Enough . 39

4.2 Development Is Like Engineering . 42

4.3 Hardware and Development Costs . 43

4.4 Cost Assumptions . 44

7

5 Design Process 47

5.1 Two Powerful Ideas . 47

5.2 What Makes This Process Different? 48

5.3 Creating Devices and Data Sheets . 50

5.3.1 Interface Specification . 51

5.3.2 Mechanism . 52

5.3.3 Configuration Parameters . 53

5.3.4 Dossier . 54

5.3.5 Usage Specification . 66

5.4 Using Data Sheets for System-Building 71

5.4.1 Example: Agreeing on Signals 71

6 A Design for Communication Bootstrapping 83

6.1 Communication Bootstrapping v1.0 83

6.1.1 What v1.0 Does . 84

6.1.2 How and Why v1.0 Works . 85

6.2 Core Bootstrapping Architecture . 88

6.3 What Is a Good Agreement? . 89

6.4 Signal Encoding . 91

6.4.1 Symbols and Inflections . 92

6.4.2 Channel . 93

7 Agreeing on Non-Equality Relations 95

7.1 Separating Form and Meaning . 98

7.1.1 Three Building Blocks . 99

7.1.2 Unidirectional Link . 103

7.1.3 Bidirectional Link . 112

7.1.4 Do Brains Separate Form and Meaning? 117

7.2 Learning From Message Sequences . 118

7.2.1 Time Interval Relations . 119

7.2.2 Predictive Relations . 121

7.2.3 Incremental Interval-Based Example Segmentation 123

7.2.4 Experimental Verification . 124

7.3 Signal Map . 129

7.3.1 Relation Maps . 130

7.3.2 What Sorts of Signal Maps Could a Brain Afford? 132

7.3.3 Experimental Verification . 133

8

8 Communicating Relations 139

8.1 Encoding Relations With Inflections 139

8.2 Shared Focus . 142

8.2.1 Distributed Focus . 144

8.2.2 Throttling Requests . 147

8.2.3 Reflexes and Low-Level Equality 148

8.3 Focus and Relation Learning . 149

8.4 Potential Benefits from Shared Focus 152

9 Contributions 155

9.1 The Larger Architectural Vision . 157

9.2 Next Steps . 159

9.3 Wider Implications . 160

A Glossary 161

B Experimental Data 167

B.1 IIES Learning . 167

B.2 Signal Map Learning . 172

B.3 Focus Learning . 178

C Data Sheets 181

C.1 Distributed Map . 181

C.1.1 Interface Specification . 181

C.1.2 Mechanism . 182

C.1.3 Configuration Parameters . 183

C.1.4 Dossier . 183

C.1.5 Usage Specification . 184

C.2 Unidirectional Link . 186

C.2.1 Interface Specification . 186

C.2.2 Mechanism . 187

C.2.3 Configuration Parameters . 190

C.2.4 Dossier . 190

C.2.5 Usage Specification . 194

C.3 Bidirectional Link . 195

C.3.1 Interface Specification . 196

C.3.2 Mechanism . 196

C.3.3 Configuration Parameters . 197

9

C.3.4 Dossier . 197

C.3.5 Usage Specification . 199

C.4 Distributed Focus . 200

C.4.1 Interface Specification . 200

C.4.2 Mechanism . 201

C.4.3 Configuration Parameters . 202

C.4.4 Dossier . 202

C.4.5 Usage Specification . 208

C.5 Throttle . 209

C.5.1 Interface Specification . 209

C.5.2 Mechanism . 210

C.5.3 Configuration Parameters . 210

C.5.4 Dossier . 210

C.5.5 Usage Specification . 212

10

List of Figures

1-1 Screenshot of a simulated four-way intersection 16

3-1 Screenshot of simulation: children surge as school lets out 32

3-2 Screenshot of simulation: police car exercising right-of-way at night . 33

3-3 Screenshot of simulation: tow-truck clearing an accident at dusk . . . 34

3-4 Screenshot of simulation: ambulance picking up an injured pedestrian 35

3-5 Visual observations are obtained using a false-color image 36

5-1 A codetector uses a stream of evidence to decide accept, reject or wait 52

5-2 Mechanism for a codetector . 53

5-3 A codetector decides quickly except near the decision threshold . . . 57

5-4 volatility controls the time-scale of correlation in the input stream . . 59

5-5 Codetector symmetric behavior predicts asymmetric behavior 63

5-6 Codetector high volatility behavior predicts low volatility behavior . 64

5-7 Codetector behavior can be predicted from a simplified subset 65

5-8 Tableau of codetector behavior survey 67

5-9 Tableau of codetector behavior under failure simplification 72

5-10 Architecture of a signal agreement system 73

5-11 Mechanism for a signal agreement system 74

5-12 Portion of the codetector data sheet used to predict signal agreement 76

5-13 Prediction of signal agreement behavior 77

5-14 Initial survey of signal agreement behavior 79

5-15 Extended survey of signal agreement behavior 81

6-1 Architecture of communication bootstrapping v1.0 84

6-2 Encoding scheme for v1.0 . 86

6-3 Core bootstrapping architecture . 88

7-1 Design for a signal map that separates agreement and interpretation . 97

7-2 Two abstractions separate the form of signals from their meaning . . 98

7-3 Growing a random bipartite graph 100

11

7-4 A distributed map connects two sets via a set of rendezvous points . . 101

7-5 A small oversupply factor and rendezvous size aids distributed map . 103

7-6 A unidirectional link sends messages from a speaker to a listener . . . 104

7-7 A unidirectional link represents messages in its crossbar 105

7-8 A unidirectional link uses sparse coding on a random wiring pattern . 107

7-9 Unidirectional link self-organization is aided by a small coder oversupply109

7-10 Unidirectional link mature vocabulary grows rapidly, then slows . . . 110

7-11 Reducing channel capacity degrades a unidirectional link gracefully . 111

7-12 Increasing noise degrades a unidirectional link gracefully 112

7-13 A bidirectional link pairs the mature coders of two unidirectional links 113

7-14 A bidirectional link pairs up coders one at a time 114

7-15 Survey of pgen and miss parameters for bidirectional link 115

7-16 Survey of bidirectional link self-organization time distribution 116

7-17 Allen’s 13 time relations compare intervals 119

7-18 Intervals start and end at an unknown point between messages 120

7-19 Eleven predictive relations between two elements 122

7-20 IIES: an FSM for incremental detection of time relation examples . . 123

7-21 A symbol relation map compares messages and makes predictions . . 130

7-22 Junctions in the inflection relation map detect EQUAL relations . . 131

7-23 Signal map prediction quality improves over time 136

7-24 Signal map number of relations grows quickly, then gradually levels off 138

8-1 Visual observation fragment concerning a stoplight 140

8-2 Shared focus architecture . 143

C-1 A distributed map connects two sets via a set of rendezvous points . . 182

C-2 A small oversupply factor and rendezvous size aids distributed map . 185

C-3 A unidirectional link uses sparse coding on a random wiring pattern . 188

C-4 Unidirectional link mature vocabulary grows rapidly, then slows . . . 191

C-5 Unidirectional link self-organization is aided by a small coder oversupply192

C-6 Increasing noise degrades a unidirectional link gracefully 193

C-7 Reducing channel capacity degrades a unidirectional link gracefully . 194

C-8 Survey of pgen and miss parameters for bidirectional link 198

C-9 Survey of bidirectional link self-organization time distribution 199

C-10 Distributed focus balances consensus against quick change of topics . 201

C-11 Tableau of distributed focus tpriv survey 204

C-12 Tableau of distributed focus pext survey 205

C-13 Tableau showing convergence time for distributed focus 207

12

C-14 A throttle fairly filters input streams to a rate-limited output stream 209

C-15 Tableau of throttle behavior survey 213

13

14

Chapter 1

Introduction

Human intelligence is one of the basic mysteries of our world, and one that has proven

remarkably difficult to untangle.

As an engineer studying the subject, my approach is to try to build an intelligence

with human-like capabilities, on the assumption that the obstacles I encounter along

the way will give me insight into the nature of intelligence.

I feel safe in assuming that this is an extremely complicated problem, and that as

an engineer, I should only expect to be able to work on one part at a time. So far so

good: engineers are great at breaking systems down into modular parts so that each

is specialized to handle one part of the problem and we can work on each specialist

separately.

In building an intelligence, though, there is a real problem: it is hard to isolate a

specialist part. If we want a system that exhibits the broad competence, flexibility,

and common sense of human intelligence, then even the simplest of matters are “AI-

complete,” a joking term that means that an artificial intelligence task spirals outward

and ends up involving the whole complexity of intelligence.

Consider, for example, navigating the humble traffic light—my example of choice

for this dissertation (Figure 1-1). What could be simpler? Go when the light green,

stop when it is red—a simple interaction between motor and vision. But when the

light is yellow, go if you can make it before it turns red—sequencing and timing.

Right turn on red—an exception—except where there is a “No Turn on Red” sign—

and language gets involved. When turning left, will the oncoming cars yield? Here in

Massachusetts1 you’d best make eye contact, judge their intentions, and maybe figure

out some primate dominance issues. It only gets worse from here: near my house,

there is a light that shows red and a green right arrow simultaneously, then changes

to yellow, then to red and a green left arrow. Or a slow pedestrian is still in front

1“Massachusetts: where people want to put their car where your car is.” –Abi Harper

15

Figure 1-1: Screenshot of a simulated four-way intersection showing a car running a
yellow light at around noon.

of you when the light turns green. Somebody might run their red light. It is raining

heavily and the lights are out. There is an accident, and you need to go around,

interpreting the gestures of the officer directing traffic. There is a parade, a street

festival, a kid chasing a ball, heavy fog, black ice, you smell smoke, your cell-phone

rings, somebody honks their horn.

Pretty much every matter is like this, potentially requiring complicated coopera-

tion from any arbitrary combination of specialists. Humans are very good at this, so

much so that when an appropriate team of specialists assemble themselves on the fly

to address a novel situation, we think it merely natural and look down on those who

are less nimble in their synthesis.

This presents a real problem for us as students of intelligence. We do not un-

derstand how humans carry out this feat and have not yet been able to duplicate it,

despite heroic cognitive architecture projects such as SOAR[41], ACT-R[27], Cyc[15]

and OpenMind[35] (to name only a few). How can we attempt to build a system that

is smart like a human if we do not know how to produce agile cooperation among a

group of specialists?

The mystery is deepened by the fact that most of this teamwork involves things

16

that must be learned, rather than things that could be built into our DNA. While

instinctive capabilities like hand-eye coordination are surely involved, they are insuf-

ficient to explain “high-level” behavior like deciding to flex your ankle to press the

brake and keep the car from moving forward because the officer directing traffic is

gesturing for another car to go but for you to wait and you are willing to submit to

the officer’s wishes.

Thus, if we are to understand human intelligence, we must understand how the

various specialists that contribute human intelligence learn to work together. My

hypothesis is learning by learning to communicate—that the specialists learn to co-

operate by learning to communicate, exploiting the phenomenon of communication

bootstrapping, in which shared experiences form a basis for agreement on a system of

signals.

In this dissertation, I lay out a roadmap for an investigation that will prove or

disprove this hypothesis (containing much more than one dissertation worth of work)

and carry out the first few steps. Some of these early steps are problems that pertain

not just to my hypothesis but to general problems in software engineering and the

study of intelligence. As a result, the work presented in this dissertation is a significant

contribution both to computer science and to the study of intelligence, regardless

of whether the “learning by learning to communicate” hypothesis ultimately proves

correct.

1.1 Communication Bootstrapping

A network of devices exhibits communication bootstrapping when they use shared

experiences to reach agreement on a system of signals for communicating with one

another.2 Originally a possible explanation for how different specialists that con-

tribute to human intelligence might learn to understand one another, it also forms a

basis for my more radical hypothesis that human intelligence may arise largely from

the struggle of the various specialists to understand one another.

1.1.1 Learning to Communicate

It is not immediately clear how the various specialists that contribute to human intel-

ligence can understand one another at all. The regions of brain apparently specialized

for things like vision, language, and motor control are centimeters apart, and a dis-

tance of a few centimeters is a massive distance on a cellular scale. It appears to

2Communication bootstrapping is originally defined in [4] and [3].

17

be costly to make precise connections over such large distances (more on this in Sec-

tion 4.3). Combined with the significant variations that inevitably take place during

development, it is clear that most of the connections between distant parts of the

brain cannot be laid out with a deterministic wiring diagram like the ones we use

when we fabricate microprocessors.

Rather, the brain must be able to self-organize the connections that form between

specialists into an effective communication link. Communication bootstrapping began

as a model of how this might be carried out, and was inspired by Kirby’s work on

language evolution[21, 22].3

Kirby has proposed an alternate explanation of universal grammar, the common

structure found in all languages with native speakers.4 The more popular explanation

of universal grammar is that it is a precise mechanism built in the human brain,

then configured for particular languages. Kirby’s alternate proposal is that humans

have only a shared set of learning biases. In Kirby’s model, when an adult and

child share an experience, these biases mean that the child is likely to jump to the

right conclusions when trying to break the adult’s speech into meaningful fragments.

Universal grammar would then be the result of selection for languages that fit well

with these learning biases.

Whatever the truth may be about human language, Kirby’s theory hints that

specialists could learn to communicate with one another using only coincidences be-

tween the senses and a common mechanism for connecting together signals and their

meanings.

For example, the walk light and the audible signal that accompanies it usually

occur together. Communication bootstrapping between the vision specialist and the

hearing specialist results in agreement on a signal that means the walk light to the

vision specialist and the accompanying sound to the hearing specialist. Thus, when

the hearing specialist signals the presence of the sound, the vision specialist interprets

it as the walk light, which it knows how to look for and understand.

I have demonstrated this for a limited domain in previous work[4, 3], using a

simple architecture that I review in Section 6.1. The extension of communication

bootstrapping to a broader range more useful for building an intelligence is one of the

3A note on related work: Kirby’s work is closely related to that of Steels on grounded language
acquisition[38], that of Yanco on self-configuring communication for mobile robots[45], and Batali on
learning grammar in recurrent neural networks[2]. Indeed, a small sub-field on synthetic language
has blossomed—a good summary can be found in [23]. In general, however, the systems they have
studied have small vocabularies, converge slowly, and are restricted to linear utterances such as
character strings.

4Even invented languages, such as American Sign Language, might not conform to universal
grammar initially, but they are remolded by the children who are raised speaking them.

18

results of this dissertation.

1.1.2 Learning by Learning to Communicate

Communication bootstrapping also allows us to investigate another, more radical

hypothesis: that human intelligence may arise largely from the struggle of various

specialists to understand one another.

Recent work in cognitive science suggests that there is something very special

about how the various specialists contributing to human intelligence learn to work

together. Infant studies show that humans are born with essentially the same cogni-

tive faculties as other mammals,5 and it is hypothesized that our unique intelligence

is not the result of any particular faculty, but of the cooperation that develops among

them and appears to be related to language[37]. It is not known, however, whether

language enables cooperation to develop or vice versa.

For example, human adults can reorient themselves to find a location specified

as a combination of two types of feature, color and geometry, while children less

than five years old and rats only use geometry, a single feature, to reorient[17]. The

color and geometry faculties somehow work together in adults, but not in children or

rats. Moreover, the transition between infant and adult capabilities correlates with

production of the words “left” and “right”[18] and adult reorientation is impaired by

simultaneous performance of a language task but not a rhythm task[19]. Cooperation

between faculties is thus apparently related to language.

In another example, small children combine three separate faculties to develop

the concept of number[8]. Humans, like many animals, have built-in faculties for

perceiving numeric features, such as analog magnitude (an imprecise measure of the

“bigness” of a set) and parallel individuation (tracking of a few particular items).

In humans, however, there is a standard developmental sequence by which analog

magnitude and parallel individuation combine with a third faculty, sequence memo-

rization (in particular, the count list “one, two, three, four, ... ,”) to form the positive

integers. Around age two, a child starts to recognize the difference between “one” and

larger numbers, some months later adds “two,” then “three,” then makes a sudden

leap to a general understanding of positive integers. Somehow, between the ages of

two and four, these three faculties reliably combine to produce a breakthrough in

mathematical ability.

I hypothesize that these sorts of conceptual leap are enabled by communication

bootstrapping. Communication bootstrapping is used in two different ways in my

5Our unique language abilities emerge later.

19

hypothesis. First, when two specialists agree upon a signal, they may each interpret

it differently, so that the signal captures a relationship between two concepts. For

example, if the motor specialist and the vision specialist agree on a signal that means

“release gripped object” to the motor specialist and “object goes downward” to the

vision specialist, then that signal captures a causal relationship that describes how

dropping works. Second, since different specialists may have very different views of

the world, the process of agreement may serve as a powerful filter of ideas: if an idea

can survive translation, then it is likely to represent something real about the world,

rather than a fluke of one specialist’s processing.

Investigation of this hypothesis is the main goal of this dissertation. There are

severe obstacles (outlined in the roadmap) that must be overcome in order to allow

a conclusive investigation of this hypothesis. The results of this dissertation with

the broadest immediate applicability overcome two of these obstacles: first, a metric

for evaluating biological plausibility and second, principles aiding in the design and

integration of complex systems.

1.2 Roadmap

I am taking an exploratory engineering approach to the study of intelligence. I con-

jecture that if we attack an intelligence-related problem with designs constrained to

within the envelope of biological plausibility, then the principles that allow our de-

signs to work may illuminate the mechanisms that support human intelligence. The

details, of course, are expected to be quite different simply because of the number of

engineering decisions that must be made: it would be surprising if there were precisely

one way to make something smart like a human.

This approach is ideal for exploring and taming poorly understood phenomena

like communication bootstrapping. The challenge is to choose good constraints and

a tractable and illuminating problem.

My roadmap for investigation consists of four stages:

1. State the “learning by learning to communicate” hypothesis precisely.

2. Define a domain for exploratory engineering that will limit the amount of wasted

effort.

3. Incrementally extend the range of communication bootstrapping to support a

system that learns cooperative behavior, sanity-checking each step of extension

against example scenarios.

20

4. Determine which features of the final system are key to success, so as to be able

to construct experiments to test for analogous features in humans.

I will lay out each of these stages in turn.

1.2.1 Precise Statement of My Hypothesis

We can take care of the first stage now:

Human intelligence depends on communication bootstrapping, which al-

lows some of the specialists that contribute to intelligence to learn to

cooperate by learning to communicate.

Let me expand on this slightly, pointing out what this hypothesis does and does

not say.

• I speak only about “human intelligence,” and am not concerned with whether

communication bootstrapping is unique to humans. I would not be surprised if

monkeys and rats use it too; I would be surprised if insects did.

• I am not asserting that communication bootstrapping is the only missing puzzle

piece for intelligence, only that I think the puzzle cannot be solved without it.

This means that I am not expecting that mastery of communication bootstrap-

ping will allow us to immediately produce systems that are smart like humans.

• I say only that it is useful for “some of the specialists” and do not assume that

all links between specialists involve communication bootstrapping. I expect, in

fact, that communication bootstrapping is most effective when there is a base

of “lower level” connections handling things that would be awkward to express

with small numbers of discrete symbols (e.g. a map between visual coordinates

and arm configurations for reaching to those coordinates).

• I say “learn to cooperate by learning to communicate” but do not yet define

exactly what is being communicated or how that helps learn to cooperate. These

will be defined as exploratory engineering gives us a better understanding of the

potential and limitations of communication bootstrapping.

1.2.2 Construct an Exploratory Engineering Domain

Above all else, defining the engineering domain is about minimizing the amount

of effort that gets wasted on blind alleys and maximizing the likelihood that our

engineering investments will be cumulative.

21

We cannot eliminate these problems entirely: exploratory engineering is always

a messy business filled with bad decisions, mistakes, and unpleasant new discover-

ies.6 If we knew enough to avoid these, we would not need to be doing exploratory

engineering.

There are some particular pitfalls, however, that have long bedeviled the study of

intelligence. I want to take particular care to limit the impact of:

• work being made obsolete by our rapidly changing understanding of biology

• work that is too disconnected from biology to have predictive power

• systems that work only in tightly controlled circumstances

• systems that have many different parameters controlling their behavior

• devices that have unexpected interactions when they are connected together

• degradation of our understanding of a system as its complexity grows

• problems tracing credit and blame to particular design decisions (including de-

sign decisions we are not aware of—i.e. bugs)

I address the first two problems, relating to biology, with a new metric for evalu-

ating biological plausibility presented in Chapter 4. The rest are software engineering

problems. I introduce two new principles aiding in the design and integration of com-

plex systems in Chapter 5 and show how they can be applied to the remaining five

problems. These contributions do not eliminate the pitfalls, but reduce the peril to a

manageable level.

1.2.3 Extend the Range of Communication Bootstrapping

Communication bootstrapping has previously been demonstrated only for simple re-

lationships under carefully controlled conditions. In this stage, we extend its demon-

strated range incrementally until it supports a system that learns cooperative behav-

ior.

We begin with an architecture taken from previous work on communication bootstrapping[4,

3]. I review this architecture in Chapter 6 and generalize it to a core architecture for

this endeavor.

Step by step, we will extend the architecture to support more of what is needed

for a set of parts to learn to cooperate:

6As is usual in scientific practice, I am not presenting my mistakes unless they illustrate important
lessons.

22

1. use of signals to predict sensory data and vice versa

2. agreement on signals capturing asymmetric relations (e.g. causality)

3. agreement on signals capturing relations at different time scales

4. learning from streams of observations rather than a pre-digested sequence of

examples

5. signals that can be used distinguish between individual objects

6. use of signals to agree on a working set of objects

7. agreement on signals involving more than one object

8. use of multi-object signals for abstraction

9. use of signals to drive actuation

10. agreement involving more than two specialists

11. prediction failure as a driver for exploratory behavior

12. agreement on signals capturing arbitration between competing models

13. use of signals for prediction beyond the immediate future

14. agreement involving specialists not directly connected to sensory observations

Chapter 3 presents a four-way intersection scenario that I use to test my system

as I develop it. Chapter 7 handles the first four problems with the introduction of

a self-organizing symbolic link and learning based on temporal interval relationships.

Chapter 8 handles the fifth and begins work on the sixth with introduction of a mech-

anism for shared focus. I have sketched designs to address the remaining problems,

but their implementation and integration is future work and I will not present the

incomplete sketches in this dissertation.

1.2.4 Test for Key Features in Humans

This last stage is necessarily the most nebulous, since we will not know what the key

features are until we have a working design. We will see, however, that even a partial

design can produce testable hypotheses.

By the time we finish the extension stage, we will have a clear understanding of

how communication bootstrapping might be used to implement learning by learning

23

to communicate. We will then be able to make quantitative predictions about hu-

man behavior, brain structure, or other such biological phenomena, and use these

predictions to design experiments that test for my hypothesis and rule out alternate

hypotheses such as:

• Learning cooperation is unnecessary because there is always just one part that

is in charge.

• Learning cooperation is unnecessary because cooperation is instinctive and does

not need to be learned.

• Cooperation is learned, but at a sub-symbolic level where communication boot-

strapping is not a useful model.

Although this stage is largely beyond the scope of this dissertation, Section 7.1.4

presents a testable hypothesis regarding self-organizing symbolic links.

1.3 Organization of Dissertation

The remainder of this dissertation is organized as follows:

• Chapter 2 gives an overview of the system I develop throughout the rest of the

document.

• Chapter 3 gives a detailed explanation of the simulated four-way intersection

scenario that I use to test my designs.

• Chapter 4 introduces a cost model that addresses the problem of connecting

the investigation back to biology. This chapter is of general interest to students

of intelligence.

• Chapter 5 explains the software engineering problems faced in exploratory engi-

neering research into intelligence and presents the design process I use to tame

these problems. A simple decision-making device is used as an example. This

chapter is of general interest to software engineers.

• Chapter 6 reviews the previous work on communication bootstrapping, and

generalizes it to the architecture that I use in this dissertation. Also discussed

are standards for judging success.

• Chapter 7 explains the problems introduced by learning about relations other

than equality. These are resolved with a self-organizing symbolic link and a

learning mechanism based on temporal interval relationships.

24

• Chapter 8 explains how relations can be communicated between parts using a

focus of attention and discusses the implications of shared focus for learning.

• Chapter 9 summarizes the contributions of the dissertation and discusses av-

enues for further investigation and potential impact.

Additional relevant material is contained in the appendices:

• Appendix A contains a summary of all the technical terms and variables I have

defined. The reader is encouraged to look there if ever they feel confused about

what something means.

• Appendix B contains experimental data referenced in the dissertation.

• Appendix C contains the data sheets for five key devices.

25

26

Chapter 2

System Overview

I develop my ideas in the context of a system that connects two specialists, vision and

hearing, as they observe a simulated four-way intersection. Each specialist is building

a model of its environment on the basis of these observations, in order to predict its

future experiences.

Each specialist’s observations are provided by some lower-level system that reports

a list of things with properties and relations to one another. For example, a car may be

reported to the vision specialist as a thing that looks like a car, occupies a small part

of the visual field, is approximately red, is moving to the right, is above something

that looks like a road, and so on. Chapter 3 details how observations are produced

from the simulated four-way intersection.

The two specialists are connected by a communication channel, but have no built-

in signals with which to communicate their observations. Over time, however, the

specialists agree on a system of signals.

They learn to interpret the messages they send to each other with the aid of

temporal relationships and a shared focus of attention. The resulting system of signals

captures dynamics of the environment, allowing each specialist to interpret messages

as predictions of its future experiences, even when those messages regard situations

that neither specialist has ever before experienced.

2.1 From Observation to Communication to Pre-

diction

The specialists build models that describe their perceived environment in terms of

objects. Each object is a persistent bundle of sensory features. For example, the

visual perception of a car is an object. It has features such as color, size, and shape.

27

The model also includes binary relations between objects, such as the car being above

the road.

A few of the objects in a specialist’s model are selected at any moment; we call

this selected set its focus of attention. Each specialist frequently sends its partner a

message describing each object in its focus and the relations the object participates

in. For example, when the “cuckoo” sound turns on during a walk cycle, the change

may attract the attention of the hearing specialist, which then starts telling the vision

specialist that it hears “cuckoo.” It also may tell it that the cuckoo sound object is

to the right of loud engine sounds, to the left of a conversation, and other relations

the cuckoo sound object may participate in.

When a message arrives at a specialist from its partner, the message is fed through

a relation map that translates each message element into predictions about how the

receiving specialist’s model will change. For example, consider the signal that the

hearing specialist uses for the feature of sounding like a “cuckoo.” When this signal

arrives at the vision specialist’s relation map, it stimulates a causal relation that

predicts that a “DON’T WALK” light will vanish and another causal relation that

predicts that a “WALK” light should appear. Likewise, the signal that the hearing

specialist sends to represent loud engine sounds results in a prediction in the vision

specialist that a car will appear, and the “right-of” relation may be translated directly.

The message that a “cuckoo” sound is to the right of loud engine sounds is thus

translated into a prediction that a car will soon appear to the left of the place where

a “DON’T WALK” light is being replaced by a “WALK” light.

2.2 Signal Agreement and Interpretation

The bulk of this dissertation is devoted to two problems in implementing a system

that behaves in this way:

• How can two specialists agree on a system of signals for describing objects and

relations?

• How can a specialist learn the relations that interpret its partner’s messages as

predictions about its own model?

In my system, these two problems are solved separately.

28

2.2.1 Agreeing on Signals

The messages that a specialist sends describe objects and relations using symbols

and inflections. Symbols encode features; inflections are markers that are placed on

symbols in order to tie features together into objects and describe the relations linking

those objects. Messages of this sort are explained in Chapter 6 and discussed in more

detail in Section 8.1.

The specialists send messages to one another over a channel composed of a vast

number of arbitrarily connected simple communication paths. A symbol is encoded

as a sparse subset of the paths in the channel and detected when there is coherent

activity on that subset; an inflection is encoded as a sparse pattern of pulses in the

activity for a symbol.

Initially, the two specialists have no agreement on encodings for symbols or inflec-

tions. They establish these agreements by babbling randomly on the channel when

it is idle, rapidly coming to an agreement on the encodings. Quick convergence is a

consequence of the sparseness of the encodings. As agreement forms on individual

symbol or inflection encodings, they are added to a pool of pre-agreed signals that

await allocation and use. The agreement process is described in Section 7.1.

For example, when the hearing specialist needs a signal for “cuckoo,” it allocates

an unused symbol from the pool that have been agreed on in advance. Because this

symbol has been agreed on in advance, the vision specialist can instantly recognize

it. If it already knows the inflections on the symbol, it can interpret its relationships

to other symbols. The vision specialist does not, however, have an interpretation for

the symbol: when the symbol is fed through the relation map, no predictions result.

2.2.2 From Signals to Predictions

A specialist learns to make predictions by observing temporal relations between the

contents of its focus of attention and the sequence of messages it receives from its

partner. The temporal relations provide evidence for causal relations that connect an

incoming symbol to a feature or an incoming inflection to a relation in the specialist’s

model. These causal relations are accumulated in the relation map that translates

incoming messages into predictions.

A shared focus mechanism ensures that the sequence of incoming messages is

usually related to the contents of the receiving specialist’s focus of attention. For

example, when a “DON’T WALK” light appears and attracts the attention of the

vision specialist, the hearing specialist will start listening for a sound in that direction,

even before the “cuckoo” sound begins. The shared focus mechanism is described in

29

Chapter 8.

The sequence of messages is reinterpreted as a collection of intervals when each

symbol is present in the message. Relations between these intervals and intervals

when a feature is present in the focus of attention are incrementally classified us-

ing Allen’s time relations. These time relations are then heuristically interpreted as

positive, negative, or neutral examples regarding each possible causal relation. The

examples nudge a simple strength estimate up or down, so that when positive exam-

ples dominate, the relation is accepted and used for interpretation. Learning from

message sequences is described in Section 7.2.

For example, when a walk cycle begins, the hearing specialist starts sending mes-

sages including the signal for “cuckoo.” The vision specialist tracks the time relations

between the interval when messages containing “cuckoo” are present and the intervals

when each of the features in its own model is present in the focus of attention. One of

these features, that an object looks like a “DON’T WALK” light, disappears as the

messages containing the signal for “cuckoo” begin arriving. This time relationship is

evidence in favor of the signal for “cuckoo” predicting that a “DON’T WALK” light

will vanish. After a few experiences of this sort, enough evidence has accumulated,

and the vision specialist begins predicting that “DON’T WALK” will disappear when

it hears the signal for “cuckoo.”

2.3 Summary

We thus have a system of two specialists that create agreement on a pool of signals

during their idle time. They learn to interpret the messages they send to each other

with the aid of temporal relationships and a shared focus of attention. Together, these

result in a system of signals that captures dynamics of the environment, allowing each

specialist to interpret messages as predictions of its future experiences, even when

those messages regard situations that neither specialist has ever before experienced.

30

Chapter 3

Example Scenario

As I go about my investigations, I need a realistic scenario to check my work against

and to provide concrete goals to aspire towards. The point of the scenario is not to

measure success, but to use as a sanity check that my designs are at least behaving as

I expect them to. The work presented in this dissertation will hit only the lowest goals

in the scenario, but a fully developed architecture completing the roadmap presented

in Chapter 1 should satisfy all of the goals.

Our example scenario for the communication bootstrapping system will be two

specialists (vision and hearing) jointly observing a simulated four-way intersection.

This complex scenario will allow the same scenes to be understood at many different

levels, giving us a series of increasingly difficult benchmarks to test the integration of

the two specialists.

I will not, however, control the scenario to aid learning—no gradually increasing

complexity of situations or other such pedagogical devices. A baby is not granted

such easements, and neither will the systems I build. Instead, the system should be

able to ignore any complexity that it cannot yet hope to comprehend.

3.1 Simulated Scenario

First, a note regarding my choice to work in simulation, rather than with real-world

data. While real-world data has the advantage of making arguments for validity

easier, it introduces serious problems: one must collect and manage a large library

of data, signal processing of audio and video data is difficult and computationally

expensive, and testing whether a system is behaving correctly requires careful human

annotation of the data.

Working in simulation will allow me to avoid these problems by taking a generative

approach to the scenario. There is, of course, the danger that bugs in the simulation

31

Figure 3-1: Screenshot of the four-way intersection simulation: child pedestrians surge
as school lets out in the afternoon.

will cause the simulation to be missing important facts about the real world. I work

to minimize this danger by building my scenario using a pre-existing simulator, the

Open Dynamics Engine[36]. The Open Dynamics Engine is a free open source physics

engine with an active development community, which has previously been used for

dozens of projects including published research in robotics (e.g. [25], [16], and [44]).

Likewise, observations are produced from the simulation using OpenGL, a standard

3D graphics library, and OpenAL, its companion 3D sound library.

The scenario I have chosen is a four-way intersection with a single traffic light in

the middle (Figure 1-1 and Figure 3-1 to 3-4). There are four basic types of object

in the scenario:

• Background: large fixed objects: streets, sidewalks, grass and buildings.

There is also a day/night cycle that affects the lighting and the color of the

sky.

• Traffic Light: A single three-color light with four faces, suspended on a hori-

zontal pole crossing the intersection. The vertical poles on the corners (one of

which supports the light pole) contain non-visible walk-buttons that pedestrians

32

Figure 3-2: Screenshot of the four-way intersection simulation: a police car with
flashing lights exercising right-of-way at night.

push. The vertical poles also hold the boxes that show “WALK” and “DON’T

WALK” signals.

• Cars: Cars of various different colors and types (e.g. sedan, pickup, SUV, van).

Three types of emergency vehicles are included: a police car, an ambulance and

a tow truck. All have lights that can flash: blue for the police car, red for

the ambulance and yellow for the tow truck. The tow truck is a wrecker that

can carry cars on its flat bed. Car windows are opaque so that no driver or

passengers can be seen.

• People: Adults and children, travelling alone or in groups.

The stoplight follows the ordinary green-yellow-red light cycle, except when a

pedestrian pushes the walk button. Pushing the walk button results in a walk cycle

after the next East/West yellow light. When the walk light is on, the boxes make a

“cuckoo” sound (one of the standard audible walk signals here in Massachusetts).

Cars show up at the intersection with random likelihood dictated by time of day—

low when people are sleeping, medium at mid-day and evening, and high during rush

hours. Most cars go straight and a few turn left or right. For the most part the cars

33

Figure 3-3: Screenshot of the four-way intersection simulation: tow-truck at dusk,
picking up the first of two cars in a T-bone accident.

obey traffic laws: drive on the right, stop for red lights, yield on a left turn, right

turn on red, and yield to pedestrians. Cars will usually run yellow lights and will

occasionally break other traffic laws. Cars also have the goal of avoiding accidents and

will usually brake to avoid them. Cars make different noises when idling and driving,

and squeal their brakes when they slow too quickly. Cars honk when something forces

them to avoid an accident or when another car hesitates. Cars yield for police and

ambulances with flashing lights, who do not respect traffic laws. Cars that get in an

accident make a loud crashing sound and lose the ability to drive.

Pedestrians arrive randomly, much the same as cars, except they may appear

singly or in groups. The pedestrian daily schedule is the same as that of cars, except

that their rush hour is a “school rush” in the morning and early afternoon where

there are many child pedestrians, and there are also many pedestrians in the evening.

Like cars, every pedestrian has a goal destination, and most know to push the walk

buttons to achieve it. Pedestrians will also sometimes change goals when they meet a

friend. Pedestrians usually obey traffic rules, though they will usually jaywalk when

no car is coming. Pedestrians also try to avoid collisions, usually going around each

other and running away from oncoming cars to the nearest sidewalk. Walking makes

34

Figure 3-4: Screenshot of the four-way intersection simulation: close-up of an ambu-
lance picking up an injured pedestrian at the scene of an accident.

a faint sound. Pedestrians also usually talk when they are in groups and will yell at

cars they run away from. Pedestrians that meet with an accident (usually being hit

by a car) scream and fall to the ground unconscious.

When an accident occurs, the participants usually stop moving (though sometimes

there are hit-and-runs), and an emergency vehicle (ambulance for pedestrians, tow

truck for cars) is summoned to clear up the accident. This is essentially a garbage-

collection function, and since failure of the garbage collector is likely to cascade badly,

all other pedestrians and cars stop moving and the emergency vehicle cheats in its

physics interactions to avoid getting wedged.

3.2 Two Senses

We may think of our system as an infant sitting on the porch of a building at the

corner, staring in fascination at the world going by.1 It sits a little way off the sidewalk,

facing across the intersection, observing with two senses: vision and hearing. We will

be looking at what is learned by communication bootstrapping between the specialists

1Of course, we are going to leave it out all night watching cars, which is a bit inhumane.

35

Figure 3-5: Visual observations from the simulator are obtained using a false-color
image that fakes the process of segmentation and recognition.

for these two senses. To avoid the interesting complexities of actuation, the system

is not able to move.

Each sense delivers observations scraped from the simulator at a designated sam-

pling rate (the rate can be different for the two senses).

For the hearing specialist, each sound source is an object carrying three types of

feature:

• Type: one or more of 13 values: engine, idling, driving, horn, cuckoo, screeching

brakes, talking, yelling, walking, etc.

• Direction: relative to the direction of gaze: 8 overlapping 60-degree sweeps at

approximately 45-degree intervals.

• Loudness: seven overlapping 15 db ranges from 40 to 100 db at approximately

10 db intervals. Below 32.5 db is unheard, above 100 db registers as 100 db.

For the vision specialist, each visible object is assumed to have been segmented

from the image by a low-level vision system and recognized as belonging to a particular

category. Segmentation and recognition is faked using a false-color rendering of the

scene (Figure 3-5). Each object has four types of feature:

36

• Type: one or more of 28 values: car, sedan, person, adult, child, light, pole,

etc.

• Color: 8 overlapping color regions: red, yellow, green, blue, magenta, cyan,

dark, and bright.

• Size: ten overlapping 10 degree ranges, from 0 to 80 degrees, at approximately

8 degree intervals. Size is the number of degrees of vision covered by a circle

containing as many pixels as the object does.

• Motion: relative to the direction of gaze: 8 overlapping 60-degree sweeps at

approximately 45-degree intervals (e.g. up, down-left).

Objects also have relations to other nearby objects. Stationary objects relate only

to those they contact visually, mobile objects relate to other nearby mobile objects

as well. There are seven relations: contact, above, below, left, right, in front, and

behind. These relations are computed using a rough directional nearest-neighbor

calculation.

3.3 Measure of Success

As we extend the capability of communication bootstrapping systems, they should be

able to extract increasingly subtle structure from the four-way intersection scenario.

The goals for learning are arranged in a series of increasing complexity. As we extend

the range of communication bootstrapping, they should be achieved approximately

in sequence.

1. Common Cross-Sense Binary Relations: The simplest to learn, these show

a basic ability to find correlations between senses. Examples: engine sound is

a super-set of car, walk signal equals cuckoo sound.

2. Rare Cross-Sense Binary Relations: These demonstrate the ability to di-

rect learning to more subtle correlations. Example: screeching brakes stops

object motion.

3. Simple Patterns: These demonstrate that the ability to find agreement cap-

turing multi-object relations. Examples: yellow light changes to red light, a car

approaching a pedestrian causes a horn sound.

4. Complex Patterns: These demonstrate the ability of multi-object relations to

work with patterns involving more than one relation between objects. Example:

37

contact between a car and person makes the person move fast and scream, a

pedestrian at the corner causes a cuckoo sound.

5. Abstract Patterns: These demonstrate that patterns can be incorporated

into other patterns. Example: a pedestrian at the corner causes a walk cycle.

6. Patterns Incorporating Separated Events: These demonstrate that a pat-

tern can be learned despite distractors (possibly incorporating abstractions).

Example: an accident causes an ambulance to appear.

7. Multilevel Abstraction: These demonstrate that learning can take place

when not closely tied to observations. Examples: accidents are likely during

school rush hour, running a red or jaywalking can cause an accident.

8. Exceptions: These demonstrate that it is possible to learn patterns that ma-

nipulate other patterns. Examples: police cars do not stop at red lights when

their own lights are flashing, jaywalking is safe when there are no cars coming.

In this dissertation, I attain only the first two goals.

38

Chapter 4

Relationship to Biology

We can learn about human intelligence by using a model of hardware and development

costs, ignoring almost all the details of biology. The basic argument is that neither the

gross anatomy of the brain nor the behavior of individual cells nor the behavior of the

whole poses sufficient constraint on the algorithms that might implement intelligence,

but that the process of engineering an intelligence under this cost model poses similar

challenges to those faced by a human growing from a single cell to an adult. This

will allow us to explore organizational ideas freely, yet retain confidence that when a

system works, the principles allowing it to work are likely to be similar to those that

allow human intelligence to work.

4.1 Neuroscience Is Not Enough

Although our current knowledge of biology tells us a great deal about how human

intelligence cannot be structured, we know little about the algorithms that actually

make our intelligence work.

Let us start big, with our knowledge about the anatomy of the brain. By studying

tissue structure, injuries, and intensity of blood flow, we know quite well the gross

location of broad functions, like “vision” and “motor control.” Other things, like

“memory” or “language” are more slippery, with many different places involved in

different ways. Knowing how much activity is going on in what places, however, tells

us nothing about what computations are being executed or their relative importance.

To see why, consider a modern computer like the laptop I am using to write this.

Modern computers spend almost all of their cycles either doing nothing or putting

pictures on the screen. No matter its importance to my life, editing this document

39

occupies effectively zero processing power1, and storing the text takes only a few

millionths of the available storage.

If you scanned my computer’s components for activity, correlating carefully with

when I hit various keys, you could probably discover the hardware controlling the

keyboard and hard drive. When you try to learn how the spell-checker works, how-

ever, you learn only that it depends on interactions between the processor, memory,

the hard drive, the keyboard, and the graphics coprocessor. You may investigate

further, determining that when interaction with the hard-drive is interrupted, no

spell-checking occurs at all, while disrupting interaction with the graphics coproces-

sor allows spell-checking to run, but ineffectively. Still, the information about how it

actually works is obscured by all the other things going on in the background.

We are in much the same position concerning the anatomy of the brain: we know

quite a bit about what places are involved with various sorts of activity. What we do

not have is a clear understanding of what computations are being executed in these

places. The few exceptions are instances like early vision, where the behavior is very

closely coupled to sensory input, or like pituitary gland activity, where the behavior

is highly specialized. Our knowledge of anatomy tells us virtually nothing about how

the parts work together to produce human intelligence.

What about the other end of the scale, the behavior of individual cells? We know

quite a bit about the various types of cells in our brains, and especially about the

neurons where it appears that most of the computation takes place. We can even stick

probes into brains and measure the behavior of some individual neurons. Knowing

what an individual cell does, however tells us nothing about the larger computation

in which it is participating.

Again, consider trying to figure out how my spell-checker works. Sticking delicate

probes into the guts of my poor laptop, you discover that there are lots of tiny parts.

Although they all share common features, different parts have specialized to perform

different functions. Some parts switch on when their inputs are active, while others

switch on when their inputs are not active. Some parts store values and repeat them

again later, while others relay values across long distances. When you apply this

knowledge to the spell-checker, however, you again come up blank. Each time you

run the spell-checker, different parts of the memory are used, and although the same

parts of the processor are used each time, the pattern of use is always different—the

rest of the work the computer is doing keeps interfering in different ways. With some

hard work, you can find the parts that test for equality, and show that when there

are errors they behave differently from when there are none. Still, the information

1I use emacs.

40

about how it actually works is obscured, both by the rest of the activity going on in

the computer and by the fact that the parts are so generic that they could be doing

anything.

We are in much the same position concerning the behavior of neurons. We know

quite a bit about what sort of computation an individual neuron can do, what a

collection of interconnected neurons can compute, and how long a computation would

take. The problem is that a large collection of neurons can potentially compute just

about anything, and we know very little about what they actually are computing.

Because of this, knowing about individual neurons tells us virtually nothing about

how large numbers of neurons might work together to produce human intelligence.

Finally, what about comparison to human behavior? By measuring reaction times,

relative preferences, and other objective features of cognition, cognitive science has

produced a great wealth of information about the range of behavior produced by

actual human intelligences. Knowing what a complete human intelligence does, how-

ever, tells us nothing about what its components are or the types of functions they

compute.

Once more, consider my spell-checker. Sitting down at the keyboard, you discover

that hitting “Escape-$” causes it to tell whether a word is correct—a fine stimulus re-

sponse! Comparing across computers and applications, you discover that the spelling

reflex is universal (except for a few diseased individuals) and document a range of

stimuli that activate the spelling reflex in different contexts, including “Command-:”

and “F7.” Some further analysis reveals universals and range of variations: for exam-

ple, the first suggestion to correct “teh” is always “the,” but the number and nature

of other suggestions varies widely. Combining this with previous work on compo-

nent activity, you can make some pretty good theories about how the keyboard and

graphics coprocessor contribute to spell-checking, but the contribution of the proces-

sor and memory is still a mystery. For that, you start setting up much more precise

experiments, timing how long spell-check takes to start and how long between words,

varying the size of the document, the distribution of errors, whether music is playing

at the same time, and so on. You learn many facts, including that longer documents

take longer to check, and that music can slow the process down, presumably by com-

peting for a shared resource. But you end up stymied still, because both the memory

and the processor are always interacting with one another, and every manipulation

you apply still involves both equally.2 In the end, all you know is that processor and

memory work together to spell-check, but nothing about how they do so.

Measurements of human behavior have the same problem: we can measure the

2This continuous interaction is likely if the dictionary does not fit in the processor cache.

41

behavior of the whole system, and compare the results of different experiments in

order to understand which parts are involved and how the behavior changes if a part

is damaged. What we do not know is how the parts interact with one another to

produce the observed behavior. Even apparently modular behavior might involve

small but important interactions between many components. The exceptions are

phenomena like optical illusions, where the behavior appears to involve very specific

resources and not depend much on interaction. Moreover, we do not know how

sensitive the observed behavior might be to small flaws in our models: an almost

correct model missing one critical link may produce a much worse fit than a model

that is completely incorrect, but well-tuned for a particular domain. Because of this,

measurements of human behavior tell us virtually nothing about how the parts work

together to create the behavior we observe.

4.2 Development Is Like Engineering

I have argued that if I were to build a system that conforms to what we currently

know about brain anatomy, individual neurons, and human behavior, then I have no

reason to believe that it will be smart like a human. Moreover, if I build something

that is not smart like a human, I do not know enough about how the specialists in

my system should interact to figure out what I should change in order to make it

smarter.

Again, here is the challenge I face as an engineer: I need to build many different

specialists and connect them together to form something that is smart like a human.

This is hard because the specialists are complicated, so I need to work on them at

different times, and how to specify the goal is unclear, so I will make many mistakes

in building them. Can I even dare hope that such a disjointed and flawed process can

produce specialists that learn to work together and be smart like a human? It seems

to need a miracle.

Such a miracle has happened not once, but billions of times, every time a human

grows from a single cell to an adult.3 First, because the various specialists contributing

to human intelligence are distributed across long distances (centimeters are huge in

cellular terms!), the details of each distant specialists are likely to develop largely

independently. Our problems in engineering an intelligence also lead to specialists

being developed largely independently, though for the engineer the separation is due

3This is why I am discussing development rather than evolution: humanity evolved approxi-
mately once, so chance and special circumstances might be much more in play there. Evolution and
development are intimately related, however, so evolution is by no means excluded from discussion.

42

to the complexity of the problem rather than physical distance. Second, there is

a large amount of variation during the development of the brain, meaning that a

specialist cannot make many assumptions about the structure of the other specialists

it must work with. In engineering, independent development of specialists also leads

to variation, because we do not understand the problem well enough to prevent our

conception of the system from changing over time or between engineers.

Development overcomes these problems, regularly integrating the various special-

ists into a functional intelligence. Even most mentally ill or developmentally disabled

people are basically functional examples of integrated human intelligence. It is just

that our standards are very high and we notice even small differences in behavior.

Yet we engineers have not yet been able to do the same as we struggle to build an

intelligence.

I propose that there are organizational principles exploited by biology that we have

not yet recognized and tamed to our purposes. What I want, then, is a sandbox where

experimentation can help us identify principles of this type. The way that biology

does it may not be the only way—indeed, I would be surprised if it were—but I will

hunt for a solution that is biologically plausible because I know that at least one

such solution exists. As an additional benefit, if the systems we build are biologically

plausible, then it is reasonable to guess that the organizational principles that allow

us to integrate the specialists in our systems may be related to the principles that

allow human development to work.

4.3 Hardware and Development Costs

What constraints shall I set for myself? On the one hand, I want simple constraints

so that I can explore organizational ideas freely. On the other hand, my systems must

not be biologically implausible.

I have chosen to judge plausibility with a biologically-inspired model of hardware

and development cost. This model will allow me to judge an individual device without

knowing how it will be employed, by measuring the asymptotic cost of the device as

its capacity increases.

This measurement, in turn, tells us what constraints there are on our ability to

use the device as part of a broader explanation of intelligence. If a device is costly, we

can only use a few small-capacity copies. If a device is cheap, then we may be able

to use vast numbers of small instances or a few instances with vast capacities. Thus,

for example, a device involved in handling words should have a low cost per word,

because we need to handle thousands of different words, but a device managing our

43

response to hunger could be costly because hunger is one of a very few direct survival

urges.

I will measure two types of cost familiar to computer scientists: time complexity

and space complexity. Because I am making an analogy to biological systems, how-

ever, I will measure these costs both for a mature system and for its development.

The relative importance of these costs differs from what we have become accustomed

to on digital computers.

• Time Complexity: Biological systems are much slower than silicon systems,

operating at frequencies ranging from kilohertz to millihertz depending on the

mechanism, so time is a more precious resource. On the other hand, there is

the opportunity for massive parallelism. The available time is generally long for

development tasks, ranging from months in the womb to years of childhood, but

may be short for responses during mature execution, on the order of seconds or

less.

• Space Complexity: Space complexity refers to the amount of hardware com-

prising the mature system and the size of the program encoding its development.

For the mature system, this generally means neurons, of which there are on the

order of 100 billion in the brain (approximately 20 billion in the neocortex),

each connecting to an approximate range of 100 to 10,000 other neurons.4 For

development, human DNA contains approximately 3 billion base pairs—a little

under 1 gigabyte of data.

Finally, I will assume that that devices are not perfect. Current fabrication tech-

niques for silicon computers are so accurate that perfection is a reasonable assumption

in many cases: errors during manufacturing can usually be detected, and the device

discarded, while errors during execution are corrected using parity checks and the

like. This sort of perfection is not found in biological systems: even the simplest

parts vary during development and misbehave occasionally during execution.

Using this cost model also helps insulate my sandbox from our rapidly changing

understanding of biology. These changes are much more likely to adjust the relative

cost of devices than to entirely rule out a devices.

4.4 Cost Assumptions

Based on my own highly incomplete knowledge of the field, and particularly on recent

work in synthetic biology (see, for example [43], [24], [42], and [31]), I make a few

4Hardware also implies metabolic cost.

44

assumptions about the cost of devices. While my knowledge leads me to believe these

are reasonable upper bounds, it is possible that I am mistaken. If that turns out to

be the case, then the devices I present will not be invalidated, but need only to have

their costs adjusted.

Simple Programs While the computing power of a single neuron is still unclear,

a precisely constructed network of neurons can compute just about anything. For a

simple program with no looping or recursion, I assume that execution, hardware, and

development costs are all proportional to the number of operations in the code plus

the number of bits in the data types it manipulates.

When there is looping or recursion, I measure the complexity by unrolling the loops

to their maximum length (unless they can be trivially parallelized) and expanding the

recursions to their maximum depth.

I assume that variation during development will cause a small percentage of pro-

gram instances to simply fail. Errors in execution will result in the program occa-

sionally failing to produce a result.

Communication Paths To create a communication path between two devices,

some sort of signal must be sent to guide the growing path from its source to its

intended destination. Since these signals are likely to be diffusing chemicals, two

signals can only be distinguished if they use different chemicals or are separated in

space or time. On the other hand, a signal can guide many paths at once to the same

destination.

I abstract this process with the following path creation operation: given a set

of source devices and a set of destination devices, create a path from each source to

somewhere in the destination set. Note that I place no upper limit on number of paths

connected to a device, despite the fact that neurons appear to have a fan-out limited to

around 10,000 connections. This is because a device is not one, but potentially many

neurons, and the fan-out can also be boosted exponentially by adding intermediate

stages (e.g. three stages is 1012 connections).

The encoding cost is proportional to the number of simultaneous nearby path

creation operations times the number of bits to be transmitted simultaneously on a

path, and the development time is proportional to the maximum distance between

source and destination devices.

Once created, a path takes hardware proportional to the number of bits that can

be transmitted simultaneously. It takes a constant amount of time to send each set

of bits, and they arrive at the other end of the path after a delay proportional to its

45

length.

I assume that variation during development will result in a small percentage of

missing or extra paths. Errors in execution add a small amount of noise to the bits

being transmitted.

Sets of Devices Filling an area with copies of a device is fairly cheap: since they

develop and execute independently, both development and execution can be done

completely in parallel.

During morphogenesis, coordinate systems are established with chemical gradients

and used to select regions where specific development programs execute[9]. This adds

at most a constant encoding cost to the encoding cost for a single part. Since the

relevant coordinate system may be established when the region is still very small, I

will assume that creating a set of devices adds only a constant time cost to the time

cost for developing a single device.

Once created, the hardware cost is equal to the number of devices in the set times

the complexity of a single device, plus a small constant. The execution time for a set

of devices is equal to the execution time for a single device plus a small constant.

I will assume that variation during development will result in a small percentage

change in the size of the set. Inclusion in a set adds no new errors to execution: the

only errors are the errors of the individual devices.

I will also assume that, for only a constant additional cost to encoding and devel-

opment time, each device in the set can have connections to all others within a small

fixed radius, connecting the set into a mesh-like network.

46

Chapter 5

Design Process

In this chapter, I will explain my process for engineering devices for use in building

an intelligence. I introduce two new ideas, dossiers and failure simplification, which

complement one another in the design process. Together, they allow us to understand

and manage the behavior of a device over a large range of conditions and configura-

tions. Devices engineered with this process can be connected together to form larger

systems that behave well across a wide range of conditions, even when some of the

devices within them are misbehaving. We can thus ensure that broad competence

and flexibility are preserved as a system gets more complex.

5.1 Two Powerful Ideas

A dossier is a visualization of a device’s behavior across a broad range of conditions

and configurations. The dossier helps us engineer a device by reducing the potentially

vast complexities of behavior down to a series of pictures that let us see at a glance

where there is desirable behavior, where there is misbehavior, and where the device

transitions between the two.1 When we create a dossier, it also shows us how robust

or fragile a device is: the narrower the regions of desired behavior, the more fragile

the device. By making it easy to see fragility, the dossier becomes a vital part of the

debugging process and helps us to avoid creating devices that later surprise us by

being inadequate for our needs.

We then use the information in the dossier for failure simplification, a way of

limiting the impact of a device’s misbehavior on the other devices it interacts with.

First, we must recognize that it is often not possible to prevent misbehavior, and that

the transitions between desirable behavior and misbehavior are likely to contain many

1This is much the same role as Poincaré sections serve in the study of dynamical systems.

47

interesting, hard to understand, and hard to evaluate complex behaviors. Failure

simplification is the tactic of changing the type of possible misbehaviors in order

make the device easier to understand and cope with, as well as to eliminate the hidden

interesting behaviors in the transition.2 This often involves some sort of pre-emptive

failure, and is generally “paid for” by shrinking the range of desirable behavior.

These two ideas, dossiers and failure simplification, are a complementary pair.

Dossiers help us understand and improve a device’s range of behavior. That under-

standing then allows us to use failure simplification to improve its interactions with

other devices. Together, they let us incorporate the devices into larger systems that

have desirable behavior over a broad and predictable range of conditions.

In the rest of the chapter, I flesh out these ideas and explain how I apply them

to the creation and use of devices. First, I take a moment to explain what makes

this process different from other engineering processes. In the next section, I explain

how to design a device and produce a data sheet capturing the important information

about how to use it. Finally, I explain how to use well-specified devices to create a

larger system and predict its behavior.

As I explain my process, I use my simplest device, a codetector,3 as a running

example. The purpose of a codetector is to make a decision on whether to accept

or reject a proposal, given a stream of evidence for and against the proposal. Both

incredibly simple and frequently used in my designs, this device will be a good example

to illustrate the design process.

5.2 What Makes This Process Different?

Why are current engineering techniques insufficient to handle the problems of de-

signing an intelligence? Why do we need to introduce these new techniques? The

basic problem is that an intelligence needs to both be autonomous and to behave

reasonably across such a broad range of conditions.

Systems that behave reasonably across a broad range of conditions are needed

in many places in our increasingly uncertain and interconnected world. Some, like

earthquake-resistant buildings or peer-to-peer networking are susceptible to ordinary

engineering techniques because they address a well-defined and narrow goal. Others,

like the Internet or business enterprises[34], depend on human intervention in their

response to unusual conditions.

2Failure simplification often effectively appears in the design of the best systems, but has generally
been a matter of art rather than routine.

3short for “coincidence detector”

48

A more direct comparison can be made between conventional software design and

the problems we will face in designing an intelligence. Here, the key differences are:

• In conventional software design, the design of a device tends to strongly control

the conditions under which it is employed. In designing for an intelligence, the

conditions are largely uncontrolled, and a device must be designed to behave

well over a large range of conditions.

• In conventional software design, the specification tends to draw a sharp distinc-

tion between correct and incorrect behavior. In designing for an intelligence, the

specification tends to be a set of sometimes contradictory qualitative behaviors,

which can be satisfied to varying degrees.

• In conventional software design, a device is expected to comply with its specified

interface, and it is a bug if it does not. In designing for an intelligence, I will

ask instead the range of conditions under which the device behaves reasonably,

and consider a narrow range a critical design flaw.

• In conventional software design, the result of violating a device’s assumptions

or interface specification4 is undefined and may result in arbitrary behavior. In

designing for an intelligence, I will map out the dysfunctional behaviors of a

device and provide instructions for limiting the impact of such behavior.

Of course, as conventional software projects get very large, their sheer complexity

starts to make them more like building an intelligence, simply due to the number of

different devices in the system, the inevitability of bugs, and the version changes both

within a piece of software and in the rest of the system it interacts with.

Programmers have been wrestling with the problems of complexity for a long time.

Fred Brooks’ famous “No Silver Bullet” paper[6], published twenty years ago, does

an excellent job of laying out the ways people hoped to overcome programming com-

plexity, and argues that none are likely to succeed. Twenty years later, a great deal

of progress has been made in all the many fields he touches on—program verifica-

tion, high-level languages, and expert systems, to name a few—and yet his thesis still

essentially holds. Despite all the work, current software engineering techniques are

essentially unable to stand up to the challenges of building devices for an intelligence.

Two recent research thrusts should be noted, however, as at least entering the

same problem space as my work. First is the autonomic computing field pioneered

by IBM[20], and its relatives in Self-* computing (e.g. [13]). Like my work, these are

4counting defined exceptional cases as part of the interface specification

49

also interested in resilient and adaptive behavior, but differ in the specifics of their

approach.

Second is failure-oblivious computing[32], which takes a more radical stance and

declares that errors should in fact be generally ignored: instead of crashing or raising

an exception, problems just result in a “safe” default being returned. While this may

help keep a program from crashing, it is insufficient for our needs because it lacks a

way of directing development from merely not crashing to actual desirable behavior.

5.3 Creating Devices and Data Sheets

A device and the data sheet that characterizes the device are created in an intertwined

process of iterative design. Starting with an interface specification that says what we

want the device to do, we describe the mechanism by which the device attempts to

fulfill those desires. We then generate a dossier characterizing the device’s behavior

across a broad range of conditions and configurations. If we are satisfied with what

the dossier tells us, we use it to create a usage specification for the device; otherwise,

we change the mechanism to address problems revealed by the dossier and try again.

The data sheet for a device contains all of this information, capturing both the

completed device and intuitions stemming from its engineering. Here is the data sheet

template for a device created with my design process:

• Interface Specification: Three aspects of the relationship between a device

and its environment:

– Conditions: the external environment affecting the device

– Range of Behavior: the set of observable actions that a device may

exhibit

– Desirable Behavior: criteria for determining whether a device’s actions

are appropriate

• Mechanism: how the device implements its interface

• Configuration Parameters: adjustable values controlling the behavior of the

device

• Dossier: Analysis and experimental surveys of the device’s behavior.

• Usage Specification: Instructions on how to connect this device to other

devices:

50

– Configuration Policy: Given a range of conditions, what configurations

are expected to produce desirable behavior over a large portion of the

range?

– Limiting Conditions: Given a configuration, what conditions will pro-

duce mostly misbehavior and should therefore be avoided?

– Failure Simplification: Assuming that misbehavior will occur, how can

its impact on other devices be limited?

– Cost: Time and space costs for development and mature operation, plus

expected types of variation and error.

Let us now examine each stage of the process in turn.

5.3.1 Interface Specification

We begin with an interface specification, describing how a device should interact with

its environment. There are three parts to this specification:

• Conditions: what aspects of its environment are outside a device’s control?

Examples are input from other devices or the structure of a network connecting

devices together.

• Range of Behavior: what does a device do that other devices can observe?

This can be messages sent, data placed where it can be read, or any other

observable activity. The passive phrasing reflects the fact that a device should

not assume its behavior will produce any particular response from other devices.

• Desirable Behavior: what do we want a device to do? These are generally

qualitative requirements, and often contradictory. Later in the design process,

we will determine how to measure satisfaction quantitatively, and how to man-

age the tension between contradictory requirements.

At this stage, the device is a black box, with nothing yet said about either its

internal workings, nor the conditions under which its behavior is desirable.

Example: Codetector Interface Specification

• Conditions: A codetector receives a stream of evidence as input (Figure 5-1).

The stream of evidence must have been preprocessed into two values: positive

supporting acceptance and negative supporting rejection. When the raw evi-

dence is equivocal, preprocessing should simply discard it, reducing the number

of examples in the stream.

51

positive/negative

accept/reject/wait
codetector

Figure 5-1: A codetector uses a stream of evidence carrying values positive and
negative to set its decision to accept, reject or wait.

• Range of Behavior: A codetector exposes one value, its decision, As evidence

arrives, the codetector examines it and sets its decision to one of three values:

accept, reject, or wait (meaning that more evidence is needed for a decision).

The decision always has one of the three values, initially wait.

• Desirable Behavior: A codetector is behaving as desired when it does all of

the following:

– decides accept or reject quickly

– makes its decision in accordance with the evidence presented

– does not waver in its decision5

– can change its decision in the face of changing evidence

Notice that the requirement for non-wavering decisions is opposed to the re-

quirement that decisions be able to change. The major benefit of applying my

design process to the mechanism will be a prescription for how to manage the

tension between these two requirements.

5.3.2 Mechanism

Creating a mechanism that fulfills the interface specification is an ordinary exercise

in programming ingenuity.

Example: Codetector Mechanism

The user of a codetector assumes that evidence relevant to the proposal is relatively

sparse, and that therefore successive pieces of evidence should be treated as indepen-

dent. Given this, repeated positive or negative pieces of evidence are unlikely to be

the result of chance, and a short streak should result in a decision to accept or reject.

5This is important even if the evidence is not decisive, because presumably some other device
will be acting on the decision.

52

Rail− Reject Accept Rail+

Miss

Strength

Hit=1

Initial=0

Figure 5-2: A codetector uses a simple estimator to track the strength of a hypothesis.
Positive evidence increments the strength, negative evidence decrements it, and when
it is past the accept or reject threshold the evidence is considered decisive. Since
relationships may change over time, the strength is bounded by rails to prevent it
from moving irretrievably far from the threshold.

Although the independence assumption is often violated, we will see in Section 5.3.4

that behavior can remain desirable even with significant violation.

The actual mechanism is extremely simple. The heart of a codetector is an incre-

mental estimator of decision strength (Figure 5-2). The estimator’s state is a single

number, its current strength estimate, which starts at 0 and is adjusted each time

evidence arrives: on positive evidence, it rises by 1; on negative evidence, it falls by

the constant miss.6 The larger that miss is, the more skepticism in the decision

making process: it takes a smaller fraction of negative evidence to sink a proposal.

The decision is set by the current strength estimate. When the strength is at or

above a constant threshold accept, the decision is accept; when it goes below reject,

the decision is reject; in between the decision is wait. The closer accept and reject

are to zero, the more haste: decisions will be faster, but also are more likely to need

revision.

Because a decision may need to change in response to changing conditions, there

are constants (rail+ and rail−) further out beyond accept and reject that limit how

far the strength can move past the decision thresholds. The larger the rails, the

greater the potential commitment: it takes more contradictory evidence to change a

long-standing decision.

5.3.3 Configuration Parameters

Once we have a proposed mechanism in hand, we identify the set of parameters in

its configuration: these are often numerical variables, but may include other choices

like policies and network structures. The defining characteristic of a configuration

parameter is that there is more than one plausible value, and no compelling a priori

reason to assume that one value must dominate. When possible, the number of

parameters should be limited, because we will need to explore them thoroughly when

6The codetector’s behavior is invariant to shifting and scaling of parameters, so the choice of zero
and one is just a convenient normalization.

53

generating a dossier.

Example: Codetector Configuration Parameters

The codetector has five configuration parameters:

• miss is a negative number.

• accept is a positive number.

• reject is zero or a negative number.

• rail+ is greater than accept.

• rail− is less than reject.

5.3.4 Dossier

Now that the mechanism has been described—hopefully with some guesses about

how its configuration affects its behavior—we can start asking how it behaves under

different conditions and configurations. If the device gives desirable behavior across

a wide enough range of conditions to satisfy us, we can go on and finish creating

the data sheet; if not, we bring the insight gained in generating the dossier back to

mechanism design and attempt to correct the defects.

We will examine a mechanism by generating a dossier for it.7 Our dossiers will

contain experimental surveys of system behavior, where each survey measures the be-

havior of the system across a representative set of conditions and configurations, plus

any other available supporting information. Dossiers will often represent a brute-force

approach to understanding system behavior—a typical survey may contain thousands

to millions of data points.

The goal of a dossier is not perfect understanding or optimal configuration. The

goal is to make it easy to reliably produce mostly desirable behavior. Limiting the

choice of parameters is one of the most important functions of the dossier, since a

mechanism may begin with a vast and incomprehensible set of parameters. The key is

to balance the flexibility of the configuration against the difficulty of comprehending

the relationship between configuration, conditions, and behavior.

As such, generating a dossier is often an iterative process, starting with a rough

survey, interpreting the results to identify major phases of behavior, then refining to

gather more information as the relationships between conditions and configurations

7According to the Random House dictionary, a dossier is “a collection or file of documents on the
same subject, especially a complete file containing detailed information about a person or topic.”

54

begin to resolve. As surveys are added to the dossier, the most important parameters

can be identified and others eliminated. It may be reasonable to eliminate a possible

setting for a parameter even when tuning it provides the best behavior under some

conditions: the benefit from tuning may be outweighed by the benefit derived from

better understanding of a simpler device.

Why Not Theoretical Analysis?

Why do we need to resort to brute force, rather than theoretical analysis? Having

had some mathematics in my training, my first instinct is to sit down with a pencil

and paper and start analyzing the mechanism, searching for some nice mathematical

models. Unfortunately, I have had little success in theoretical analysis of successful

devices, such as the codetector, across a broad range of conditions and configurations.

For example, I first tried to analyze the codetector in terms of probability, as

its action away from the rails can be viewed as incremental calculation of the log-

likelihood ratio of two hypotheses, with miss defining the relationship between the

prior probabilities of the accept and reject hypotheses. But this model breaks

down at the rails and did not shed light on the trade-off between non-wavering and

changeable decisions.

I then considered the codetector in terms of a random walk. This gives some

insight on how much wavering to expect immediately after the decision changes.

There is also exists such a thing as a “reflecting random walk,” which can model

behavior involving the rails. Random walks, however, do not provide answers about

what happens when the independence assumption is violated.

While someone wielding mathematical tools I do not know might well be able to

crack these problems and produce a clean analysis of the codetector or other devices,

I would not generally count on this as a routine path to insight. Some reasons why:

• Devices are generally non-linear in their actions, often with sharp transitions,

making behavior harder to compute. For example, a codetector’s strength is

shifted linearly by the evidence it receives, except when it is near a rail.

• Broad ranges tend to include regions where simplifying approximations break

down. For example, a codetector’s rail non-linearity usually has minimal short-

term interaction with its decision, except when miss is on the same order as to

the difference between rail− and reject.

• The transition between disable behavior and misbehavior is often gradual and

unclear. For example, the definitional tension between non-wavering decisions

55

and ability to change means that there is no easy-to-define point where appro-

priate change transitions into wavering.

All of this suggests that a good theoretical analysis of a device would often be a

significant research project by itself. For a device as simple as the codetector, these

problems could probably be solved with a little work. More complicated devices, or

devices made by composing other devices, are likely to be much worse.

What I want, however, is to make the engineering of devices routine, since there

are many devices to develop and debugging a device during development will require

many analyses. For that, I must abandon theory and turn to experimentation on a

massive scale.

Description of a Survey

A description of a survey has four parts:

• Conditions: the combinations of conditions to be surveyed.

• Configurations: the combinations of configuration parameters to be surveyed.

• Experiment: the test to be conducted for each combination of conditions and

configurations, including what data is to be gathered.

• Results: interpretation of the results of the survey, with particular emphasis

on identifying major phases of behavior.

Visualization is an important part of interpreting the dossier, given the sheer

volume of data. One tool I will often employ is a tableau of charts (such as in

Figure 5-8 in the example below), which compacts four to six variables into two

dimensions, varying two on the vertical and horizontal axes of each chart and the rest

across the vertical and horizontal axes of the tableau of charts and groupings within

the tableau. Such a tableau is then read by looking at the details of a single chart or

at visual trends across the aggregate.

Example: Codetector Dossier

We start the dossier-building process for a codetector by examining some limiting

cases to help us guess what behaviors will be seen. With this information, we do a

rough initial survey, then follow up with a detailed survey using simplified represen-

tative conditions and configurations.

56

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

800

900

1000

Probability of positive evidence (p)

Ex
pe

ct
ed

 p
ie

ce
s

of
 e

vi
de

nc
e

to
 a

cc
ep

t/r
ej

ec
t

miss = −0.5
miss = −1
miss = −2
miss = −3

Figure 5-3: A codetector fed a random stream of evidence converges to a decision
quickly except near the decision threshold. This graph shows, for several values of
miss, the relationship between probability of positive evidence and expected time
to decision for a codetector configured with accept = 10, reject = −10, rail+ = ∞
and rail− = −∞.

Limiting Cases First off, if the evidence is all positive, then the codetector will

quickly choose accept and never change. If a small random fraction of the evidence is

negative, then it will not change this as long as rail+ is well above accept. Likewise, if

the evidence is all negative, then the codetector will quickly choose reject and never

change, and this will not be affected by a small fraction of positive evidence.

If subsequent pieces of evidence are independent and the behavior of the evidence

stream is approximately constant over the whole stream, then we may model it as

being generated by random coin-flips with probability p of a piece of evidence being

positive. We can then consider the behavior of the codetector as a random walk.

Ignoring the rails, this means that after n pieces of evidence, the expected strength

is n(p + (1 − p)miss).

By plotting the probability of positive against expected time to equidistant deci-

sion thresholds for various values of miss (Figure 5-3), we see three expected phases of

behavior: fast accept at high probability, fast reject at low probability, and dither—a

long period of waiting—around the transition point where p+(1−p)miss = 0 (when

we need to refer to this point later, we will call it the accept/reject boundary). The

fast accept and fast reject phases are both desirable behavior; dither is misbehavior

because the decision is not fast.

What about when the character of evidence is different in different parts of the

stream? The most extreme case would be evidence that switches back and forth

between long streaks of positive and long streaks of negative. In this case, the

codetector would change its decision repeatedly, rocketing back and forth from rail

57

to rail. The speed of a round trip from rail to rail is regulated by the size of miss

and the distance between rails, (rail +−(rail−)) · (1 + 1/m). This is a fourth phase,

oscillate, which is expected when the evidence is not independent and the balance

between positive and negative evidence fluctuates greatly over long sequences in the

stream.

The oscillate phase is caught in the definitional conflict of desirable behavior. If

the length of the fluctuations is too short, then oscillate is misbehavior, because the

decision wavers, but if the length of the fluctuations is long enough, then oscillate

is desirable because the evidence is changing. This does tell us, however, that a

codetector can always change its decision in the face of changing evidence.

This covers the limit cases well when the thresholds and rails are far apart and

miss is a small fraction of reject, and gives us a good guess as to what phases

of behavior we should expect to see in our surveys. In order to understand the

boundaries between limit cases, and how much we can push the system before it

begins to misbehave, we need to start conducting experimental surveys.

Experimental Conditions To survey behavior, we will need to generate a syn-

thetic stream of evidence. The stream of evidence will be regulated by three param-

eters, based on our analysis of limit cases:

• presence is the base probability of positive evidence.

• nonuniformity is the amplitude of dependence effects.

• volatility is an integer indicating the largest granularity of dependence.

Dependence, here, means correlations between elements close together in the ev-

idence stream, and is applied fractally. For volatility = k, there are k layers of

dependence, operating on exponential segments from 1 to 2k−1 in length. Each layer

independently flips a fair coin to determine whether each segment will have a positive

or negative dependence effect: if it is positive, then the probability of positive is

raised by nonuniformity/2 for that time segment; if it is negative, then it is low-

ered by nonuniformity/2. Thus, the probability of positive is distributed randomly

(with a binomial distribution) in the range presence ± volatility · nonuniformity/2

(clipped at 0 and 1). See Figure 5-4 for probability levels generated with varying

levels of volatility.

In terms of interpreting behavior, we will consider presence to be the signal that

should be driving the decision, and nonuniformity and volatility are measures of the

strength of masking effects from dependence in the evidence stream. Thus, when con-

sidering desirability, a change in evidence would be modelled as a change in presence,

58

0 500 1000
0

0.2

0.4

0.6

0.8

1

Sample Number

Va
lu

e

Volatility = 1

0 500 1000
0

0.2

0.4

0.6

0.8

1

Sample Number

Va
lu

e

Volatility = 2

0 500 1000
0

0.2

0.4

0.6

0.8

1

Sample Number

Va
lu

e

Volatility = 3

0 500 1000
0

0.2

0.4

0.6

0.8

1

Sample Number

Va
lu

e

Volatility = 4

0 500 1000
0

0.2

0.4

0.6

0.8

1

Sample Number

Va
lu

e

Volatility = 5

0 500 1000
0

0.2

0.4

0.6

0.8

1

Sample Number

Va
lu

e

Volatility = 6

0 500 1000
0

0.2

0.4

0.6

0.8

1

Sample Number

Va
lu

e

Volatility = 7

0 500 1000
0

0.2

0.4

0.6

0.8

1

Sample Number

Va
lu

e

Volatility = 8

Figure 5-4: The volatility parameter controls the time-scale of correlation in the
input stream. The higher the volatility, the longer the period of variation. These
graphs show the probability of positive evidence over 1000 pieces of evidence, with
presence = 0.5, nonuniformity = 0.1 and volatility ranging from 1 to 8.

59

even though such a change may be indistinguishable over the short term from the

effects of nonuniformity and volatility. Oscillation from dependence will be consid-

ered “bad.”

Rough Survey We begin with a rough survey, in which all the condition variables

and all five configuration parameters (miss, accept, reject, rail+, and rail−) vary in-

dependently. Letting everything vary independently is a safe start, though expensive.

Giving all of the variables except presence exponential ranges from tiny to rather

large makes it unlikely that any major behaviors will be missed. The goal is to use

this information to enable a more precise survey with fewer variables.

• Conditions: presence ranges from 0 to 1 in steps of 0.1, volatility ranges from

0 to 7 in steps of 1, and nonuniformity takes the values 0, 0.01, 0.05, 0.1 and

0.2, for a total of 440 combinations.

• Configurations: All variables range in multiples of two: miss ranges from

-1/2 to -8, accept ranges from 2 to 32, reject takes the value 0 and also ranges

from -2 to -32, rail+ ranges from 4 to 128, and rail− ranges from -2 to -128.

In total, there are 6300 combinations, although combinations in which a rail is

not farther from zero than its accompanying threshold are discarded.

• Experiment: For each of the 2.77 million combinations of conditions and con-

figuration, I run a single trial in which a codetector is given 10,000 pieces of

evidence. I collect data after each piece of evidence, recording the amount of

time when the decision is accept, the amount of time when the decision is re-

ject, and the number of times the codetector changes “zone”, where the “zone”

is detected by the strength assuming a value of 0, rail− or rail+. Fast accept

and fast reject are characterized by low zone changes and one high decision

time, oscillate is characterized by high zone changes, and dither is characterized

by low zone changes and low decision times.

• Results: A quick skim of the results shows two opportunities for simplification:

symmetric parameters and fixed volatility. Further analysis demonstrates that

these apparent opportunities actually exist.

I analyzed the rough survey to find support for doing a detailed survey with

volatility = 7 and only symmetric parameters. To this end, I created bar

graphs showing the distribution of comparisons between volatility = 7, sym-

metric parameters, and the rest of the trials. Complicating the analysis is the

fact that the system behaves very differently in different phases: when a data

60

point is produced by misbehavior, the distribution of data produced by the ex-

periment should be much more random than that produced from a combination

of conditions and configuration that produces desirable behavior.

Remember, the overall question we want to answer is, “What is the relationship

between conditions, configuration, and behavior?” To get this from a restricted

survey, we need a map from general conditions and configuration to the re-

stricted survey, and confidence that the general behavior is not significantly less

desirable than the behavior of the point it maps to in the restricted survey.

I test this with an analysis of results from the rough survey, comparing the

results of each trial to the corresponding trial for simplified conditions and

configuration. I make two comparisons for each point: the first is number of

zone changes: when comparing two data points, the one with less zone changes

is likely to be more desirable, since that means less oscillation. I thus use the

distribution of general minus simplified.

The second comparison tests the speed and solidity of decision, as measured by

the absolute difference between accept and reject decision times. The higher the

difference, the less dither or oscillation in the decision, so when comparing two

data points, the one with the higher difference is likely to be more desirable. I

thus use the distribution of simplified minus general.

When presence is near the accept/reject boundary, our previous analysis tells

us that we should see misbehavior. If the simplification is good, we expect to

see a wide distribution with a mean of less than zero. When presence is far

from the boundary, on the other hand, the distribution may be wide or narrow,

but the distribution should have almost nothing significantly above zero.

To let us see these cases and the transition between them, each distribution

graph is a bar graph showing nine distributions at various proximities to the

boundary: the leftmost is |presence − boundary| < 0.1, the next is 0.1 ≤
|presence− boundary| < 0.2, and so on in steps of 0.1 up to 0.8 ≤ |presence−
boundary|.
Now we can finally look at the results, starting with parameter symmetry. Fig-

ure 5-5(b) shows that the difference of decision times in an asymmetric trial is

predicted by the symmetric trial in the preferred direction of motion: if presence

is above the accept/reject boundary, we select the symmetric trial with the same

accept and rail+; otherwise, we select the symmetric trial with the same reject

and rail−. Likewise, Figure 5-5(a) shows that the zone changes of an asym-

metric trial are predicted by the symmetric trial corresponding to side with the

61

nearest rail.

Moving on to volatility, Figure 5-6 shows that both difference of decision times

and zone changes are predicted by volatility = 7. The prediction is not as clean

as for symmetric versus asymmetric, but it does clearly hold.

Finally, Figure 5-7 shows the result of combining both simplifications into a

single map, showing that it is, in fact, reasonable to do a detailed survey with

only symmetric parameters and volatility = 7, since it gives good conservative

predictions for the general collection of conditions and configurations.

Detailed Survey Based on the results of the rough survey, we can now make a

more detailed survey of a smaller characteristic region of space. Given what we

learned from the rough survey, we can make conservative estimates of behavior if

we know the behavior with high volatility and symmetric thresholds and rails. This

survey explores the remaining range thoroughly, with an eye towards visualizing the

results.

• Conditions: volatility is fixed at 7 (meaning the granularity of the longest

dependencies is 64 pieces of evidence), presence ranges from 0 to 1 in steps of

0.01, nonuniformity ranges from 0 to 0.2 in steps of 0.01, for a total of 2121

combinations.

• Configurations: miss ranges from −1
2

to -8 in powers of two, accept ranges

from 2 to 32 in powers of two, and reject = −accept. Finally, the rails are a

multiple of accept and reject, with the multiple ranging from 3
2

to 4 in steps

of 1
2
. In total, there are 150 combinations (5 miss values, 5 thresholds, 6 rail

multipliers).

• Experiment: For each of the more than three hundred thousand combinations

of conditions and configuration, I run ten trials in which a codetector is given

1000 pieces of evidence. Data is collected as in the rough survey.

• Results: The results are summarized by the tableau shown in Figure 5-8. Each

of the five square blocks shows the results for one miss value; within a block,

the threshold rises from top to bottom and rail multiplier rises from left to right.

Finally, in each chart, presence rises from top to bottom and nonuniformity

rises from left to right.

The color of each pixel indicates the behavioral phase of the conditions and

configuration for that location in the tableau, using the three components of its

color:

62

under −30 −30 to −10 −10 to −3 −3 to 3 3 to 10 10 to 30 over 30
0

20

40

60

80

100

Pe
rc

en
ta

ge

Near − Asymmetric number of zone changes

Dominance of Near Rail (Zone)

(a) Zone Dominance

under −1K −1K to −100 −100 to −10 −10 to 10 10 to 100 100 to 1K over 1K
0

20

40

60

80

100

Pe
rc

en
ta

ge

Preferred − Asymmetric absolute difference of accept and reject times

Dominance of Preferred Threshold (Time)

(b) Time Dominance

Figure 5-5: Behavior of a codetector with symmetric parameters gives a conservative
approximation of the behavior of a codetector with asymmetric parameters. Asym-
metric zone changes are lower than symmetric for the closer rail (a) except near the
accept/reject boundary (cool colors), and asymmetric difference of decision times is
predicted by symmetric for the preferred threshold (b) except near the accept/reject
boundary (cool colors).

63

under −30 −30 to −10 −10 to −3 −3 to 3 3 to 10 10 to 30 over 30
0

20

40

60

80

100

Pe
rc

en
ta

ge

Low − High number of zone changes

Dominance of High Volatility (Zone)

(a) Zone Dominance

under −1K −1K to −100 −100 to −10 −10 to 10 10 to 100 100 to 1K over 1K
0

20

40

60

80

100

Pe
rc

en
ta

ge

High − Low absolute difference of accept and reject times

Dominance of High Volatility (Time)

(b) Time Dominance

Figure 5-6: Behavior of a codetector in conditions of high volatility gives a con-
servative approximation of low volatility behavior. Low volatility gives lower zone
changes (a) except near the accept/reject boundary (cool colors) and lower difference
of decision times (b) except near the accept/reject boundary (cool colors).

64

under −30 −30 to −10 −10 to −3 −3 to 3 3 to 10 10 to 30 over 30
0

20

40

60

80

100

Pe
rc

en
ta

ge

Simplified − General number of zone changes

Dominance of Simplified (Zone)

(a) Zone Dominance

under −1K −1K to −100 −100 to −10 −10 to 10 10 to 100 100 to 1K over 1K
0

20

40

60

80

100

Pe
rc

en
ta

ge

Simplified − General absolute difference of accept and reject times

Dominance of Simplified (Time)

(b) Time Dominance

Figure 5-7: Behavior of a general codetector with can be predicted conservatively
from the behavior of a codetector with symmetric parameters in conditions of high
volatility. Both zone changes (a) and difference of decision times (b) are almost never
worse in the simplified case than the general case except close to the accept/reject
boundary (cool colors).

65

– Blue indicates fast acceptance. Intensity is calculated from the amount of

time when the decision is accept, calibrated so that accept time outside

acceptance is full intensity and (accept ∗ 101) time outside acceptance is

zero intensity.

– Red indicates fast rejection. Intensity is calculated from the amount of

time when the decision is reject, calibrated so that accept/ − miss time

outside rejection is full intensity and (accept ∗ 100 + accept/ −miss) time

outside rejection is zero intensity.

– Green indicates oscillation misbehavior. Intensity is calculated from the

number of zone changes, subtracting one to ignore the first decision. The

intensity is calibrated based on the minimum length for a round trip from

rail to rail, with full intensity at 0.2 transitions per round trip time and

zero intensity at zero transitions per round trip time.

Thus, solid primary colors and black indicate clear regions of the four predicted

behaviors. Black indicates dither, since it means that the codetector is neither

settling quickly nor oscillating. Patchy regions, secondary colors, and dim colors

all indicate boundaries that may harbor other forms of behavior.

This survey shows that the relationship between conditions and configuration is

mostly well differentiated into the four predicted behavioral phases. There are some

boundary regions, but they are relatively small and are most unclear when they

involve a transition between the two undesirable behaviors.

The survey also confirms our intuitions about the effects of a codetector’s parame-

ters on its behavior. The larger the miss (skepticism), the fewer things are accepted,

and the easier it is to oscillate. Raising the thresholds does not change the region of

dithering, but it lowers the amount of oscillation. Pushing the rails outwards has the

same effect. Finally, the survey shows that parameter space is fairly smooth, so small

changes in parameters will have little effect on the behavior of the codetector.

Overall, this is a good result. Because behavior changes gradually as the config-

uration varies, and because there are many settings that give good behavior across

a majority of conditions, it is easy to choose an acceptable configuration, even when

there are other constraints (for example, skepticism will often be constrained how the

codetector is being used).

5.3.5 Usage Specification

Having built a dossier and gained insight on the behavior of a device, we can complete

the data sheet with instructions on how to connect this device to other devices.

66

m
iss

 =
 −

0.
5

16842 32

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Threshold

R
ai

l/T
hr

es
ho

ld

m
iss

 =
 −

1

16842 32

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Threshold

R
ai

l/T
hr

es
ho

ld

m
iss

 =
 −

2

16842 32

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Threshold
R

ai
l/T

hr
es

ho
ld

m
iss

 =
 −

4

16842 32

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Threshold

R
ai

l/T
hr

es
ho

ld

m
iss

 =
 −

8

16842 32

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Threshold

R
ai

l/T
hr

es
ho

ld

F
ig

u
re

5-
8:

T
ab

le
au

of
co

d
et

ec
to

r
b
eh

av
io

r
su

rv
ey

.
W

it
h
in

ea
ch

ch
ar

t,
n
on

u
n
if

or
m

it
y

ra
n
ge

s
fr

om
0.

0
to

0.
2

le
ft

to
ri

gh
t,

an
d

pr
es

en
ce

ra
n
ge

s
fr

om
0.

0
to

1.
0

to
p

to
b
ot

to
m

.
T

h
re

sh
ol

d
is

a
cc

ep
t
an

d
−r

ej
ec

t,
an

d
R

ai
l
is

ra
il
+

an
d
−(

ra
il
−)

.
R

ed
in

d
ic

at
es

fa
st

re
je

ct
io

n
,

b
lu

e
is

fa
st

ac
ce

p
ta

n
ce

,
an

d
gr

ee
n

is
u
n
d
es

ir
ab

le
os

ci
ll
at

io
n
.

L
ac

k
of

al
l

th
re

e
(b

la
ck

)
in

d
ic

at
es

d
it

h
er

.
M

ix
ed

co
lo

rs
ar

e
tr

an
si

ti
on

al
re

gi
on

s
w

it
h

u
n
k
n
ow

n
fo

rm
s

of
b
eh

av
io

r.

67

The usage specification consists of four parts:

• Configuration Policy: Given a range of conditions, what configurations are

expected to produce desirable behavior over a large portion of the range?

• Limiting Conditions: Given a configuration, what conditions will produce

mostly misbehavior and should therefore be avoided?

• Failure Simplification: Assuming that misbehavior will occur, how can its

impact on other devices be limited?

• Cost: Asymptotic cost of a device measured using the six measures presented

in Section 4.3: time and space costs for development and mature operation and

the type of developmental variation and error in execution that may occur.

The first two are essentially just a summary of the insight gained from the dossier,

and cost usually can be drawn from the mechanism in a fairly straightforward manner.

Failure simplification, on the other hand, will require some additional work.

The first important thing to remember, when thinking about failure simplification,

is that the distinction between desirable behavior and misbehavior may be fuzzy (as

seen in the codetector’s dossier) or even purely contextual (as in the tension between

non-wavering and ability to change requirements for the codetector).

Furthermore, the dossier-building process makes no promises of complete knowl-

edge about behavior, only that all of the major phases of behavior will be identified.

The lessons of chaos and complexity science tell us that we should be suspicious of

the boundaries between phases. Within the vast basin of a phase, there is not likely

to be trouble; in the transition between phases, all manner of strange and delicate

behaviors may lurk. If we were students of complexity, we would dive into the borders

to see what they contain; as engineers, we must banish them as foes of predictable

behavior.

Failure simplification thus starts with the recognition that not all misbehavior is

created equal: some sorts are harder to detect than others, and some exhibit more

complex behavior than others. By modulating behavior to produce simpler and harder

to detect misbehavior, we can effectively sweep the complexity of the system under

the rug, generally at the cost of getting simple misbehavior in some circumstances

when we would have otherwise ended up with desirable behavior.

I originally learned about failure simplification from a study of the distributed

computing aspects of live-action roleplaying games[5]. Ranged combat in games run

by the MIT Assassins’ Guild uses a distributed consensus algorithm whose requirements—

correctness, partition tolerance, and wait-free resolution—are formally impossible to

68

satisfy simultaneously[14]. Even a transient failure of wait-free resolution or partition

tolerance is severe, since it means that the game must be halted, wreaking havoc on

the players ability to suspend disbelief. Loss of correctness, on the other hand, makes

the game unfair and prevents players from having fun.

The Guild combat algorithm resolves this dilemma by noticing that lack of cor-

rectness is harder to detect, and managing failures so that they primarily take the

form of transient or unnoticeable violations of correctness. A broad range of potential

failures is thereby simplified into a small number of low-impact failures, allowing the

overall behavior to satisfactorily approximate that of the ideal, impossible algorithm.

Given a dossier, my preferred approach to failure simplification will be to create

a test for desirable behavior far from the phase transitions, then select a simple

default behavior for when the test is not satisfied. Since the test is for behavior

far from the transitions, some desirable behavior will get swept up, and turned into

misbehavior by the default. There will still generally be complex transitions with

hard to define boundaries: the test/default approach, however, transforms these from

areas of uncertain behavior to areas where it is uncertain which of two well-understood

behaviors will be exhibited.

Notice that failure simplification does not promise anything about preventing mis-

behavior from spreading throughout the system—for the want of a nail, the kingdom

may still be lost! What failure simplification generally does do, however, is extend

the time it takes for misbehavior of one device to detectably impact the behavior of

others devices that interact with it. Across multiple linkages of this type, the time

scales can become very long indeed, and once they are comparable to the lifespan of

the system, then the question becomes moot.8

Example: Codetector Usage Specification

• Configuration Policy: Assume that miss is set by outside requirements for

skepticism, or chosen arbitrarily if that is not the case. Assuming we want fast

response to change, we should choose the lowest values of rail+ and accept

where there is little oscillation misbehavior. In the tableau (Figure 5-8) this is

the upper-left chart with (almost) no green.

For example, with miss = −2, filling out the configuration with accept = 16,

reject = −16, rail+ = 64, and rail− = −64 is expected to produce good

results.

• Limiting Conditions: The transition between the fast accept and fast reject

8Intriguingly, this might be a way to bypass Gödel’s inconsistency theorems.

69

phases always contains a narrow band of dither. Inspecting the tableau, we can

see that the location and breadth of this region is unaffected by everything but

miss. As such, if anything is known about likely presence values, miss should

be chosen to ensure that the bulk of the presence values are likely to fall outside

this band.

• Failure Simplification: Assuming that the codetector is being used to judge

the validity of a proposal, it is generally safe to discard the proposal on rejection,

with the assumption that if it is a good proposal it will be submitted again and

have a good chance of getting accepted the next time around.

As such, we can manage the misbehavior of a codetector by testing for fast

acceptance and treating it as rejection if the test fails. If all evidence is positive,

then it takes accept rounds to decide on accept. Thus, if any period longer

than 3 to 5 times accept goes by without the decision being accept, then the

proposal can be discarded.

Finally, if nothing is known about likely (or desired) presence values, then miss

can be chosen randomly from a range of values.

• Cost: The codetector is a simple program, incorporating neither communica-

tion paths or other devices. As such, all four of its costs are constant (O(1))

with regards to its conditions and configuration. Variation has a small chance

of producing a codetector that is simply dead on arrival, and error during exe-

cution may result in occasional perturbations of the strength estimate.

Development Mature

Time O(1) O(1)

Space O(1) O(1)

Imperfection DOA perturbation of strength

To gain a clearer picture of the effect of applying failure simplification, we can

run a survey across the same range of conditions and configurations as the detailed

survey in the dossier. For each combination, I run ten trials with a single codetector

under failure simplification: if the codetector decides reject or goes for 4 · accept

steps without an accept, it is discarded and replaced. A trial runs for 10 attempts or

1000 steps, whichever comes first, and is counted as eventual acceptance if the final

decision is accept.

Figure 5-9 shows a tableau of the results, organized as before, but with different

colors: blue indicates the fraction of trials with eventual acceptance, and red indi-

cates the fraction with consistent rejection. Looking across the tableau, we can see

70

that the behavior is roughly consistent with transforming phases of misbehavior and

transitional regions into rejection. Where threshold and rails are small, the region of

acceptance is generally smaller than before; where they are large, it is often larger,

as multiple attempts give more chances to succeed.

5.4 Using Data Sheets for System-Building

With data sheets in hand, building a system from devices is fairly straightforward

and routine—exactly what we want.

We start with conventional software engineering, wiring devices together with

a simple superstructure of mechanisms whose behavior can be completely analyzed

without resorting to dossier-building, like sets or communication paths. The connec-

tions between devices should obey the specifications for failure simplification.

Once the devices have been connected together, they can be configured. The trick

is that some of the conditions for each device are set by the behaviors of the other

devices it interacts with. Starting with a scratch configuration for each device, then, a

good configuration can be found by adjusting devices one-by-one to give them a good

range for their current conditions, iterating over the whole set until none needs a large

adjustment. Because a good device has a very loose dependence between conditions,

configuration, and behavior, even such a brain-dead process will generally produce a

good enough configuration quickly. If it does not, then it is a clear indication that

something deeper is wrong with the system design.

Notice that the configuration is expected to be good enough, and not optimal—

finding an optimal configuration may still be very hard indeed. Even knowing that

something is optimal, however, generally requires much better knowledge of the ul-

timate conditions of use than we usually have when working on an intelligence. As

such, unless there is reason to believe that optimality is at least an order of magnitude

better than “good enough,” I consider it a false goal for systems of this sort.

Finally, there is no reason to avoid using the same design process as we build

the system, ending up with a full data sheet including a dossier on its behavior and

instructions for how to connect it to other systems.

5.4.1 Example: Agreeing on Signals

For an example of building a system by composing devices, let us consider a simplified

version of communication bootstrapping. This is not the mechanism we will use, but

a related problem that provides a simple-to-explain example. The challenge here is

71

m
iss = −0.5

16 8 4 232

1.5
2.0

2.5
3.0

3.5
4.0

Threshold

R
ail/Threshold

m
iss = −1

16 8 4 232

1.5
2.0

2.5
3.0

3.5
4.0

Threshold

R
ail/Threshold

m
iss = −2

16 8 4 232

1.5
2.0

2.5
3.0

3.5
4.0

Threshold

R
ail/Threshold

m
iss = −4

16 8 4 232

1.5
2.0

2.5
3.0

3.5
4.0

Threshold

R
ail/Threshold

m
iss = −8

16 8 4 232

1.5
2.0

2.5
3.0

3.5
4.0

Threshold

R
ail/Threshold

F
igu

re
5-9:

T
ab

leau
sh

ow
in

g
a

su
rvey

of
co

d
etector

b
eh

av
ior

u
n
d
er

failu
re

sim
p
lifi

cation
,
d
iscard

in
g

u
p
on

a
d
ecision

of
re

je
ct

or
4·a

ccept
w

ith
ou

t
an

a
cce

p
t.

W
ith

in
each

ch
art,

n
on

u
n
if

orm
ity

ran
ges

from
0.0

to
0.2

left
to

righ
t,

an
d

presen
ce

ran
ges

from
0.0

to
1.0

top
to

b
ottom

.
E

ach
p
ix

el
sh

ow
s

th
e

fraction
of

u
ltim

ate
accep

tan
ce/rejection

over
10

trials,
w

h
ere

a
trial

ru
n
s

for
10

attem
p
ts

or
1000

p
ieces

of
ev

id
en

ce
(w

h
ich

ever
com

es
fi
rst).

R
ed

in
d
icates

con
sisten

t
rejection

,
an

d
b
lu

e
in

d
icates

even
tu

al
accep

tan
ce.

72

specialist

environment

communication
channel

model model

sensory
features

sensory
features

specialist

Figure 5-10: A signal agreement system consists of two specialists, connected by a
two way communication channel, and an environment that sends each specialist its
own set of sensory features.

for two specialists to agree on the meaning of signals—for example, consider the sort

of things a vision specialist and a hearing specialist might want to communicate about

traffic lights:

• A signal that means “green light” to the vision specialist and the sound of

moving cars to the hearing specialist. When the vision specialist sees the green

light and sends the signal, the hearing specialist expects moving cars, and can

warn the motor system not to step into the road.

• A signal that means “flashing blue” to the vision specialist and the sound of

sirens to the hearing specialist. When the hearing specialist hears a siren and

sends the signal, the vision specialist knows to expect flashing lights and can

start looking for the police car.

Using paired codetectors, we can solve this problem for strong equality associations

between discrete examples. We will approach this just like we approached building

the codetector, starting with the interface.

Interface Specification

• Conditions: The signal agreement system consists of two specialists, connected

by a two way communication channel (Figure 5-10): messages on the channel are

sets of signals and any number can be sent in both directions without interfering.

Each example is presented to the specialists as a set of binary sensory features

that arrive from their environment.

• Range of Behavior: Each specialist has a model of the environment that is a

set of sensory features—whether currently seen or hallucinated. The observable

behavior of the system is the contents of the two models after an example has

been processed.

73

channel
vocab vocab

environment

features
sensory

features
sensory

communication

Figure 5-11: In the signal agreement system, each specialist contains a vocabulary
that maps between signals and sensory features from its environment.

• Desirable Behavior: Signal agreement is behaving as desired when:

– a specialist’s model contains every feature that it received from the envi-

ronment.

– assuming that sensory features correspond to underlying features of the

environment, the “same” features should appear in each specialist’s model.

Note that the second requirement can only be satisfied for features that are

largely equivalent, like those in the examples above. This extremely simple

definition of agreement does not work for features with more complicated rela-

tionships, let alone relationships between networks of features.

Mechanism

Each specialist has two components: its model (a set of features), and a vocabulary

of up to capacity entries, mapping features to signals (Figure 5-11). One specialist is

designated as the inventor and creates signals when a feature is not in its vocabulary;

the other is the adopter, and uses signals created by the inventor. For now, we will

simply assume such a communication channel and connection between vocabulary

and sensory features can be built.

For each example, a specialist puts the features arriving from the environment into

its model, then sends their corresponding signals to its partner. When its partner’s

signals arrive, it translates them into features and adds them to its model as well. If

the two vocabularies agree on the signal that equivalent features map to, then this

will produce the desired behavior.

The population of the vocabulary is controlled stochastically when it is more than

a fraction prune full. When the number of vocabulary entries v is greater than

74

prune · capacity, each new entry has a v−prune·capacity
(1−prune)capacity

chance of replacing a random

pre-existing entry. Notice that when prune = 0 this produces unconditional random

allocation, and when prune = 1 this is equivalent to random cache replacement.

Setting an intermediate value of prune allows a graceful transition between plentiful

and scarce resource behaviors.

The remainder of the mechanism is devoted to creating and maintaining agreement

on the signals for equivalent features. This is where we will use the codetector to make

a pair of decisions. First, when the inventor creates a signal not in the adopter’s

vocabulary, the adopter guesses a mapping for the new signal (picking randomly

from the sensory features currently present and not in its vocabulary) and decides

whether its guess agrees with the inventor. Once the adopter decides on a mapping

and starts using the signal back, the inventor must decide whether the adopter has

gotten the mapping right or wrong.

Since each specialist has one decision to make for each vocabulary entry, we attach

a codetector to each entry according to the interface and usage specifications for the

codetector:

• Examples are positive if both signal and feature are present, negative is one

is but not the other, and ignored if neither is present.

• When a codetector decides accept, a vocabulary entry is used to send signals.

When it decides reject, the entry is discarded.

• The inventor treats a new entry as accepted for a grace period of the first

8 · accept examples, allowing time for both decisions to complete. The first

4 · accept examples are ignored, giving time for the adopter to decide; the rest

of the grace period gives the inventor time to decide whether it agrees with

the adopter. Without a grace period, new entries would be summarily rejected

because the inventor would stop using the new signal before it had a chance to

be adopted.

The last task is to configure the codetectors. We set miss = −2, to catch strong

associations but not be prohibitively high. We have a lot of leeway to set the rest of

the parameters, since the codetectors are essentially talking directly to one another;

one reasonable set is accept = 8, reject = −8, rail+ = 32 and rail− = −32.

Configuration Parameters

There are two configuration parameters:

• capacity is a positive number.

75

0.1

0.0

nonuniformity

pr
es

en
ce

0.0 0.05 0.1 0.15 0.2
1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Figure 5-12: We predict the behavior of signal agreement using the codetector data
sheet—in particular, the failure management survey’s chart for miss− 2, accept = 8,
and rail = 32.

• prune is a number between zero and one.

Dossier

We begin with predictions from limit cases. Consulting the codetector specification

for failure management, we look at the chart for our chosen codetector configuration

(Figure 5-12). From this, we see that, assuming vocabulary size is below prune ·
capacity, we should expect that any pair of features whose probability of appearing

together is about 0.8 or higher can create a sustainable agreement (though it may

take several tries), and any pair whose joint probability is less than about 0.65 cannot.

In between, agreements are likely to form and dissolve.

Now, to the question of whether the “right” features get paired. This is a matter

of whether there are other features that appear often enough to be confused with the

right feature. When a bad guess has been made, it is easier to reject, since positive

examples only happen when both features are present. We can thus make an educated

guess that only when the conditional probability of interference is about 0.9 or higher

will incorrect pairings be sustainable. These two predictions together are illustrated

in Figure 5-13.

When vocabulary size is above the prune · capacity threshold, some entries will

be discarded. The limit case is when the entire vocabulary is full, in which case every

new entry causes an existing entry to be discarded. From this, we can expect to

76

Figure 5-13: The codetector data sheet lets us predict the behavior of signal agreement
with respect to the probability a feature will be matched or suffer interference.

see two different phases of behavior: when many features are seen in a short run of

examples, the vocabulary will thrash, never reaching agreement. When few features

are seen in a short run of examples, the vocabulary will mostly be stable, with a

consistent small fraction of missing agreements.

To keep this example simple, I will only explore the behavior of the system when

the vocabulary is below the prune · capacity threshold. Rest assured that the code-

tector data sheet can also be used to predict the transition between scarce resource

behaviors.9

Initial Survey With these predictions in hand, we can begin to survey the behavior

of signal agreement. We start with a survey using only two characteristics, probability

of interference and probability of a match.

• Conditions: There are 10 features in the environment; each example contains

on average a fraction k of the total features. To make an example, we choose

a random number uniformly in the range [−1, 1], add 10k and round to the

nearest integer, then randomly select that many features. Each selected feature

then has a chance c of going to both specialists; in the event that it does not,

9Example sequence properties give a thrash rate, adding convergence time tells us the spectrum
of agreement durations, mapping back to signal properties gives a relation between feature properties
and likelihood of agreement.

77

it goes to either one with equal probability. k ranges from 0.1 to 1.0 in steps of

0.01, and c ranges from 0.5 to 1.0 in steps of 0.01.

• Configurations: prune is set to 1 and capacity to 20.

• Experiment: For each combination of k and c, I run 10 trials. A trial starts

with empty vocabularies and trains on 1000 examples. After each example, I

collect the number of features that are training (in grace period or only one

vocabulary), matched (mapped to the same signal in both vocabularies), or

mismatched (mapped to different signals). The behavior of a trial is taken to

be the sum of these statistics over the last 100 examples.

• Results: The results of this survey are summarized in Figure 5-14. The color

of each pixel indicates the average behavior of the 10 trials, showing the fraction

of training, matched, and mismatched as the blue, green, and red components

of the pixel respectively.

As can be seen, the results are fairly close to the prediction shown in Figure 5-

13. The transition between agreement and no agreement takes place in the

range 0.8 > c > 0.65, except at very low probability, where the infrequency of

examples means fewer proposals can be made—for example, at k = 0.1 each

feature only appears in 100 examples, and a proposed signal cannot be rejected

before the first 32-example grace period ends. The region of interference, where

mismatches are common, is likewise almost entirely confined to the predicted

region, where k > 0.9 and c > 0.65.

Extended Survey With this survey in hand, we can continue on to a more ex-

tended survey, where we ask what happens when features have different likelihoods

of appearing in the environment or to a particular specialist.

There are lots of possible ways that the distribution of features can vary, and

surveying them all is impractical. Instead, we will take a (hopefully) representative

slice of behavior by splitting the features into two halves, a frequent half and an

infrequent half, and controlling their relative likelihood of appearing with a parameter

skew: when few features appear, the ones that appear will be from the high-frequency

group with probability 0.5+skew and from the low-frequency group with probability

0.5 − skew. When many features appear, however, the high-frequency group may

saturate, in which case the excess spills over into appearances from the low-probability

group.

78

0.5 1.0
probability of match

fr
ac

tio
n

pr
es

en
t (

pr
ob

ab
ili

ty
 o

f i
nt

er
fe

re
nc

e)

0.6 0.9
1.0

0.9

0.8

0.7

0.6

0.5

0.7 0.8

0.4

0.3

0.2

0.1

Figure 5-14: Chart showing the results of the initial survey. Probability of a match
(a feature being observed by both specialists) ranges from 0.5 to 1.0 left to right, and
the fraction of features present in each example ranges from 0.1 to 1.0 top to bottom.
Blue indicates no agreement, red indicates mistaken agreement, and green indicates
correct agreement.

That takes care of distribution of features appearing in the environment. For

the likelihood of features appearing at a particular specialist, we introduce a bias

parameter, so that when a feature appears to only one specialist, it goes to the

inventor with probability bias and the adopter with probability 1 − bias.

• Conditions: skew ranges from 0.0 to 0.5 in steps of 0.1 and bias ranges from

0.0 to 1.0 in steps of 0.1. As before, k ranges from 0.1 to 1.0 in steps of 0.01,

and c ranges from 0.5 to 1.0 in steps of 0.01.

• Configurations: prune is set to 1 and capacity to 20.

• Experiment: For each combination, I run only one trial (due to the much

larger number of combinations). The trial is run and data collected as for the

initial survey.

• Results: The results of the extended survey are summarized in a tableau in

Figure 5-15. We see that bias has little effect on behavior, while skew, by

raising the likelihood that half of the features will be present, proportionally

extends the interference range of that half of the features. We may note with

relief that this region is half interference and half agreement, suggesting that

79

even when high-frequency features are entangled and making mistakes, they do

not interfere with agreement between the specialists for low-frequency features.

The high skew also creates a region of half no agreement where k is low, but

this appears to be merely an effect of there not being enough examples of the

low-frequency features to complete the training of a signal.

Usage Specification

Next, we extract a usage policy from the dossier.

• Configuration Policy: The limited dossier I have constructed gives us little

information, only that prune · capacity should be set well above the expected

number of features.

• Limiting Conditions: Signal agreement fails when there are interfering signals

with a very high conditional probability of being present, or when signals are

not highly correlated between specialists.

• Failure Simplification: Interference manifests as extra features in a model.

This can be mitigated by adding a third codetector, which compares predic-

tions (made by a third party mechanism that uses the feature’s presence) to

future sensory input. Until this decision maker accepts the feature’s presence

as “correct,” it may be assumed to be dubious information, possibly a result of

interference, and ignored. This may be predicted to transform a large fraction

of interference failures into no agreement failures, which are likely to be less

disruptive.

• Cost: This naively designed device will be rather costly, since no attempt has

been made to design interfaces suitable for development. In particular, the set

of features and its interface to the vocabulary are quite expensive since they

must be assumed to each be specially constructed in the absence of any other

explanation. Besides this expense, there is also the question of how much the

communication channel costs; we will simple add it as a separate factor to each

cost.

Finally, variation leads to dysfunctional features and variation in capacity, while

execution error leads to missing features that should otherwise have been com-

municated.

80

Bias

0.0

0.3

0.2

0.1

0.5

0.4

Sk
ew

0.5 0.6 0.7 0.8 0.9 1.00.40.30.20.10.0

Figure 5-15: Tableau showing the results of the extended survey. Probability of a
match (a feature being observed by both specialists) ranges from 0.5 to 1.0 left to
right, and the fraction of features present in each example ranges from 0.1 to 1.0
top to bottom. Blue indicates no agreement, red indicates mistaken agreement, and
green indicates correct agreement. Other colors are mixed behavior, with the mixture
indicated by the component.

81

Development Mature

Time O(1 + |channel|) O(1 + |channel|)
Space O(|features|+ |channel|) O(capacity · |features| +

|channel|)
Imperfection unusable features, more/less

capacity

false negative features

If we wish, we can now use signal agreement as a free-standing device, with no

thought to the possibly complex behavior of the codetectors inside. We will not use

it further in this document, however.

82

Chapter 6

A Design for Communication

Bootstrapping

We now confront the question of how exactly communication bootstrapping might be

used to support intelligence. Recall the definition of communication bootstrapping:

A network of devices exhibits communication bootstrapping when they use

shared experiences to reach agreement on a system of signals for commu-

nicating with one another.

We need a design for specialists in which communication bootstrapping occurs

and produces agreement on useful signals. Further, once signals are agreed upon,

their flow between specialists must help the specialists to cooperate.

In this chapter, I review the previous work on communication bootstrapping and

present the general architecture we will use in following my roadmap for investigating

learning by learning to communicate.

6.1 Communication Bootstrapping v1.0

The architecture used in [4] and [3] is the starting point for our investigation, because

it is known to produce communication bootstrapping. It happens that the system

in these papers was never given a name, so let us refer to it as Communication

Bootstrapping v1.0.

This architecture, the original investigation into communication bootstrapping,

was a proof of concept that a communication system could be self-organized on bio-

logically inspired hardware. It was inspired by Kirby’s work on language evolution[21],

which is closely related to other work by Steels[38], Yanco[45], and Batali[2] among

others.

83

Features &Inflections

Wires

vocabulary vocabulary

CAR=SUBJECT
YELL=VERB

CROSSWALK=PLACE
PERSON=AGENT

Figure 6-1: The v1.0 architecture for communication bootstrapping uses two
vocabulary-building devices that learn to communicate from shared examples.

6.1.1 What v1.0 Does

Communication Bootstrapping v1.0 uses the simple architecture shown in Figure 6-1.

In this design, two vocabulary-building devices are connected by a twisted bundle of

wires1 and presented with scenes digested into feature/role pairings. For example,

“The person yelled at the car in the crosswalk” would be presented as a set of four

pairs, YELL=VERB, PERSON=AGENT, CAR=PATIENT, and CROSSWALK=PLACE, where YELL,

PERSON, CAR and CROSSWALK are the features and VERB, AGENT, PATIENT, and PLACE

are the roles. The goal is for the two vocabularies to end up with equivalent entries

for features and roles, such that when one is presented with a scene, its partner can

reconstruct the scene from the signals it receives, even if that particular scene has

never before been seen.

When a scene is to be used for training, it is presented to both sides simultaneously,

they turn it into sparse encodings on the wires2 and learn from the coincidences

between features, roles and activity on the wires. When a scene is to be used for

testing, it is given to one side, and the test is judged successful if the other reconstructs

the scene perfectly.

Assuming that the features are used sparsely and mostly independently in training

examples (e.g. CAR and YELL usually do not show up at the same time, and when

they do it is not usually in sequential examples), there is little interference between

encodings. As a result, the two devices quickly jump to the same conclusions and agree

on encodings for all of the features and roles. Until the system begins to approach

capacity, the expected time to learn a new feature is just over 10 exposures and the

1as might be grown cheaply with the path creation operations in Section 4.4.
2The sparse encoding works much like Mooers’ Zatocoding[29] or Minsky’s K-lines[28].

84

time to learn a new role is a constant that depends on the structure of scenes. Once

learned, signals can be arranged combinatorially in order to communicate scenes that

have never been seen before.

Moreover, the whole process is tolerant of both noise and parameter variation.

There is a large range of parameter and noise values where the vocabularies appear

to always converge to produce 100% success rate. Pushed outside this area, system

performance degrades gradually, making it easy to tune.

This is all very satisfactory, but there are a few caveats: it assumes synchronized

execution, a supply of largely independent examples, clear differentiation of training

and testing, and learns only equality relations.

6.1.2 How and Why v1.0 Works

Using communication bootstrapping in a theory of intelligence will require violating

many of the assumptions that v1.0 depends on. Let us open up the box and examine

the mechanism to see how the v1.0 architecture produces communication bootstrap-

ping, so that we can figure out how to get around its limitations. For the full details

of the mechanism, see [4].

Encoding Scheme The wires used by v1.0 hold one of four values: neutral, true,

false, and conflict. A wire is neutral by default, but may driven to true or false

by any number of inputs. When all the drives are for the same value, the wire takes

that value; when both values are driven, the wire takes the value conflict.3

Features are encoded as a sparse subset of the large number of wires connecting

the two vocabulary-building devices. We will call one of these sparse sets a symbol. A

device transmits a feature by driving those wires (Figure 6-2). Conversely, a feature

is detected when most of its associated wires are non-neutral.

In v1.0, the role of a feature is encoded as the percentage of the wires in its symbol

that are driven to true. We will call a signal carried on the wires of a symbol an

inflection. When an inflection is decoded, conflict and neutral values are ignored,

and only the numbers of true and false values on a feature’s wires are used. The

feature is then assigned the closest role whose encoding is no more than a few percent

different than the arriving signal.

Notice that the role encodings carry very little information per wire. The reason

is the twist in the bundle of wires, which is modelled as an arbitrary permutation.

3Some asynchronous electronics are built this way. They are typically implemented as a “dual-
rail” logic, with one wire carrying a true bit and one carrying a false bit.

85

partner
YELLVERB

80%

tru
e

false

true
true

true

wires
to

Figure 6-2: In the v1.0 architecture, a feature is encoded as a sparse set of active
wires, and its associated role encoded as the percentage driven with true.

Since different symbols use different wires, the permutation affects each one differ-

ently. This means that if we are to use the same inflection with different symbols, it

should not depend on the ordering of wires. The v1.0 inflections use resources very

conservatively—too conservatively for our needs, since each symbol can be assigned

only one inflection and it is costly to distinguish more than a few inflections. As

a result, we will instead end up using an inflection encoding that is more like the

symbol encoding.

Agreeing on Symbols In v1.0, the encoding for a feature has a four-stage life-

cycle:

• Creation: When a device’s input has a feature without an encoding, it proposes

an encoding for the feature, choosing wires randomly. At the first opportunity,

it also sets an initial guess for its partner’s choice of encoding—every wire

currently being driven.

• Refinement: During the next few appearances of a feature, the device refines

its initial guess: the device transmits its own proposed encoding and eliminates

any wire not driven by its partner. If there are ever too few wires remaining in

the guess, the encoding is discarded and the process starts over.

• Transition: After a few rounds of refinement, the device assumes that any

extraneous wires have been eliminated and begins transmitting on the wires of

both its own proposed encoding and those wires remaining in its guess. Elimi-

nation of un-driven wires from the guess continues as before, and the encoding

is discarded if there are too few.

• Maturity: After a few rounds of transition, the device assumes that its partner

has either reached agreement or the attempt has failed for this encoding. The

86

device combines its proposal and guess, transmitting on both and eliminating

from both, and the encoding is discarded if there are too few.

In effect, both devices make a proposal and try to guess the other’s proposal.

If one of the two picks up the other’s proposal quickly enough, then they end up

agreeing on an encoding.4 If the attempt fails, then they try again with a different

encoding.

This mechanism depends on three assumptions:

• Given two features, f and g, the conditional probability P (g ∈ X|f ∈ X) of g

appearing in an example X containing f is very small.

• Given that f and g appear in an example X together, and that f next appears

in example Y , the conditional probability P (f∩g ∈ Y |f∩g ∈ X) of g appearing

in Y as well is very small.

• The probability of a feature in an example appearing to only one partner is very

small.

The net effect of these three assumptions is that it is very easy to guess whether a

wire is part of the partner’s encoding proposal, since there is little overlap between

encodings. In any short sequence of examples containing a feature, the wire will

almost always be present if it is in the partner’s encoding proposal for that feature,

and almost always be absent if it is not.

We will not be able to depend on these input assumptions in more complex sit-

uations, such as our scenario of vision and hearing specialists observing a four-way

intersection. The better we can approximate them, however, the more likely that we

can induce communication bootstrapping.

Time Assumptions In v1.0, the wires in the bundle are used to send signals in

both directions. When the two devices have agreed on an encoding for a feature,

they will both drive the same wires. This was chosen to ensure that a feature only

needed to be learned once, not once for each direction. It also leads to a hidden set

of assumptions about time. The mechanism we will use later avoids this problem by

using one communication channel for each direction and an abstraction that allows

us to learn both mappings at once.

In v1,0, both devices are potentially sending signals on the same wires, so once a

device begins driving the wires, its signals and the signals of its partner may become

4The encoding agreed upon turns out to always be either one of the device’s proposals or the
union of both proposals, plus occasionally a few wires added by interference.

87

observations

signal
set

working channelsignalsmodel

environment

map

Figure 6-3: Core bootstrapping architecture for a specialist that participates in com-
munication bootstrapping with one partner.

inextricably mixed. Indeed, the closer the devices come to agreement, the worse the

mixing becomes. The v1.0 system handles this by making a set of timing assumptions:

• one of the devices starts signalling first

• the signal arrives at the partner before the partner starts to signal

• it is random which device transmits first

• there is time enough between examples for the wires to return to neutral

The net effect of these assumptions is that precisely one partner gets a clean view

of the other’s signal, and that they progress toward agreement at approximately the

same rate.

We will not be able to retain any of these assumptions, since they depend on

synchronization and transmission brevity that I am no longer willing to assume. We

still need, however, to ensure that the partners get a clean view of each other’s signals

and that they progress towards agreement together.

6.2 Core Bootstrapping Architecture

I will generalize the original architecture to a more flexible design. Let us start by con-

sidering only a specialist that communicates with one other specialist (which we will

call its communication partner). Figure 6-3 shows a core bootstrapping architecture

for a specialist with one partner:

• A stream of observations arrive from the specialist’s environment. For many

specialists, these observations are samples of sensory input. For example, the

vision specialist in the stoplight scenario receives observations in the form of

sets of objects and their associated features and relations.

88

• The arriving observations are used to update the specialist’s model of its envi-

ronment. A specialist is likely to have a model and update mechanism specific

to the type of observations it receives. For example, the vision specialist might

incorporate Spelke’s principles of cohesion, continuity, and contact[37].

• Communication between a specialist and its partner is carried on a bidirectional

channel that connects them.

• At any time, a working set of model elements is designated. Signals describing

the contents of the working set are sent frequently to the partner. Likewise,

signals encoding the partner’s working set arrive periodically over the channel.

For example, the vision specialist might designate a few foreground objects as

its working set and communicate only those objects and their relations.

• The translation between model elements and signals is handled by a signal

map. The signal map creates signals to encode model elements and searches for

relations between model elements and signals from the partner.

For each potential relation considered between a model element and a signal

component, the map finds positive and negative examples by comparing the

times when the elements and the signal are present. When the positive examples

dominate, the relation holds. Finding a relation indicates agreement with the

partner that a signal is meaningful, though they may disagree about what it

means. When meaningful signals arrive, the map sends an acknowledgement

to the partner and may modify the working set according to the relations that

have been discovered.

For example, the vision and hearing specialists should come to agree on a signal

that means “walk light” to the vision specialist and “cuckoo” to the hearing

specialist. When the cuckoo sound starts up, the hearing specialist will send

this signal, likely changing the working set of the vision specialist to include an

expectation of seeing a walk light.

If we map the v1.0 architecture onto this core bootstrapping architecture, the v1.0

vocabulary becomes the signal map and the scenes are the observations delivered by

the environment.

6.3 What Is a Good Agreement?

A good agreement on a signal is one that results in improved models of the environ-

ment. The improvement might be a direct result of making cross-modal information

89

available: when the vision specialist sends a messages that a car is in contact with

pedestrian, the hearing specialist predicts a scream.

Translating back and forth may also function as cooperative reasoning: after the

hearing specialist predicts the scream, that signal might cause the vision specialist to

predict the person moving downward, which leads the hearing specialist to predict

sirens, which leads the vision specialist to predict the appearance of an ambulance.

Though neither specialist understands accidents on its own, together they would have

predicted that if a car hits a person, then an ambulance will come. The problem is

how to measure whether the model has improved.

I will measure the quality of agreements produced by communication bootstrap-

ping in two ways, prediction quality and relation analysis.

Prediction quality is the simpler measurement, but generally produces less insight.

To measure prediction quality, we compare the predictions of a specialist’s model to

its observations. A simple metric captures aspects of both precision and accuracy:

for a set of c changes in observation and p predictions, let ui be 1 if the ith change

was unpredicted and 0 if it was not, let si be 1 if the ith prediction was satisfied and

0 if it was not, and let ti be the number of seconds time spanned by the ith prediction

(e.g. if the the walk-light was predicted to turn on sometime in the next five seconds,

that prediction’s ti would be five). We can then express prediction quality as

Q(p, c) =
1

p
(

p∑
i=1

si − k1

ti
) − k2

c
(

c∑
i=1

ui)

where the two ks are constants for weighting the relative importance of correct pre-

diction, unfulfilled prediction, and failure to predict. If the prediction quality rises

over time, then the model is likely to be improving.

The problem with prediction quality, however, is that it is not clear whether better

prediction is a good indicator of the quality of agreements. A system’s improving

understanding of the world might actually lead it to make more mistakes, but have the

type of mistake evince a deeper understanding. For example, if the car almost braked

in time and tapped but did not injure the pedestrian, then a system that predicted

screaming and sirens would appear to have lower prediction quality than one that

knew nothing about accidents. If some specialists control actuators, then there are

more ways the metric can fail: for example, a system might increase its prediction

quality by avoiding exploratory behavior and repeating the same actions over and

over. Finally, there is no clear way to distinguish between important and unimportant

mistakes using prediction quality: predicting which direction a pedestrian crosses the

street has the same value as predicting whether they will be hit by a car while doing

90

so.

Relation analysis answers these problems, but is more labor intensive and subject

to human error. For relation analysis, we crack open the signal maps and look to

see what dynamics of the environment are captured when we compose the two maps

together to get relations between model elements. For example, relation analysis

could discover the accident to ambulance reasoning chain without having to observe

it in action.

I will analyze systems using both of these techniques. In general, however, we will

be more interested in what relations have been learned than the quality of predictions,

because prediction quality is likely to be abysmal for a system as complex as our four-

way intersection scenario. Prediction quality serves as a sanity check (making sure

the trend is in the right direction) rather than a benchmark.

6.4 Signal Encoding

We now need to decide what sort of signals the specialists will be trying to agree on.

This decision must be made carefully, as it will affect nearly everything that follows

on from this point.

The requirements that must be taken into account are:

• Signals should be combinatoric. The individual signals in the signal map should

be able to be combined to express a factorial number of situations. When new

signals are agreed upon, they should be able to combine with those that already

exist.

• Signals should be expressive. It should be the case that any portion of a model

can potentially be communicated to a partner, and that the models be poten-

tially able to approximate anything a specialist might need to represent.

• Signals should degrade gracefully. It should be difficult for a small amount of

noise to change a signal into a different signal. If part of a compound signal

is corrupted or not yet agreed on, it should not affect the interpretation of the

rest of the signal.

• A large set of signals should be affordable according to the cost model from

Section 4.4.

• Complicated compound signals should be able to be communicated quickly.

Given the cost model in Section 4.4, this means that the channel must carry

91

many signals at once and that these signals must be able to be recognized and

interpreted independently.

• Signal structure should be highly constrained. The more options there are, the

harder it is to produce communication bootstrapping.

The signal structure I have chosen is a sparse encoding of symbols marked with

inflections, similar to the one in v1.0. There may be many other good signal structures

that fit these requirements. For this sort of exploratory engineering, however, we just

need some reasonable approach, and this structure is known to be workable.

6.4.1 Symbols and Inflections

In this symbol/inflection encoding scheme, symbols encode features of the specialist’s

model and inflections encode the relationships between features. The component sig-

nals are individual symbols and inflections. For example, the visual relations specialist

has features like CAR, RED and STREET and relations like TYPE, COLOR,

and BELOW. Directional hearing, on the other hand, has features like CUCKOO

and >100db and relations like TYPE and LOUDNESS.

A compound signal is a set of symbols, marked with inflections to show their

relationship. For example, the visual relations specialist might send a signal for a

red car on the street as a set of three pairs CAR=TYPE, RED=COLOR, and

STREET=BELOW.

We will assume that there are many more symbols than inflections, and that while

the number of symbols may grow, the number of inflections has a strict upper bound

(there are only so many relations used in the model). Potentially, any symbol might

be paired with any inflection, though in practice some will never be paired up.

This encoding scheme places little constraint on the model, except that it be

symbolic. Even that constraint is fairly weak, since a continuous value can be ap-

proximated with a set of discrete values (e.g. >100db). In this work, I choose to

think only about models that are semantic networks containing objects and relations

that connect to objects or other relations. Again, I am not claiming there is any-

thing special about these models other than that they are easy for me to extract from

my simulator and have been easy for me to think about as I explore communication

bootstrapping.

92

6.4.2 Channel

In order to make the channel affordable, I assume that it consists of a large number

of arbitrarily connected paths. That way, it can be grown using a small number of

communication path operations, and complicated signals can be sent quickly on the

parallel paths.

We encode symbols as a sparse subset of the paths, and inflections as a sparse

sequence of pulses sent on a symbol’s paths. Since the symbols are sparse subsets,

any pair of symbols is likely to have few paths in common, and we can expect to

be able to send many symbols simultaneously with little interference between them.

Likewise, since inflections are encoded as a sparse pattern of pulses, we can send

several inflections on each symbol and expect little interference between them.

Since inflections are encoded temporally, they are much more expensive than

symbols (which take advantage of the massive parallelism in the cost model). We are

assuming there is only a relatively small fixed number of inflections, however, so the

greater expense is not problematic.

Encoding signals on the channel in this way meets all of the requirements specified

in Section 6.4. Symbols are cheap, and signals can be communicated quickly. The

sparse signals combine through superposition, and can be encoded and decoded in-

dependently, also ensuring graceful degradation. Any portion of a semantic network

can be communicated if we add a pair of inflections to indicate the current and next

focus and use these to traverse the semantic network one step at a time, as will be

seen in Chapter 8.

All that remains is to determine how a system can produce communication boot-

strapping with this encoding scheme, and whether the signals agreed upon can capture

the structure of the system’s environment. The rest of this document is devoted to

teasing out the answer to those questions, one step at a time.

93

94

Chapter 7

Agreeing on Non-Equality

Relations

Now that we have a general design for communication bootstrapping, we can start

to fill it in and understand how to make it learn things. We will start with learning

simple relationships between the models of two specialists.

For example, some reasonable things that our system ought to be able to learn in

the stoplight scenario:

• When an engine is heard, a car will likely soon be seen.

• When an engine is heard, an SUV (a particular type of car) may soon be seen.

• Whenever a car is seen, an engine is heard.

• Seeing a yellow light is followed by hearing a cuckoo (the audible walk signal).

While none of these is universally true, they hold almost all the time in the scenario

during the day because the vehicles are all cars, its streets are too narrow for parking,

and there are a lot of pedestrians.

When we start trying to have our system learn about these sorts of relations

between specialists, the assumptions that allowed communication bootstrapping in

the v1.0 architecture no longer hold.

First, there may be many different relations per model feature. For example,

engines are related to sedans, pickups, SUVs and vans, all of which are also cars. This

means that the probability assumptions that v1.0 depends upon will be violated. On

the one hand, features in a model may be correlated, violating the assumption that

features rarely appear together: most cars are sedans, so the probability P (sedan|car)

is high. On the other hand, these more complicated relationships mean that a feature

95

often appears in only one partner: most cars are not pickups, so the probability

P (pickup|engine) is low.

If the signal agreement mechanism looks at each communication path indepen-

dently, the conditional probability of interference may be as high or higher than the

probability of activity on the signal communication paths. For example, if there is an

average 5% interference between signals, and only one out of every 20 engine noises

is made by a pickup, then it will be hard for the directional hearing specialist to dis-

tinguish between interference and a signal about pickups: any given communication

path is equally likely to be activated by either source.

Second, relations are no longer symmetric. For example, the cuckoo sound follows

a yellow light, and is followed by people in the street. This means that the signal

maps of communication partners will no longer be equivalent. For example, there

may be no relationship between the yellow light and the sound of footsteps.

Finally, related events are separated in time. For example, a car’s engine begins

to be heard long before it appears the field of view. In order to learn relationships

between such events, they must be brought together into a single example.

All together, these three things mean it is no longer reasonable to assume that

experiences come pre-digested into examples, and that it is no longer feasible to learn

the meaning of a signal in terms of individual communication paths. Indeed, it is not

clear that it is even possible to segment the stoplight scenario into examples without

pre-judging what should be learned. Consider a pickup truck that runs the light

toward the end of a walk signal: should an example derived from this situation stop

when the green light begins, when the pickup disappears, when the light changes from

green to yellow, or some other time entirely?

I address these challenges with a two part solution:

• Separate the process of agreeing on signals from the process of agreeing on their

meaning. This eliminates the problems of interference in relations where one

side has a low conditional probability.

• Find examples using time interval relations between pairs of symbols or inflec-

tions.

Figure 7-1 shows my design for a signal map that uses this solution. By the end

of this chapter, we will see how to build each component and how they fit together

in this design.

96

ra
nd

om
bi

pa
rti

te
gr

ap
h

cr
os

sb
ar

co
de

rs
in

fle
ct

io
n

sy
m

bo
l

co
de

rs
ca

bl
e

he
ad

s
distributed map

response tracker

translator

re
la

tio
n

 &
II

ES
 m

ap

re
la

tio
n

 &
II

ES
 m

ap
s

0
1

ch
an

ne
l

ch
an

ne
l

sy
m

bo
ls

sp
ea

ke
r

li
st

en
er

se
nd

?

pr
ed

ic
tio

ns
sy

m
bo

l

m
es

sa
ge

ar
ri

ve
d

in
fle

ct
io

ns

tr
an

sla
tio

ns
in

fle
ct

io
n

0 1

un
id

ir
ec

ti
o

n
a

l
li

n
k

un
id

ir
ec

ti
o

n
a

l
li

n
k

bi
di

re
ct

io
na

l
li

nk

ra
nd

om
bi

pa
rti

te
gr

ap
h

cr
os

sb
ar

co
de

rs
in

fle
ct

io
n

sy
m

bo
l

co
de

rs
ca

bl
e

he
ad

s

distributed map

response tracker

translator

F
ig

u
re

7-
1:

D
es

ig
n

fo
r

a
si

gn
al

m
ap

se
p
ar

at
in

g
ag

re
em

en
t

on
si

gn
al

s
fr

om
th

ei
r

in
te

rp
re

ta
ti

on
.

T
h
ic

k
b
la

ck
li
n
es

ar
e

d
is

tr
ib

u
te

d
m

ap
s

(d
efi

n
ed

in
S
ec

ti
on

7.
1.

1)
u
se

d
as

w
ir

in
g

b
u
ss

es
.

97

bidirectional link

B
C

D
E
F

A’
B’
C’

D’
E’
F’

WALK
equals equals

CUCKOO

unidirectional link

unidirectional link

A

Figure 7-2: Two abstractions separate agreement on signals from agreement on their
meaning: one-way bundles self-organize into a unidirectional link and aligned encod-
ings for symbols and inflections. The one-way encodings are then paired up to form
a bidirectional link carrying abstract symbols and inflections.

7.1 Separating Form and Meaning

In the v1.0 architecture, probability assumptions make it possible to use a simple

process to agree on both the encoding and the meaning of a signal. Now that we

cannot depend on these assumptions, I separate the two processes so that there is

less opportunity for them to interfere with one another.

I separate agreement on signals from agreement on their meanings by means of a

pair of abstractions (Figure 7-2). At the lowest level, a twisted bundle of communica-

tion paths self-organizes into a unidirectional link. One specialist is designated as the

speaker, the other as the listener, and they cooperate to create a pool of “meaning-

less” symbols and inflections that can be reliably transmitted from the speaker to the

listener. No interpretation is assigned to these signals: they are waiting for use to give

them meaning. These pools are exposed for use differently on the two sides: on the

speaker side, symbols and inflections can be allocated and used to compose messages,

while the listener side simply reports the contents of the most recent message.

Two unidirectional links, one in each direction, are then bound together to form

a bidirectional link between two specialists. Symbols from the unidirectional link

pools are paired up to produce a pool of bidirectional symbols; the same is done for

inflections. Again, there is no meaning attributed to the signals, but they are made

available with an interface that allows each specialist to allocate and deallocate them,

and to send and receive signals simultaneously.

Using this design, it is possible to build an agreement mechanism that looks for

pairwise relations between the contents of the working set and the set of arriving sym-

bols and inflections. The problems of encoding and interference are hidden beneath

98

an abstraction barrier, simplifying the agreement problem. Indeed, it does not even

matter that the signals are different in each direction.

This design eliminates both the problems of communication bootstrapping with

individual communication paths and the problem of interference between incoming

and outgoing signals.

7.1.1 Three Building Blocks

There are three structures that I use as building blocks, both here and elsewhere. The

first is a competition between elements of a set, which I use for symmetry breaking.

The second is a random bipartite graph, which connects two sets together with a

random set of links. The last is a distributed map, which uses two random bipartite

graphs to create arbitrary one-to-one functions between two sets.

Competition We will often need to choose a single device from a set, breaking

symmetry in a group of otherwise identical devices. Given random number generation

and communication with nearby devices in the set, there are many ways for a set of

competing devices to break symmetry and elect a winner.

One that is particularly useful is the sorting algorithm presented by Butera in the

discussion of streaming audio in [7]. Each device starts with a unique number, then

devices exchange numbers in a parallel bubble sort towards a defined location. This

sorting algorithm is highly resistant to variation and error in devices and the network

that connects them: numbers simply flow around the fault.

If we modify this sorting algorithm to start with random numbers and sort toward

the lowest number (identified by gossip) rather than a defined location, then a set of

n devices will select the lowest number as the winner in at worst O(n) time. A small

further modification allows the modified algorithm to run in a subset of the original

space. The sorting algorithm leaves the devices nearest the winner containing the

runner-up, so if the winner withdraws from the contest, the next winner can be

selected in (amortized) constant time.

Competition can often take place offline, allowing even the first winner to be

chosen in constant time. For example, when we allocate symbols, the choice of the

next symbol to be allocated can be made offline through an incrementally evolving

competition. Finally, if we bias the initial random number generation, then we also

bias the competition, giving priority to some devices.

This algorithm is not necessarily the best for the job, but serves to show that the

task can be accomplished quickly and reliably.

99

AB

(a)

B A

(b)

B A

(c)

AB

(d)

Figure 7-3: One way of creating a random bipartite graph between two sets, A and
B (a) is to have devices of B randomly start growing communication paths toward
A, while the devices of A compete to signal and the winner (red dot) guides the
growing paths towards itself (b). When k paths have arrived at the winning element
of A, it withdraws from the competition and a new device becomes the winner. This
continues from device to device (c) until there are no devices left in the competition
and the graph is finished (d).

Random Bipartite Graphs The random bipartite graph is simple: given two sets

of devices, A and B, link every device a ∈ A to k randomly chosen devices of B.1

Random bipartite graphs will be a useful tool for creating signals that do not interfere

with one another, and can be used to implement references in data structures.

A random graph can be constructed using the operations in Section 4.4 by con-

verting random number generation into randomness in space. The devices of one set

each send a signal for a communication path to grow toward (either different signals

or the same signal at different times), while the devices of the other set randomly

choose which signal to grow paths toward.

For example, we might have the devices of B randomly choose times to start

growing communication paths toward A (Figure 7-3). On the other side, the devices

of A compete with one another, and one winning device emits a “grow toward me”

signal. When k paths have arrived at the winner, it withdraws from the competition

and a new device becomes the winner and begins emitting the signal. This continues

from device to device until there are no devices left in the competition and the graph

is finished.

Implemented simply, growing a random graph in this manner requires a constant

amount of encoding and time proportional to the number of devices in A. The con-

stant factor for the growth time can potentially be made quite low, however, through

two techniques. First, if the growth of a path experiences random perturbations,

then we can guide growing paths toward a small region of devices rather than a single

device. Second, we can adjust the time constant so that there are many more than

k communication paths growing at once, allowing partially grown paths to redirect

to the new signal source. This effectively “pipelines” path creation, but if paths are

1It is acceptable if randomness leads some devices to be chosen twice.

100

Figure 7-4: A distributed map connects two sets through an intermediate set of ren-
dezvous points. If each set element connects to a sparse random subset of rendezvous
points, then a small oversupply of connections and rendezvous points will make it
highly probable that the rendezvous points can be configured to represent any one-
to-one function mapping from one set to the other.

created too quickly, their distribution will be biased by the distance they must travel.

The threshold where the bias becomes significant depends on the amount of random

perturbation in the growth of a path, the geometry of the two sets, and the distance

between them. Finally, variation during development results only in a small pertur-

bation of distribution of graph edges—something that most systems using a random

graph will tolerate handily. The mature random graph, unsurprisingly, takes O(kA)

hardware, relays communication in time proportional to the length of the links, and

has error manifest as noise in the communication.

Distributed Map A distributed map is a device for dynamically creating commu-

nication paths between elements of a set A and elements of another set B. These

communication paths act as a one-to-one mapping between subsets of A and B, car-

rying signals in either direction.2 Appendix C.1 contains a full data sheet for this

device.

This device is useful both directly as a map, and as a bus for connecting together

sets that are created independently. We will use it two ways: first, to pair together

symbols and inflections from the two unidirectional links, and second, to connect

model elements to the signals allocated to represent them.

A distributed map connects together two sets through an intermediate set R of

rendezvous points. The number of rendezvous points in the set R is equal to the size

2A crossbar gives us this same functionality and more. The advantage of a distributed map is
that it is significantly cheaper than a crossbar.

101

of the smaller set, multiplied by a small oversupply constant os. Each set connects to

the rendezvous points with a random bipartite graph.3 In order for any two elements

to have an expected rendezvous size rs of shared rendezvous points, each set element

connects to k =
√
|R| · rs rendezvous points.4

To create a communication path between two elements, we send a special creation

signal from each element to its rendezvous points. The rendezvous points that receive

a signal from both sides compete (with preference given to rendezvous points that are

not yet allocated). The winning rendezvous point then selects the paths that carried

the creation signal: it will subsequently relay signals carried on these paths and ignore

all signals on other paths except for creation signals. Finally, the rendezvous point

sends an acknowledgement signal back along both paths to let the requesting elements

know that creation succeeded.

As more paths are allocated, there is an increasing chance that all of the shared

rendezvous points for a new path will already be allocated. In this case, one of the

already allocated rendezvous points is the winner of the competition and the path

it previously carried is unceremoniously terminated. Likewise, if a set element is

connected to a new path, it disconnects from its previous path.

Communication paths can also be destroyed unilaterally: if an element sends a

special deletion signal to its rendezvous points, then the rendezvous point for its

communication path will reset, discarding its path selections on both sides.

Only a small oversupply factor and rendezvous size are needed in order to ensure

that a distributed map can simultaneously maintain paths to nearly every element

of the smaller set. Figure 7-5 shows graphs of success rate in creating a random

permutation map between two sets of 1000 elements with various oversupply factors

and expected rendezvous sizes. No element ever connects to the wrong element of the

other set, and for even modest levels of os and rs nearly every element connects with

its pair in the other set.

The cost to create a distributed map between two sets A and B with oversupply

multiplier os and rendezvous size rs is the cost of creating the rendezvous points and

the two random bipartite graphs. The encoding cost is constant, as is the time to

create a path, delete a path, or send signals across all the existing paths. Letting

|R| = min(|A|, |B|)os, it takes O(
√

rs|R|(|A|+ |B|)) hardware to implement the map,

and O(min(|A|, |B|)) time to grow that hardware. Variation during development will

result only in a small change in the number of links or rendezvous elements. In effect,

3This design is similar to that used by butterfly graphs[10] and other interconnects based on
expander graphs.

4A single link has a k/|R| chance of connecting to a shared rendezvous, so k of them have an
expected size k2/|R|. We then solve k2/|R| = rs to obtain the value of k.

102

1 1.1 1.2 1.3 1.4 1.5

0.5

0.6

0.7

0.8

0.9

1

Oversupply Factor

Fr
ac

tio
n

of
 F

un
ct

io
na

l P
at

hs

Effect of Oversupply Factor on Distributed Map

rs=1
rs=3
rs=10
rs=30

(a)

0 5 10 15 20 25 30

0.5

0.6

0.7

0.8

0.9

1

Expected Rendezvous Size

Fr
ac

tio
n

of
 F

un
ct

io
na

l P
at

hs

Effect of Expected Rendezvous Size on Distributed Map

os=1.0
os=1.01
os=1.1
os=1.2
os=1.5

(b)

Figure 7-5: A small oversupply factor and rendezvous size are all that is necessary
to ensure that a distributed map can simultaneously maintain paths to nearly every
element of the smaller set. These graphs show the success rate for a random per-
mutation map between two sets of 1000 elements (the same data is plotted on each
graph, but with different axes to highlight the effects of the two variables).

this is no more than a small perturbation in the constants os and rs, which we have

already shown will have little effect on the behavior of the device.

Given the large capacity and low error of distributed maps, we can abstract this

device as either a reliable bus or as a map that has a small chance pd of deleting a

random mapping whenever a new mapping is added. Doing this will allow us run

simulations much faster.

Using distributed graphs and competition, we can organize consistent mappings

in any graph of sets—meaning that if we send a message along an arbitrary loop in

the graph, it will return to the source unaltered (except by noise in transmission).

Each link in the graph is a distributed map, and each set supports competition. To

align a single element across all the sets, we start with a competition that picks a

single element in each set, then connect all those elements in the distributed map.

Once all the connections are finished, the process repeats until enough elements have

been selected. Finally, a designated seed set selects elements to test, one by one, and

any that do not successfully propagate over every link are discarded. The surviving

elements form a consistent mapping over the graph.

7.1.2 Unidirectional Link

A unidirectional link connects two specialists, allowing messages composed of abstract

symbols and inflections to flow from one to the other. A unidirectional link differs

from a distributed map in that it tolerates noise, handles more complex messages, and

103

undirectional link

map
signal
map

speaker
channel

listener

signal

Figure 7-6: A unidirectional link connects two specialists. Messages are given to the
speaker component of one specialist’s signal map. The message is encoded into signals
on the channel connecting the two partners, then decoded back into a message by the
listener component of its partner’s signal map.

can send over a long distance channel that connects arbitrary pairs of elements.5 The

link consists of a component in each specialist’s signal map and a channel between

the two components (Figure 7-6). In ordinary use, a message is given to the speaker,

which encodes it into signals on the channel. The listener then decodes the signal

back into the original message.

The unidirectional link assumes that there are many more symbols than inflec-

tions, and that each message contains only a small number of symbols and inflections.

The description of the unidirectional link can be broken into three parts:

• how messages are encoded and decoded

• how the rest of the signal map knows what symbols and inflections to use

• how the speaker’s encoding map self-organizes to match the listener’s decoding

map

The complete data sheet for this device is included in Appendix C.2.

Encoding and Decoding The speaker and listener in a unidirectional link are

mirror images of one another. Each maps signals to messages using two sets of

coders—one for symbols and one for inflections—connected by a crossbar.6 Each

communication path in the channel is connected to a cable-head device at each end,

which does some processing to support self-organization. The mapping between cable-

heads is almost all one-to-one, but arbitrary within that constraint. Finally, the set

of symbol coders is connected to the array of cable-heads with a sparse random set

of communication paths.

5Arbitrary is worse than random, because random at least guarantees a particular distribution.
6In this case, a crossbar is affordable because we are assuming that the number of inflections is

much smaller than the number of symbols.

104

in
fle

ct
io

n
co

de
rs

symbol coders
(a) Sending

in
fle

ct
io

n
co

de
rs

symbol coders
(b) Receiving

Figure 7-7: A message is represented by the set of active junctions (blue dots) in the
crossbar connecting symbol and inflection coders. The crossbar communication paths
carry two signals: selection (red) and code (blue). In the speaker (a), the message
is specified with simultaneous selection pulses to set the junctions, then code pulse
sequences combine as they flow from the inflection coders to the symbol coders. In
the listener (b), the junctions are set when code pulse sequences from the inflections
intersect with those arriving through the symbol coders. The message may then be
read by sending a selection pulse on each inflection and observing which symbols it
arrives at.

105

A message is represented as the set of active junctions in the crossbar: each

junction represents a particular symbol/inflection pairing. Notice that this means

that a symbol cannot be transmitted without any inflections.

The communication paths of the crossbar carry two types of signal: selection

signals used to send or receive the message, and code signals used to carry the message

from the speaker to the listener.

To send a message (Figure 7-7(a)), the user first clears the crossbar, then sends

a set of selection pulses from both the inflection and symbol coders. Wherever the

pulses intersect, the junction is activated. Since there are many more symbols than

inflections, it will usually be most efficient to pulse the inflections of the message one

by one, and pulse all the symbols with a given inflection together.

For example, consider sending the message {PERSON=AGENT & BENEFI-

CIARY, RED=PATIENT, WALK=PATIENT, CAUSED=VERB}, which

we could render into English approximately as “The person caused a red light and

walk signal for their own benefit.”7 This message would be encoded into the crossbar

with four selection pulses, one for the inflection PATIENT and symbols RED and

WALK, another for the inflection AGENT and symbol PERSON, and so on.

A message is encoded as a short burst of activity on the channel. Each inflection

coder holds a sparse pattern of p pulses scattered through b time slots in a burst, plus

a synchronization signal. Figure 7-7 shows the synchronization signal as a strong

initial pulse, but it might also be a change in base activity level or some other signal.

When self-organization is complete, all of the inflection patterns will be different.

Once the crossbar has been set, all the inflection coders send their pattern as a

code signal, which flows through the active junctions to the symbol coders. When a

symbol has more than one inflection, their patterns superimpose as they flow through

the crossbar. The symbol coders relay these patterns to the subset of cable-heads

they have chosen to encode the symbol (Figure 7-8). The sequences once again

superimpose at each cable-head, then propagate along the channel from speaker to

listener.

In the listener, the process is reversed (Figure 7-7(b)), beginning with the cable-

heads relaying the signals they receive onto the symbol coders. Each symbol coder

monitors a chosen subset of cable-heads, and if at least ds are active, it relays the

consensus pattern (pulses appearing from at least dc cable-heads) as a code signal

into the crossbar. At the same time, the listener’s inflections transmit their patterns

as code signals, and whenever at least di pulses coincide at a junction, that junction

becomes active.

7I have chosen this somewhat awkward sentence in order to have a symbol with two inflections.

106

=VRB
=PAT
=PAT
=AGT,BEN

A

=17

=23
=43

CAUSED
WALK

RED
PERSON

V

A B

P
P

inflections
symbols

inflections
symbols

D

P

5

8

2

4

P

P
A

P

A P
V

V

V

speaker channel listener

cable−heads cable−heads

B

B

=99
2
4

5
5

8

Figure 7-8: A unidirectional link is implemented using sparse coding on top of a
random wiring pattern. Symbols are encoded as sets of active communication paths
and relations as the pattern of activity on a symbol. There is initially no interpretation
provided for signals, however, as represented by the names on the left becoming
numbers on the right.

The message can now be extracted from the crossbar using selection signals. A

selection pulse is sent through each inflection in turn and flows through the active

junctions of the crossbar. The message may then be read by observing which symbol

coders each selection pulse arrives at.

Note that the ability of the listener to decode the message reliably does not mean

that it knows anything about what the symbols and inflections are intended to mean.

Interpreting the message is a problem that the user of the link must handle.

Allocating Symbols and Inflections The unidirectional link provides only a

limited number of symbols and inflections that can be used to compose messages. At

most, there is one symbol for each symbol coder and one inflection for each inflection

coder.

Unless the speaker and listener have an aligned encoder/decoder pair for a partic-

ular symbol or inflection, however, it is worthless for communication. Thus, generally

only a fraction of the coders will be available for use.

With regards to usability, each coder in the speaker has four states. When disabled

or immature, a coder is not part of an aligned encoder/decoder pair, and cannot be

used. When mature, a coder is part of an aligned encoder/decoder pair and is part

of the pool of usable coders. When allocated, a coder is part of an aligned pair and

has also been provided to the user of the link in response to a request for a symbol

or inflection.

Initially, all coders are disabled. When given time to self-organize (while the link

is not being used for communication), the coders mature at a linear rate until most

107

of the coders are mature. At that point the process slows down. I will explain how

coders mature in the next section.

When the user of the speaker needs a new symbol or inflection, it activates a

request line into the appropriate set of coders. The mature coders compete with one

another over a shared link, and the winner becomes allocated and signals back to the

user, creating a connection in the distributed map connecting the user to the set of

coders. If there are no mature coders available, then the user receives no response.

This serves to notify the user that the attempt at allocation has failed, so that the

user may adjust its behavior appropriately.

The user may also deallocate a coder, once the user is done with it. When a

coder is deallocated it resets itself, returning to its original disabled state, in order to

avoid confusion between its last use and its next use. This is necessary because the

deallocation takes place only on the speaker side and the listener cannot distinguish

between a coder that has become unaligned and a coder that is simply not being

used. When the speaker returns a coder to the disabled state, it is likely to be paired

with a different coder in the listener when it next becomes mature.

Aligning the Speaker and Listener When the hardware of a unidirectional link

is first created, the encodings for symbols and inflections in the speaker do not match

those in the listener. Self-organization produces an aligned set of symbols and inflec-

tions, which may then be used for communication.

Self-organization is interlaced with ordinary use of the link. During times when

the link is idle, the speaker selects immature coders as targets for alignment and

trains them to maturity. The alignment of coders is constantly refined, both during

these training periods and while the link is being used for communication.

A reasonable way we might expect the link to operate, then, is long periods of

communication in which mature coders are allocated and then reset through deal-

location or dealignment, interspersed with periods of training when the collection

of mature coders is replenished. In general, we would also expect the inflections to

change rarely once established, since the type of relationships in a specialist’s model

is likely to be stable, while the collection of symbols is likely to range from ones that

never change to ones that are allocated and discarded almost immediately, as the

specialist’s model changes over time.

As soon as the first symbols mature, they can be allocated and used; once mature,

a symbol is rarely interfered with by the ongoing self-organization (and a mechanism

could be added to further protect critical symbols). Eventually, self-organization

reaches a stable point, in which almost no changes occur except in response to external

108

1 1.1 1.2 1.3 1.4 1.5

95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

Oversupply Multiplier

Pe
rc

en
ta

ge
 o

f M
at

ch
ed

 S
pe

ak
er

 S
ym

bo
ls

Figure 7-9: A small constant factor of coder oversupply is sufficient for efficient self-
organization. This graph shows the percentage of 1000 symbols that have found
matches after 20,000 rounds of self-organization at various levels of oversupply (ver-
tical bars show twice standard deviation). Inflections are always fully matched.

perturbation.

Self-organization proceeds one coder at a time, beginning with all symbol coders

and inflection coders disabled in both the speaker and the listener. Whenever a new

coder is needed, the disabled coders compete to be the next to become immature. In

the speaker, there is one immature coder of each type: together they serve as a target

for alignment8. In the listener, coders are allocated in response to unrecognized ac-

tivity on the communication paths or in a pattern, and there may be many immature

coders at the same time.

The self-organization process is driven by babble generated by the speaker: the

babble includes the current target, but is otherwise randomly generated from ma-

ture coders, growing in complexity as the number of mature coders grows. As the

collection of mature coders grows, the babble exposes conflicts that are corrected by

dropping communication paths or reallocating coders. Because the speaker chooses

which coders are used, there is no way for the listener to distinguish between an un-

matched coder and one that is merely rarely used. Accordingly, mature coders will

occasionally reallocate when the supply of disabled coders is low, and the listener

needs an oversupply of coders compared to the speaker in order to avoid thrashing

when almost all coders are mature.

8When there are no immature coders remaining, the target is placed on a mature coder but does
not disrupt its alignment.

109

0 0.5 1 1.5 2

x 104

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f M
at

ch
ed

 S
pe

ak
er

 S
ym

bo
ls

Rounds of Self−Organization

Mean Vocab Size
Mean ± 2 Std.Dev.

Figure 7-10: When vocabulary size is far from capacity, the mature vocabulary grows
rapidly. After an initial period of fast linear growth, symbols that failed to rendezvous
in their first attempt find complements at a slower rate.

The speaker inflections adapt stochastically. Each starts with a random sparse

pattern. When one transmits, it sends its pattern to all the others over an all-to-all

network, and when it overlaps too much with another active inflection, one of the two

reinitializes with a new random pattern. All other coders adapt by comparing pat-

terns of activation, using the codetector from Chapter 5 to decide whether particular

elements are part of the pattern. When enough components of an coder’s pattern are

accepted, it matures.

Inflection alignment is easy, since the incoming pattern is filtered by consensus in

its carrier symbol. A symbol coder, on the other hand, is attempting to rendezvous

with its complement on a small subset of its communication paths; listener symbol

coders push a single bit of feedback up their chosen communication paths to the

speaker to enable this rendezvous. The rendezvous is generally very small compared

to the number of cable-heads a symbol coder connects to, since it must be possible

to connect any arbitrary pair of symbol coders.

As a result, we must take steps to avoid symbols becoming entangled. When

feedback arrives at a speaker cable-head, it relays the pattern it transmitted so that

symbol coders can ignore contaminated feedback information. Also, when a symbol

coder makes rendezvous on too many communication paths, it must prune them

slowly to ensure there is precisely one symbol coder connected to the other side.

Finally, any symbol coder that connects to too few communication paths deal-

110

100 200 300 400 500 600 700 800 900 1000

40

60

80

100

Pe
rc

en
ta

ge
 o

f P
er

fe
ct

 T
ra

ns
m

is
si

on
s

Number of Cables
100 200 300 400 500 600 700 800 900 1000

0

10

20

30

Pe
rc

en
ta

ge
 o

f U
nm

at
ch

ed
 S

pe
ak

er
 S

ym
bo

ls

Perfect Transmissions
Unmatched Symbols

Figure 7-11: As the number of communication paths in the channel decreases, self-
organization gradually declines in effectiveness, eventually degrading badly. This
graph shows the final behavior for 20,000 rounds of self-organization.

locates itself and reset. The oversupply in the listener means that there are many

opportunities for any speaker coder to find a complement, so if one attempt at align-

ment fails, the next is likely to succeed.

Behavior of Unidirectional Link Experiments in simulation show that the link’s

self-organization is fast, requires little oversupply, and is resilient against noise and

small variations in the parameters.

Except where otherwise noted, simulation will be performed with the same set of

parameters. The speaker has a potential vocabulary of s = 1000 symbols and i = 20

inflections; the listener has an oversupply multiplier of os = 1.1 times as many of

both. The channel has c = 1000 communication paths, and each symbol connects to

a random subset of k = 100 of them. Inflections are encoded using p = 11 pulses in a

burst with b = 60 time slots. Messages may have up to ms = 5 symbols, each with up

to mi = 2 inflections. The maximum permitted size of a symbol encoding is s+ = 9,

and thresholds are di = 10 for inflection detection, ds = 8 for symbol detection, and

dc = 7 for symbol consensus. Each measured value comes from 10 trials of 20,000

rounds each, evaluated for vocabulary size and percent perfect message transmission

once every 100 rounds. Behavior at the end of a trial is taken to be the behavior

during the final 2,000 rounds.

A small constant factor of coder oversupply in the listener is sufficient for efficient

111

−4 −3.5 −3 −2.5 −2 −1.5
0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f P
er

fe
ct

 T
ra

ns
m

is
si

on
s

Log10 Error Rate
−4 −3.5 −3 −2.5 −2 −1.5

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f U
nm

at
ch

ed
 S

pe
ak

er
 S

ym
bo

ls

Perfect Transmissions
Unmatched Symbols

Figure 7-12: Noise has minimal impact until around 1% noise, when noise is high
enough to disrupt rendezvous during self-organization. This graph shows the final
behavior for 20,000 rounds of self-organization.

self-organization: Figure 7-9 shows the final symbol vocabulary size for oversupply

ranging from none (os = 1.0) to os = 1.5; inflections are always fully matched, even

at os = 1.0. Perturbations during morphogenesis mainly affect populations, so the

oversupply also provides resilience against all small perturbations besides crossbar

defects.

When the system is far from capacity, self-organization is fast. Figure 7-10 shows

that vocabulary growth is approximately linear, slowing as symbols that failed to

connect on their first try begin to retry (inflections connect almost immediately).

When the channel is smaller, symbols interfere with one another more: past a critical

threshold, self-organization runs more slowly and gradually collapses (Figure 7-11).

Finally, a small amount of noise on the communication channel does not affect

either self-organization or normal message transmission. Figure 7-12 shows that noise

has minimal impact at low levels, then causes a dramatic collapse in performance at

around 1% noise, where the noise bits begin to inhibit symbol rendezvous during

self-organization.

7.1.3 Bidirectional Link

Once we have built a unidirectional link, a bidirectional link is relatively straightfor-

ward to create. We simply take two unidirectional links—one in each direction—allow

them to self-organize, then pair mature symbols and inflections together with a dis-

112

Inflection
Translator

Symbol
Translator

Speaker

sy
m

bo
ls

sy
m

bo
ls

in
fle

ct
io

ns
in

fle
ct

io
ns

Listener Speaker

Listener

in
fle

ct
io

ns
in

fle
ct

io
ns

sy
m

bo
ls

sy
m

bo
ls

us
er

us
er

Inflection
Translator

Symbol
Translator

Figure 7-13: A bidirectional link connects together two unidirectional links with self-
organizing translators that pair up speaker and listener coders as they mature in
the unidirectional links. Because there are two links, messages can move in both
directions simultaneously without interference. The user interacts only with speaker
symbols and inflections: incoming messages are translated on their way to the user.

tributed map used for translation (Figure 7-13). The only trick is to ensure that both

sides pair up equivalent elements.

The user of a bidirectional link then interacts only with the speaker version of

each symbol or inflection. These (once paired) are made available for allocation and

deallocation exactly as mature symbols and inflections are made available by the

unidirectional link. To send a message, the bidirectional link passes the interaction

straight through to its speaker link. To receive a message, on the other hand, the link

simply remaps each signal through the distributed map connecting the speaker and

listener signals together.

Appendix C.3 contains a full specification of this device.

Translating Symbols and Inflections Like the unidirectional link, the bidirec-

tional link self-organizes during times when the channel is otherwise idle. This means

that a bidirectional link has three distinct modes of operation: ordinary use, uni-

directional self-organization, and bidirectional self-organization. One parameter of

the bidirectional link is thus the ratio rub of self-organization time devoted to the

unidirectional link versus the bidirectional link.

The mechanism I use to align pairs of symbols or inflections in a bidirectional

link is relatively simple (Figure 7-14). Each side of the link allocates one symbol and

inflection at a time from its speaker-side unidirectional link: these will serve as the

target for pairing. This target is used in a “call and response” pattern: the device

sends a message containing just that symbol/inflection pair, and waits for a response

from its partner.

Upon receiving a message, the partner tries to translate the symbol and inflection

to its speaker-side link. If an element is not already in its translation map, then it

113

?

Speaker

Listener
? ?

Figure 7-14: A bidirectional link translates between speaker and listener elements
using a distributed map (right-hand bundle of connections). The map self-organizes
by targeting one speaker element at a time (red square). The current target is sent to
the partner, which allocates a new element to pair with it and sends the new element
back on the other link. Tracking responses (left-hand bundle of connections) reveals
the partner’s choice quickly, and the appropriate translation can be added to the
distributed map.

adds it, linking it to a newly allocated element from the speaker-side link. Finally, it

sends the translated symbol/inflection pair back to the originator.

The originating side tracks the responses it gets, using a link that connects every

speaker and listener element to a single rendezvous point. Each element that appears

in a response is a proposed match, and the proposal is decided upon using the code-

tector from Chapter 5: responses containing the element are positive examples and

responses that do not contain it are negative examples.

When one element’s proposal is accepted and all others are rejected, the pair

is added to the translation map and a new element is allocated to be the target

for pairing. If something goes wrong and all proposals are rejected, the element is

deallocated and a new element is allocated to be the target.

Rather than assign fixed roles, I allow both sides of the link to initiate and to

respond. If each element tracks whether its pairing was initiated locally or in response

to a signal from the partner, then we can ensure that the two sides (almost) never

114

0.0

0.2

0.4

0.6

0.8

1.0

ge
n

p

miss
0 −1 −2 −3 −4 −5

Figure 7-15: Simulation of a bidirectional link with idealized unidirectional links
shows that a low pgen leads to successful self-organization, and that the miss penalty
is largely irrelevant. Red indicates significant transmission errors, green indicates fast
acquisition of vocabulary, yellow indicates fast acquisition of faulty vocabulary, and
black indicates failure to communicate.

allocate the same element for different purposes by having them only allocate elements

whose pairing was initiated locally.9

Having both sides play both roles complicates things, because each side needs to

distinguish between a response to its own message and a new message. My solution

is to have each side only play the role of initiator while it waits for a response for

the time of one round trip maxrtt; the rest of the time, it plays the role of responder.

If each side generates new messages with only a low probability pgen in each unit of

time when not waiting for a response, then most of the time precisely one side will

be acting as the initiator, and repeated collisions leading to confusion are unlikely.

Behavior of Bidirectional Link I use experiments in simulation to determine

reasonable values for the the generation probability pgen and the miss penalty for

negative evidence, and the distribution of self-organization time between the unidi-

rectional links and the symbol pairing process for the bidirectional link. The mecha-

nism is not highly sensitive to parameter values and there is a broad range in which

9The exception is a rare double coincidence: if both simultaneously choose a pairing that was
created when the two sides initiated a new pairing simultaneously.

115

0 1 2 3 4 5
0

10

20

30

40

50

60

70

Unidirectional/Bidirectional Self−Organization Time

Si
ze

 o
f V

oc
ab

ul
ar

y

0 1 2 3 4 5
0.7

0.75

0.8

0.85

0.9

0.95

1

Fr
ac

tio
n

of
 E

rro
r−

Fr
ee

 T
ra

ns
m

is
si

on
s

Growth/Error Tradeoff vs. Self−Organization Ratio

Figure 7-16: More self-organization time needs to be devoted to the unidirectional
links than to the bidirectional link: the lower the ratio, the faster the bidirectional
link vocabulary grows, but below around 2:1 unidirectional to bidirectional ratio, the
error begins to increase.

self-organization quickly produces a pool of reliable symbols and inflections.

Figure 7-15 shows the effect of pgen and miss penalty on a bidirectional link using

idealized unidirectional links that contain an unlimited number of elements organized

in advance, using the parameters maxrtt = 3, accept = 5, and reject = −5 and

ranging pgen from 0.01 to 0.99 in steps of 0.02 and miss from -5 to -1/5 in steps of

1/5. Red indicates significant transmission errors, green indicates fast acquisition of

vocabulary, yellow indicates fast acquisition of faulty vocabulary, and black indicates

failure to communicate. As can be seen, a pgen of approximately 0.2 or lower leads to

successful self-organization and miss is largely irrelevant.

To see how the distribution of self-organization time affects the behavior of the

system, I interleave chunks of unidirectional self-organization with chunks of bidirec-

tional self-organization, setting the minimum chunk size to 100 time units and letting

the ratio of unidirectional to bidirectional rub range from 0.1 to 5.0. Thus, for exam-

ple, a ratio of rub = 2.0 means the system trains unidirectional for 200 time units,

then bidirectional for 100, and then goes back to unidirectional.

Figure 7-16 shows the rate and quality of self-organization for various distributions

116

of training time running for a total of 5000 time units. The unidirectional links use

the same parameters as in their characterization above, while the bidirectional link

uses miss = −2, maxrtt = 3 and pgen = 0.1. We see that the lower the ratio, the

faster the bidirectional link vocabulary grows, but below around 2:1 unidirectional to

bidirectional ratio, the error begins to increase.

7.1.4 Do Brains Separate Form and Meaning?

Interestingly, connections between regions of the brain have a similar bidirectional

structure: there is plentiful neural fiber running in both directions even where one

might expect information to flow mostly in one direction[39]. It is not unreasonable

to think that the connections within a brain might use a similar self-organization

process.

This is not at all necessary to my communication bootstrapping hypothesis. My

need to separate form and meaning may simply be due to the limitations of my engi-

neering ability, rather than anything inherent about communication bootstrapping. If

connections between regions of a brain do self-organize abstract signals for communi-

cation, however, that surprising congruence would be at least circumstantial evidence

in favor of my hypothesis.

What evidence could there be as to whether a self-organization process of this

sort is taking place in the brain? Although most of the details might vary widely,

the two types of self-organization signals must always be separated both from one

another and from normal use of the signals, because they are not compatible with

one another or with normal communication.

Thus, if self-organization of this sort is taking place on a bidirectional connection

between two regions of brain, we would expect to see three distinct modes of behavior:

• High activity, mix of repetitive and fast-changing patterns, moderate

correlations between flow directions: this behavior would indicate normal

use, where the signals are conveying real information. The speed at which

patterns change should thus be correlated with sensory input and perhaps also

introspection.

• Low activity, fast changing and apparently random patterns, no cor-

relation between flow directions: this behavior would indicate independent

self-organization of the two unidirectional links.

• Very low activity, fast changing and apparently random patterns,

strong correlations between flow directions: this behavior would indicate

117

pairing of unidirectional elements into bidirectional elements.

The latter two modes might be hard to detect and distinguish, since there would be

so little activity.

The pool of signals and inflections needs to be constantly replenished, particularly

if deallocated symbols are discarded. As a result, one would expect to see all three

modes appear at least once every few days. One prime candidate for when self-

organization would run is, of course, during sleep. The brain-wide selection of various

modes of sleep could separate the three modes safely. If the training bursts are brief,

however, they might take place scattered throughout the day.

Even if these predictions are all borne out experimentally, it does not mean that

the brain is self-organizing connections between regions. It would, however, be a

surprising similarity worth more investigation.

7.2 Learning From Message Sequences

Sending messages back and forth between specialists is not enough: once a message

arrives, a specialist needs to be able to relate its partner’s message to its own model.

In this section, we will discuss how a specialist can discover relations between its

model (proxied by its use of symbols and inflections) and its partner’s use of symbols

and inflections.

This is an unsupervised learning problem: there no trustworthy teacher labelling

the data with categories or providing feedback on whether the relations a specialist

discovers are correct or even sane. All that is available are two sequences of messages,

one being sent, the other received.

What sort of relations should we look for between these two sequences of messages?

I will choose to look for relations that allow the contents of one sequence to predict

the future contents of the other.10 As always, there may be other relations between

sequences that would be interesting to learn, but prediction has been a good place to

start and is directly related to the goal of predicting observations.

Since the number of possible relations to consider goes up nearly exponentially

with the number of elements in a relation, I will consider only relations between

pairs of like elements: one incoming symbol to one outgoing symbol or one incoming

10It may seem odd that I am only looking for relationships between sequences, rather than looking
for ways that a sequence can predict its own future behavior. The reason is that the messages are
an expression of a model’s working set, and that I am leaving the discovery of relations within a
model to the specialized reasoning hardware associated with each specialist. There is, however, no
reason we cannot apply the mechanisms we create here to such internal learning, if they turn out to
be suitable to the task.

118

−1

(Starts A B)

(Meets A B)

(Before A B)

(During A B)

(Equal A B)

(Finishes A B)

(Before B A)

(Meets B A)

(Overlaps B A)

(Starts B A)

(During B A)

(Finishes B A)

Time
A

B
A

A

A

A

A

A

B

B

B

B

B

B

−1

−1

−1

−1

−1

(Overlaps A B)

Figure 7-17: Allen’s 13 time relations[1] compare intervals by comparing their start
and end times.

inflection to one outgoing inflection. For example, the vision specialist should learn

that when its partner uses the symbol for “engine noise,” it will soon use the symbol

for “car.” In order to learn a relation between several elements, a specialist must

create symbols that name groups of elements, reducing it down to a relation between

two abstract elements. For example, the vision specialist can learn that the symbol

for the “cuckoo” audible walk signal happens after a pedestrian contacts a pole if it

invents and uses a symbol for the situation “pedestrian contacts a pole.”

I will build up a mechanism for identifying predictive relations between pairs in

three stages. First, we will see how Allen’s time interval relations[1] can be used to

combine sequences of messages into examples that connect together events separated

in time. Second, we will see how these examples can be interpreted as evidence for

or against various predictive relations. Finally, we compile this into an incremental

example detector that learns relations aggressively.

7.2.1 Time Interval Relations

We can turn a sequence of messages into a collection of intervals by tracking when

each element of interest is present in a message. An interval starts when an element

appears, continues as long as it is present, and ends when it vanishes. We can then

compare intervals by comparing the times at which they start and end, using the 13

time relations identified by Allen[1] and shown in Figure 7-17.

Allen’s time relations presume continuous time values, while our sequences of

messages are discrete. We can handle this discrepancy by interpreting the messages

as samples of the specialist’s working set. This means that we do not know precisely

119

hearing msg.

RED
DONTWALK

GREEN

LIGHT
RED

DONTWALK
YELLOW

LIGHT
RED

DONTWALK
YELLOW

LIGHT
RED

WALK

LIGHT
RED

WALK

IDLE
ENGINE
DRIVE

IDLE
ENGINE
DRIVE

IDLE
ENGINE

IDLE
ENGINE

IDLE
ENGINE

CUCKOO

IDLE
ENGINE

CUCKOO

absent
present

CUCKOO

fragment

fragment

absent
present

YELLOW

vision msg. LIGHT

Figure 7-18: Messages are samples of a specialist’s working set, so intervals start and
end at an unknown point between messages. When the ranges of two end-points
overlap, they are considered to happen at the same time. Thus, the sequence shown
above has the time relation (MEETS YELLOW CUCKOO).

when an interval starts or ends, only that it happens between two samples. When

comparing intervals, then, we will consider two times to be equal if their ranges

overlap at all. This also allows us to use specialists whose execution is not tightly

synchronized.

Figure 7-18 shows an example comparison of two intervals, one for the YEL-

LOW symbol being sent from vision, and one for the CUCKOO symbol being sent

from hearing. The YELLOW interval starts before CUCKOO, but ends when

CUCKOO starts, so the two intervals have the time relation (MEETS YELLOW

CUCKOO).

Using this interval representation allows us to avoid scaling problems, and to bring

events together in time: it does not matter how many messages say CUCKOO and

how many say YELLOW, only their relative order.

The interval representation also suggests a scale-invariant means of segmenting

the sequences into examples: each BEFORE relation (in either direction) marks

the start of a new example. The reason to choose the BEFORE relations for this

purpose is that these are the only time interval relations where there is a gap where

neither feature is present, and that the BEFORE relations thus offer the greatest

chance that two subsequent examples will be independent of one another. Finally,

when there is more than one time relation in an example, we need to reduce the set

down to a single representative time relation. I will do this by choosing the first time

relation, which will mean that learning can take place as soon as any piece of evidence

is available.

120

7.2.2 Predictive Relations

Allen’s time interval relations are not quite what we need in order to make predictions.

Instead, I will hypothesize explicitly predictive relations, and categorize time relations

into evidence for, against, or ambiguous regarding each predictive relation.

Take the example from the beginning of the chapter, “seeing a yellow light is fol-

lowed by hearing a cuckoo.” I capture this with a SEQUENCE relation, which says

that YELLOW predicts CUCKOO will appear, and CUCKOO predicts YEL-

LOW will disappear.

Since we need to assume that most elements are not in the working set most of the

time (else our messages would be too large), it is only reasonable to make predictions

based on the presence of an element. Absence of an element is simply too weak a

signal for general use (the absence of elephants should not affect ordinary thinking).

Thus, for a relationship between elements A and B, the presence of A has five possible

predictive relationships to B:

• A predicts B will appear.

• A predicts B may appear.

• A does not anything about predict B.

• A predicts B may disappear.

• A predicts B will disappear.

The distinction between “will” and “may” statements traces back to the definition

of good agreement in Section 6.3. A “will” relation promises both to help predict

changes and that its predictions will be satisfied, while the weaker “may” relation

promises only that it will help predict changes.

With two elements, there are 25 possible combinations. Of these, I will look for

eleven: the six shown in Figure 7-19 and the inverses of all except EQUAL, which

is symmetric. For any pair of elements, I will search for all eleven relations indepen-

dently, and may find that several hold simultaneously. For example, SEQUENCE

will usually be accompanied by CAUSE, ENABLE, and DISABLE−1.

Why not search for all twenty-five? First off, I will want clear evidence for or

against any relation, and the sparseness assumption (most elements are not in the

working set) means that it is not possible to gather clear evidence for “may disappear.”

A “may disappear” relationship is like elephant repellent: you know it is working

because there are no elephants nearby. Eliminating “may disappear” eliminates nine

of the fourteen remaining possible relationships.

121

Name Predictions Time Relations
BMOSDFEfdsomb

EQUAL A,A 0-111111111-0

SUBCLASS A,a ----111--1--0

SEQUENCE A,D 011-------000

CAUSE A,- 011--1-0--00-

ENABLE a,- -11111100100-

DISABLE -,D -11-0----000-

Figure 7-19: I will search for eleven predictive relations between two elements: the six
shown above and the inverses of all but EQUAL, which is symmetric. Predictions
are shown as A predicts B,B predicts A, with A=“will appear”, a=“may appear”,
D=“will disappear”, -=“no prediction”. Time relation evidence is shown in 13 slots,
one for each relation, identified by its first letter with inverses in lower case. The
evidence for relations is shown as 1=positive evidence, 0=negative evidence, - is
ambiguous evidence.

Of the remaining five, one is the symmetric “no prediction” relationship, which

is the same as no relationship, and therefore can be discarded. The others are the

four combinations of “may appear” and “will disappear.” These can be learned as

pairings of ENABLE and DISABLE, and I did not see a way in which learning the

combinations would be different than learning both individual relations, unlike the

case for SEQUENCE, SUBCLASS, and EQUAL.

Finally, we need to determine, for each of the predictive relations, which time

relations are clear evidence for or against and which are ambiguous. I will add one

further constraint: since the likelihood of two interval end-points being equal de-

pends on sampling rate, and since I want relation detection to be scale-independent,

it is important that no predictive relation depend critically on a time relation that

contains an equality, such as MEETS or FINISHES. As such, I will require that

each equality-containing time relation provide the same type of evidence as one of

the time relations it can become when the timing of the interval end-points is per-

turbed slightly. Thus, for example, FINISHES must give the same evidence as either

DURING or OVERLAPS.

Figure 7-19 shows how I have chosen to interpret time relations as evidence for

each predictive relation. There may be other reasonable ways of interpreting the time

relations as evidence, but the ones shown here have served me well so far.

122

S

0

5

6

1 3

2 4

AB −

−

−

−

−

−

BAB ABA

AB

A B

AB

BMOSDFEfdsomb

fdombBMODF
A B

B

MODF

D

F

SEs

oO

d

f

fdo
m

b

e

s

Figure 7-20: Incremental Interval-based Example Segmentation (IIES) uses a finite
state machine for incremental detection of a time relation example between element
A and element B. Bold text on edges show the combination of currently present
elements that triggers a transition; italic text shows which time relations might hold
following that transition.

7.2.3 Incremental Interval-Based Example Segmentation

Our last step is to take these lists of positive and negative evidence and transform

them into a finite state machine for incrementally detecting positive and negative ex-

amples of each type of predictive relation. I call this mechanism Incremental Interval-

based Example Segmentation or IIES.

Here, we will be aggressive in detecting examples. Rather than waiting for a

relation to resolve completely, we will produce an example as soon as it is clear what

the example will be. For example, a positive example for an EQUAL relation can be

detected as soon as both elements appear at the same time. This means that we do

not need to wait for an element to go away in order to learn about its relations, which

will be important for learning about long-lived phenomena when a shifting focus of

attention is introduced in the next chapter.

Figure 7-20 shows a finite state machine for incremental extraction of examples

from time relations (omitting self-transitions). State zero is the beginning of an

example, which might start with any of the 13 time relations. As the two elements

appear and disappear, the range of possible relations narrows, until only one remains

and the system ends up either in state zero (waiting for a new example) or in state six

(ignoring further interval relations while waiting for a moment when both elements

are absent).

123

For each predictive relation, we compile this general state machine into a relation-

specific incremental example detector that reports an example on the first unam-

biguous transition away from state zero. For each pair of elements, we run all eleven

machines in parallel, each feeding its output into a codetector (Chapter 5) that decides

whether the relation holds. We now have a device, IIES, that turns two sequences of

messages into predictive relations between a pair of message elements.

7.2.4 Experimental Verification

I have used input from the four-way intersection scenario to verify that this mechanism

behaves as expected. For this test, I take each set of sensory input, and flatten it into

a list of whether each feature or relation is present anywhere in the input. Thus, for

example, there is a slot for the CAR feature that holds TRUE if there is at least

one car visible and FALSE if there are no cars visible. I then search for relations

between all pairs of inputs, using codetector parameters miss = −2, accept = 10,

reject = −10, rail+ = 50, and rail− = −50.

To test this system, I recorded four flat-sense movies from the simulator, sam-

pling once every 0.5 simulated seconds for 5000 seconds (approximately 80 simulated

minutes). The four movies are:

1. Starting at noon (moderate traffic)

2. Starting at midnight (low traffic)

3. Starting at 8am (morning car rush hour)

4. Starting at 3pm (afternoon school rush hour)

If IIES is working correctly, we should expect to see the following:

• A small number of relations like (EQUAL CUCKOO WALKLITE) that

capture true relationships between the senses.

• Many relations due to the coincidences of the senses observing for a long time

from a fixed position and orientation.

• Spurious EQUAL, ENABLE and SUBCLASS relations between things like

pedestrians and cars that are usually present at least somewhere in the scene.

• No relations involving features that are never absent from the scene, like the

visual feature OFFICE and relation ABOVE.

124

• No relations involving features that only appear a few times, like the CRASH

sound.

• No nonsensical relations like (CAUSE IDLE YELLOWLIGHT).

Note that in this impoverished representation, much of the interesting behavior in

the scenario is simply not possible to learn. For example, the light cycle cannot even

be observed because there is no way to tell which light object the always-present

BRIGHT feature is associated with (the representation will be enriched in the next

chapter).

Are Reasonable Relations Learned? First, let us look at what relations are

learned from the noon movie. The full summary of the movie and the relations

learned from it (as well as the ones for other six that will be discussed) is listed in

Appendix B.1.

Not all features appear: 59 of 64 vision features and 24 of 28 hearing features

are present, meaning there are 1416 possible pairs and 15576 possible relations. All

told, a total of 156 relations are actually learned between 91 pairs of features. A full

34 of the visual features are continually present (e.g. SIDEWALK, ABOVE, and

GREEN) and 7 others appear less than ten times (e.g. AMBULANCE): none

of these should appear in relations, and none of them do. Likewise, the 8 hearing

features with less than ten intervals (rare ones like YELL and too-common ones like

STEPS) do not appear in relations.

Now let us look at the 156 relations that are learned. There are 78 ENABLE

relations, 47 SUBCLASS relations, 18 EQUAL relations, 9 DISABLE relations,

2 CAUSE and 2 SEQUENCE relations. These relations capture many interesting

properties of the scenario, including:

• CUCKOO and WALKLITE are the same thing.

• DONTWALK sometimes leads to CUCKOO, then disappears.

• A moderately loud sound (around 70 decibels) is always followed by the ap-

pearance of a CAR, then disappears. It is sometimes followed by the CAR

subclasses TRUCK, VAN, or SUV, or by backwards motion (B) as nearby

cars cross the intersection.

• A CAR is always moderately loud (70 decibels).

• The WALKLITE and upward motion (U, from pedestrian crossing) only hap-

pen when engines IDLE, which in turn happens only when there is a CAR.

125

• Seeing a CAR of any sort (e.g. SEDAN, TRUCK) or motion across the

intersection (L, R, F, B) happens only when engines DRIVE.

• Sounds directly in front come from a CAR of any sort (e.g. SEDAN, VAN)

or the WALKLITE.

There are only six apparently strange relations learned: (DISABLE IDLE L),

(EQUAL FR CAR), (SEQUENCE FR CAR), (CAUSE FR CAR), (DIS-

ABLE CAR FR), and (DISABLE IDLE BLUE). Each one, however, has a

likely situation-dependent explanation. Strongly leftward motion (L) appears to come

mainly from cars, so when a car’s engine is IDLE waiting for the light, the cars that

come up behind it stop their leftward motion. Forward-right sound FR comes mainly

from cars waiting at the light, so when it is heard, after the light changes the cars

will go through, appearing to vision and moving their sound to a different octant.

The last appears to be a pure fluke of the scenario: the BLUE feature often comes

from pedestrian pants, so when cars are waiting IDLE for a red light, pedestrians

can cross and take their blue pants away. None of these explanations are certain, but

they are consistent with detailed inspection of short segments of input.

We can thus see that the relations learned from the noon movie are in line with

our predictions. The relations learned involve many time spans, some short like cars

stopping for a light, some moderate like walk lights, and some fairly long like all

the times when some car is driving nearby. The relations also involve both common

features like hearing a car idle, which happens in 72.5% of the samples, and rare ones

like hearing the cuckoo sound, which happens in only 5.5% of the samples.

What Happens When There is More or Less Activity? To confirm that IIES

is not sensitive to the distribution of sensory events, I compare results of learning from

all four movies, where the relative activity spans a large range: the arrival rate of

cars and pedestrians during their respective rush hours is 20 times higher than in the

middle of the night.

My prediction was that the midnight movie might break up some of the too-

common features so that we could learn about things like the sound of engines, while

the rush-hour movies might make rare events more common and allow us to learn

about children and emergency vehicles. By and large, however, I expected the rela-

tions learned to be approximately the same. Let us see how these predictions were

borne out.

For the midnight movie, only 97 relations were learned between 55 pairs of features.

Many of the significant relations learned were also learned in the noon scenario, with

126

several notable exceptions. First, with such sparse activity in the intersection, not

one pedestrian actually used the walk light, so all 13 relations involving CUCKOO

or WALKLITE were missing. Less activity also meant that more features appeared

too rarely for relations to be learned, including ADULT and SUV.

As predicted, however, the sparseness of activity meant that previously intermin-

gled features could be separated enough to learn from. Among the interesting new

relations that were learned:

• A CAR never appears unless a moderate sound (60 decibels) or DRIVE is

heard. These sounds often vanish after the car appears.

• A CAR and ENGINE sound always go together, and the sound comes first.

Sometimes ENGINE leads to a SEDAN or VAN.

• Moderately quiet sounds (50 decibels) transition to forward motion (F), which

in turn transitions to moderately loud sounds (70 decibels). Backward motion

(B) transitions to moderately quiet sounds (50 decibels).

• Forward motion (F) leads to sounds in front (F) and right (R), leftward motion

(L) leads to front-left sounds (FL), and rightward motion (R) leads to sounds

in the front-right (FR) and right (R).

All of the behaviors leading to these observations were in the noon movie, but with

superimposed events confused by the flat representation.

Besides these, a number of the likely spurious or situation-dependent EQUAL,

ENABLE, and SUBCLASS relations are different, likely simply due to the de-

creased number of examples and to the different random events in the two movies.

For the rush-hour movies, the 8am rush-hour movie learns 118 relations on 74

pairs, while the 3pm movie learns 129 relations on 83 pairs. Again, most of the

substantive relations learned were also learned in the noon movie. Here, however, the

confusion induced by the flat representation starts to obliterate relations that were

easily learned before, even as previously rare events are brought up to learnability.

For example, much less is learned about CAR in the 8am movie than in the noon

movie, but many of the noon movie relations are learned for particular types of car

like SUV or VAN. In the 3pm movie, the increased density of people leads to the

discovery that hearing TALK or VOICE sometimes leads to a WALKLITE, as well

as a number of other less interesting associations of visual features with conversations.

Again, the distribution of apparently low-content EQUAL, ENABLE, and SUB-

CLASS is different both between each rush hour movie and noon and between the

two rush hour movies.

127

Finally, a few strange DISAPPEAR relations appear in each rush-hour movie—

two in the 8am movie and three in the 3pm movie. The three in the afternoon movie

were situational ENABLE relations in the other movies, and the change to DIS-

ABLE relations appears to be a result of the change in car versus pedestrian ratios.

The two in the morning movie, claiming that TRUCK makes both TALK and

VOICE disappear, appears to be a situational relation resulting from a coincidence

in the distribution of trucks and the stuttering nature of conversations.

As can be seen, the relation learning adjusts as predicted, showing that although

IIES is affected by the distribution of external events, the effect is as predicted and

not strong.

Does Sampling Matter? To confirm that IIES does not depend strongly on sam-

pling rate, I compare the results of learning from every frame of the noon movie to

the results of learning from every second, third, or fourth sample.

As the resolution decreases, two things happen to the data. First, extremely brief

events may disappear entirely. Since most events in the scenario take several seconds

to complete, the difference between sampling every 0.5 seconds and every 2.0 seconds

should not have a large effect here. Second, events that were previously separated

are brought together. This can create new relations, connecting two related features

that were previously separated by a short gap, or it can blur experiences, connecting

previously separated intervals of a common feature.

Considering both these effects, I predict that there will be little change in sub-

stantive relations, but that the “coincidental” relations will be much affected. Let us

see how these predictions are borne out.

To begin with, the three under-sampled movies produce approximately the same

number of relations as the original: 164 relations on 93 pairs for every second sample,

162 relations on 90 pairs for every third sample, and 176 relations on 94 pairs for

every fourth sample.

Nearly all of the relations in the original movie are learned in each of the other

three under-sampled movies. Approximately 10% of the low-content EQUAL, SUB-

CLASS, and ENABLE relations differ. Regarding substantive relations:

• All of the under-sampled movies lost the stronger CAUSE and SEQUENCE

relations between moderately loud sounds (70) and CAR. The slowest movie

also lost two other relations with 70. These differences are likely due to the

brevity of the loud sounds as the cars transit the intersection.

• All of the under-sampled movies lost most or all of the six odd situation-

dependent relations, (DISABLE IDLE L), (EQUAL FR CAR), (SE-

128

QUENCE FR CAR), (CAUSE FR CAR), (DISABLE CAR FR), and

(DISABLE IDLE BLUE).

• The slowest movie added CAUSE and SEQUENCE to the relations between

DONTWALK and CUCKOO, likely because the sampling could often en-

tirely skip the first blink of the DONTWALK light.

• The two slower movies added a DISABLE relation from IDLE to forward

motion (F). I suspect this has a similar origin to the odd (DISABLE IDLE

L), which disappeared.

The results of learning from all four movies are quite similar, in accordance with

our predictions, showing that although IIES is affected by the sampling rate, the

effect is as predicted and not strong.

Summary We have seen that the IIES mechanism can find interesting predictive

relations between pairs of features generated by our scenario. We will hold off on

an examination of learning speed and predictive quality until the next section, when

we place IIES in the context where it will actually be used, learning from messages

between specialists.

7.3 Signal Map

We now have all the parts we need to construct a signal map following the design

shown at the beginning of the chapter in Figure 7-1.

Recall that the purpose of the signal map is to translate between signals and

model elements. The bidirectional map we developed in Section 7.1 translates between

signals and symbolic messages. That will be all the signal map needs for outgoing

messages, since I made the assumption in Section 6.4.1 that the model is a semantic

network and messages express the working set. For incoming messages, however,

there must be a means of relating the elements of a partner’s message to a specialist’s

own model. This is as far as the signal map will go: deciding how to incorporate

messages into the model is beyond the scope of this investigation.

Conceptually, the design is simple. The user sends and receives messages through

the bidirectional link. As they flow between the user and the link, incoming and

outgoing messages also flow to relation maps, which compare the two streams to find

relations between pairs of symbols or pairs of inflections. Once the relation maps

begin finding relations, they begin producing predictions for each message, incoming

or outgoing, of how the complementary sequence of messages will change in the future.

129

pr
ed

ic
tio

ns

outgoing symbols

in
co

m
in

g
sy

m
bo

ls

...

...

...

...

............

...
to inflection IIES maps

...

...
...

(a) Symbol Relation & IIES Map

U
u

S
d
D
e
E

s
C
c
Q

incoming symbols

outgoing symbols

to inflection IIES maps

predictions

(b) Junction Detail

Figure 7-21: The symbol relation map (a) compares symbols in incoming (red) and
outgoing messages (purple). At each junction of the crossbar (b) these are fed to
a paired IIES device and codetector for each of the 11 predictive relations. When
a relation is accepted, it outputs predictions (green). The EQUAL relation, when
accepted, connects to the inflection relation map and relays signals flowing from either
incoming or outgoing symbols (blue).

7.3.1 Relation Maps

The implementation is somewhat more more complicated due to the difficulty of

learning useful relations about inflections. The problem is that there are many fewer

inflections than relations and that we may expect the average inflection to be used

much more frequently than the average symbol. Thus, a specialist cannot learn useful

relations between inflections merely by looking at what inflections are present in a

message. We must consider inflections in the context of the symbols to which they

are attached.

Fortunately, I intend to learn a simpler set of relations for inflections than for

symbols. I am using inflections to encode the relations between model elements, and

in the systems I build, these will generally be equivalent or untranslatable.

What this means is that I am most interested in quickly identifying a set of equal-

ity relationships between inflections, so that the universal relations can be translated

from specialist to specialist. This can be done conservatively by comparing only in-

flections on symbols that already have an EQUAL relation between them. Arranging

hardware to do this quickly is the main source of complexity in the design of the signal

130

...

...

translations

...

incoming inflections

...

from symbol map outgoing inflections

accept?
codetector

Q

Q

Q

Q

Figure 7-22: Each junction in the inflection relation map has several IIES devices
that detect EQUAL relations and feed the same codetector.

map.

Figure 7-21 shows the map used for finding relations between symbols. The map is

built around a crossbar connecting every incoming symbol to every outgoing symbol

(the inputs to the map are connected to the set of coders by distributed maps serving

as busses). Every symbol appears on both sides of the map, because a specialist may

come to use a symbol differently than its partner does.

At each junction of the crossbar (Figure 7-21(b)), the incoming and outgoing

signals are fed to a paired IIES device and codetector for each of the eleven predictive

relations. If the relation is accepted by the codetector, then this device also outputs

the appropriate prediction for each stimulus it receives.

When a junction’s EQUAL relation is accepted, it also participates in inflection

learning. The inflection relation map has not one, but many layers of IIES devices

(all of them looking only for EQUAL relations): one layer serves one pair of matched

symbols, so if there are k layers, then inflections may be learned on up to k pairs of

EQUAL symbols at a time.

During any interval where the junction’s symbols are appearing on both incoming

and outgoing messages, the EQUAL relation connects with an IIES layer in the

inflection relation map by means of a distributed map. When too many try to connect,

using a distributed map for the connection results in the excess being persistently

dropped. Upon connection, all of the IIES devices in the layer are reset to state

zero, avoiding spurious example detection. When one of the symbols disappears,

it disconnects after the IIES later makes one transition with no inflections on the

131

vanished symbol.11

Pulses arriving at the junction are then routed onward to the inflection map,

where they are intersected with the inflection pulses such that the IIES devices in

each layer only receive pulses representing the inflection being carried on the pair of

symbols connected to that layer (Figure 7-22). All of the layers at a junction feed

the same codetector, and when that codetector accepts, incoming inflection pulses

from the partner are translated to the specialist’s own equivalents. Since the multiple

layers means there are likely to be more example than for symbols, the codetectors’

thresholds and rails are set to larger magnitudes than those of the codetectors deciding

on symbol relations.

7.3.2 What Sorts of Signal Maps Could a Brain Afford?

If a mechanism similar to this signal map were used in the human brain, how many

signals and inflections could specialists use to communicate? A coarse analysis of this

design according to the developmental cost metric from Section 4.3 gives us a range

of possibilities.

The numbers in this section should be thought of as collection of a Fermi estimates:

they may be off by a few orders of magnitude, but will give us an idea of what the

important factors are and serve as a sanity check that the design is not immediately

implausible.

First off, notice that the parallel construction means that execution time is related

to the number of inflections but not the number of symbols. If they are encoded as

pulses, then the number of inflections depends on the ability to distinguish pulses

within a signal map. With human reaction times on the order of a tenth of a second

and neurons capable of acting on the order of a millisecond, we are looking at the

ability to send messages containing somewhere between 101 and 103 inflections.

The time taken to self-organize is not a strong constraint because it is linear in the

number of symbols or inflections. Figure 7-16 shows that symbols can safely mature

at approximately 1 for every 200 time units—let us round it to 1/360. If the time unit

is somewhere between a tenth of a second and a millisecond, then somewhere between

102 and 104 symbols and inflections can mature in each hour of self-organization. If

one hour of an average night’s sleep is used for self-organization, then this is the

number of new elements that can be investigated in an average day.

Developmental cost and hardware cost are constrained primarily by the distributed

maps and the symbol relation map. Although I have not verified that this is the case,

11We will discuss aborting IIES more thoroughly in the next chapter; the EQUAL relation
between inflections happens to be a simple case.

132

I suspect that the symbol relation map can be created using two variant distributed

maps, connecting s symbols using O(s2) hardware, O(s) development time, and O(1)

encoding cost.

Our set-based construction methods mean that the entire signal map has a con-

stant encoding cost: it does not depend on the number of symbols or inflections. I

do not know enough about the constants to make an order of magnitude estimate on

development time, but am not overly concerned because it is likely to be only linear

in the number of symbols.

Finally, let us make order of magnitude estimates for the hardware. The dis-

tributed maps cost O(s3/2), so if we assume each link is a single synapse we have

an upper limit of 100 million symbols (0.5% of cortex dedicated to each map = 108

neurons, 104 graph links per neuron, (108)3/2 = 1012). If we assume each link requires

1000 neurons, then we have a lower limit of 2000 symbols (20003/2 is about 90,000.

105 times 1000 neurons = 108 neurons).

The symbol relation map requires O(s2) junctions, but there is only one per signal

map. If we assume that 5% of the cortex is dedicated to each signal map and that

each junction is implemented using between 1 and 1000 neurons, then the number of

symbols might range between 30,000 (square root of 109) and 1,000 (square root of

106).

Intriguingly, both of these sets of numbers are not dissimilar to the number of

words in a human vocabulary, though this is likely to be a mere coincidence.

7.3.3 Experimental Verification

I have used input from the four-way intersection scenario to verify that the signal

map behaves as expected. For this test, I abstract the bidirectional link as a reliable

message passing device and unique signal creator whose misbehavior is modelled with

four parameters.

• Each time a signal is created, there is a chance pkill = 10−5 that another signal

will be destroyed, and a chance pdup = 10−6 that the new signal will be a

duplicate of an existing signal.

• Each time a message is sent, there is a chance pvanish = 10−6 that each element

of the message will have vanished from one specialist’s table, and a chance

pgc = 10−3 that the other specialist will garbage collect a message element

unmatched by its partner.

I then set up a system of two specialists, one for hearing, one for vision. Each spe-

cialist’s sensory input is flattened, as for the IIES test in Section 7.2.4, and a message

133

sent for each sample. The message contains all the features present, each two inflec-

tion, one marking it PRESENT and another marking its type (the vision specialist

has TYPE, COLOR, SIZE, MOTION, and RELATION; the hearing specialist

has TYPE, DIRECTION, and LOUDNESS). Thus, a visual observation contain-

ing a red car would result in a message containing CAR=TYPE,PRESENT and

RED=COLOR,PRESENT.

To test the system, I train it on each of the movies used for the IIES test. Since

it will turn out that only the midnight movie appears to converge to a stable set of

relations during the 5,000 second time period of the original movies, I also recorded

a 20,000 second movie (about 5.5 hours) starting at noon and sampling every 0.5

seconds and trained on that movie as well. The output of these tests is listed in

Appendix B.2.

If the signal map is working correctly, then each symbol relation map should con-

tain a set of relations equivalent to those learned in the IIES test. The inflection rela-

tion maps, on the other hand, should detect that the two inflections for PRESENT

are the same, but should not find any other equivalencies (though the impoverishment

of the flat sense representation may trick it into finding a small number).

We will also look at the predictive quality and convergence of the set of relations

that are learned. We should expect to see predictive quality improve over time, though

precision of predictions is likely to be quite low and the measure may be entangled

with variation in activity during the course of the simulation (e.g. the simulation

produces different sensory experiences in the immediate aftermath of an accident).

Remember, as noted in Section 6.3, prediction quality will serve as rough sanity check

rather than a benchmark of performance.

The number of relations learned should rise quickly after a brief pause while

examples begin to accumulate; over time, the rate of new relation learning should

slow as learning shifts from strong relations with frequent examples to ones that are

weaker or appear more rarely, with the number jittering up and down as evidence

moves weak relations back and forth across the boundary of acceptance. Eventually,

however, the number of relations should stabilize at an approximate ceiling.

Are the Same Relations Learned? In the case of symbols, six of the seven

movies result in precisely the same set of relations being learned as in our test of

IIES. The seventh, the 3pm movie, apparently has a problem with the symbol VAN

close to the end of the sequence and the hearing specialist loses three relations from

its symbol relation map.

In the long movie, the hearing specialist learns 330 relations and the vision special-

134

ist learns 338 relations (compare with 156 learned by each in the short noon movie).

The vast majority of the additional relations are SUBCLASS and ENABLE rela-

tions, as we should expect weaker relations to produce.

Of the 13 strong relations in the original noon movie, (9 DISABLE relations, 2

CAUSE and 2 SEQUENCE) 9 are missing from the hearing relations and 4 from

the vision specialist’s relations. Only two are missing from both (one being the odd

(DISABLE IDLE BLUE) relation), and five of the nine relations missing from the

hearing specialist are also missing in the other movies, so it seems likely to be due

to a peculiarity of the original noon movie. Going the other way, there are 7 hearing

specialist and 8 vision specialist DISABLE relations not in the original noon movie,

six of which are common to both.

All told, the relations learned are as expected: virtually identical for the four

movies used previously, and within the expected range of variation for the additional

long movie.

Does Prediction Quality Improve? The prediction quality measure from Sec-

tion 6.3 is extremely noisy, due to the variation in what is occurring in the simulator

at different times. Moreover, the predictions made by this simplistic mechanism are

extremely imprecise, so the size of the terms in the prediction equation,

Q(p, c) =
1

p
(

p∑
i=1

si − k1

ti
) − k2

c
(

c∑
i=1

ui)

are very different—in particular, si

ti
is generally much smaller than one. Instead

of making a fairly arbitrary judgement about the constants to use, I will just con-

sider the three components—correct predictions, incorrect predictions, unpredicted

transitions—as a separate issue.

Inspecting the correct and incorrect predictions shows them to be hopelessly noisy

due to the imprecision of predictions: the values are so small (given that dozens of

predictions are being made during each time step) that I have no confidence that we

can learn anything from them.

Unpredicted transitions, on the other hand, give us usable information despite the

high rate of simulator behavioral noise. Figure 7-23 shows the rate of unpredicted

transitions over time for each specialist and all eight movies, plotting the sampling

and activity variations together for comparison. Each data point shows the average

unpredicted transitions per second over the last 1000 samples, and a linear regression

is calculated for each movie to get a rough gauge of the general trend.

With the exception of the hearing specialist during rush-hour, every set of data

135

0 1000 2000 3000 4000 5000
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Seconds of Observation

U
np

re
di

ct
ed

 T
ra

ns
iti

on
s/

Se
co

nd

Unpredicted Hearing Transitions vs. Sample Rate

 Sample=0.5s
Sample=1.0s
Sample=1.5s
Sample=2.0s

(a) Sampling Variation (Hearing)

0 1000 2000 3000 4000 5000
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Seconds of Observation

U
np

re
di

ct
ed

 T
ra

ns
iti

on
s/

Se
co

nd

Unpredicted Vision Transitions vs. Sample Rate

 Sample=0.5s
Sample=1.0s
Sample=1.5s
Sample=2.0s

(b) Sampling Variation (Vision)

0 1000 2000 3000 4000 5000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Seconds of Observation

U
np

re
di

ct
ed

 T
ra

ns
iti

on
s/

Se
co

nd

Unpredicted Hearing vs. Activity Level

 Noon (moderate)
Midnight (low)
8am (car rush)
3pm (people rush)

(c) Activity Variation (Hearing)

0 1000 2000 3000 4000 5000
0

0.5

1

1.5

Seconds of Observation

U
np

re
di

ct
ed

 T
ra

ns
iti

on
s/

Se
co

nd

Unpredicted Vision vs. Activity Level

Noon (moderate)
Midnight (low)
8am (car rush)
3pm (people rush)

(d) Activity Variation (Vision)

0 0.5 1 1.5 2
x 104

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Seconds of Observation

U
np

re
di

ct
ed

 T
ra

ns
iti

on
s/

Se
co

nd

Unpredicted Hearing Transitions in Long Training

(e) Long Run (Hearing)

0 0.5 1 1.5 2
x 104

0

0.5

1

1.5

Seconds of Observation

U
np

re
di

ct
ed

 T
ra

ns
iti

on
s/

Se
co

nd

Unpredicted Vision Transitions in Long Training

(f) Long Run (Vision)

Figure 7-23: Prediction quality is an extremely noisy measure, but generally shows
less unpredicted transitions over time. The graphs above show the average rate of
unpredicted transitions in the set of 1000 samples preceding each point on the graph,
plus a linear regression for each data set. Neither sampling rate (a,b) nor level of
activity (c,d) appears to have a significant effect on the rate of improvement. Im-
provement continues even over a long training period (e,f), though with decreasing
effect.

136

points has a downward trend. Neither sampling rate nor level of activity appears to

have a significant effect on the rate of improvement, and improvement continues even

over a long training period, though with decreasing effect.

Finally, judging by the higher level of scatter in the data points, the predictability

of hearing observations is apparently less consistent than for vision observation, per-

haps reasonable because the moving objects in the simulator are often heard before

they are seen.

Thus, our measure of prediction quality gives at least a little bit of weak evidence

that the relations learned in the signal map are capturing the dynamics of the simula-

tor. We can expect no better of it given the indirectness of the measure and the lack

of any serious attempt to use sensory data to model the environment. This increase

in prediction quality is, in fact, due to nothing but communication bootstrapping.

How Does the Number of Relations Change Over Time? In all of the movies

yield, there is an initial pause while examples begin to accumulate, followed by a rapid

climb as the strongest relations begin to be learned. The sampling rate appears to

have no significant impact on the learning rate (Figure 7-24(a)).

The rate of activity, on the other hand, appears to have a significant impact

(Figure 7-24(b)). After 5000 seconds, the noon and rush-hour movies are all still

growing rapidly, though their rate of ascent appears to have slowed somewhat after

the initial rush. The midnight movie, on the other hand, slows its rate of learning

dramatically at around 2000 seconds, possibly due to the scarcity of training data.

On the other hand, the rush-hour movies have a slower learning rate throughout,

suggesting that there may be some intermediate rate of events that is best for learning.

The long noon movie was motivated by the fact that all four of the original movies

were still growing at 5000 seconds, to see whether the set of relations would stabilize.

Indeed, after around 14,000 seconds learning from the long noon movie appears to

have plateaued, though there is no way to tell from the graph whether another late

set of weak or rare relations might still be building toward acceptance.

It is also notable that although the number of relations eventually plateaus, the

growth of every set of relations is a jagged process marked by surges and reverses as

relations slip back and forth across the line of acceptance. There is no reason to think

that this will cease, nor should it given that fluctuations in the behavior of the world

constantly present challenges to the existing relations.

In sum, the signal map behaves as expected and each specialist learns a set of

relations between the symbols it uses and the symbols its partner uses that capture

structural information about the simulated world.

137

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

120

140

160

180

Seconds of Observation

N
um

be
r o

f R
el

at
io

ns

Learning Rate vs. Sample Rate

Sample=0.5s
Sample=1.0s
Sample=1.5s
Sample=2.0s

(a) Sampling

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

120

140

160

Seconds of Observation
N

um
be

r o
f R

el
at

io
ns

Learning Rate vs. Activity Level

Noon (moderate)
Midnight (low)
8am (car rush)
3pm (people rush)

(b) Activity

0 0.5 1 1.5 2
x 104

0

50

100

150

200

250

300

350

Seconds of Observation

Av
er

ag
e

N
um

be
r o

f R
el

at
io

ns

Example of Relation Learning Convergence

(c) Long Training

Figure 7-24: The average number of relations in the two signal maps does not grow
initially, as examples first begin to accumulate. Sampling rate does not appear to
have a significant impact on the rate of learning, as shown in (a). Activity level (b)
does appear to have an impact: higher activity yields slower learning, but in the
midnight run, where activity is sparse, the learning slows markedly after the initial
rush. Over a long period of training (c), learning slows as the frequent strong relations
are exhausted and learning shifts to weaker and rarer relations, eventually appearing
to stabilize to a consistent set of relations.

138

Chapter 8

Communicating Relations

A specialist should be able to use messages to tell its partner about the relations in its

own model. We will not yet worry about what the partner does with this information,

only that it can be sent.

Consider, for example, the stoplight hanging in the middle of our scenario’s in-

tersection. Figure 8-1 shows a close-up of the stoplight, and the relations regarding

it that are observed by the vision specialist. It ought to be possible for the vision

specialist to include these relations in its model and to inform the hearing specialist

that of the six lights, only one green light and one red light are on.

I will show how relations like these can be communicated using inflections to mark

some symbols as foci and others according to their relations to the foci. Doing so,

however, forces us to accept that each message will only contain a small fraction of a

specialist’s model.

This threatens to undermine our mechanism for communication bootstrapping,

unless the shared experiences of the specialists are reflected in their choice of foci. I

therefore provide a shared focus mechanism and show how the IIES devices from the

previous chapter can be extended to allow for changes in focus.

8.1 Encoding Relations With Inflections

The basic challenge in communicating relations is that inflections are applied to a

single symbol, but relations connect two or more objects. Some additional structure

must be imposed in order to connect together only the appropriate symbols—else we

will not be able to tell whether the BRIGHT symbol goes with the green light or

the yellow light. As always, there are many possible ways this could be done, and I

claim only that my chosen mechanism is one that works.

I handle this problem by borrowing a trick from inflected human languages and

139

(a)

CONTACT

REDLIGHT
RED 0D
BRIGHT

YELLOWLIGHT
YELLOW 0D

BELO
W

C
O

N
TA

C
T

C
O

N
TA

C
T

A
BO

V
E

BELO
W

C
O

N
TA

C
T

GREENLIGHT
GREEN 0D

YELLOWLIGHT
YELLOW 0D

REDLIGHT
RED 0D

C
O

N
TA

C
T

A
BO

V
E

GREENLIGHT
GREEN 0D

BRIGHT

(b)

Figure 8-1: The fragment of visual observation containing the six lights of the stoplight
(shown in close-up in (a)) is a network of 6 objects, 20 features, and 44 relations (b).
The relations leaving the six lights go to the sky and pole above, the black box in
which the lights are set, and the office building behind.

marking one object as the focus of the message—analogous to the subject of a sen-

tence. That object is expressed in the message by its collection of features, each

carrying a FOCUS inflection. Each of the objects it is related to is expressed in the

message as well, with their features carrying an inflection encoding their relation to

the focus.1

For example, if the focus is placed on the left-hand green light in Figure 8-1, then

the message sent by the vision specialist would contain:

GREENLIGHT=FOCUS

GREEN=FOCUS

BRIGHT=FOCUS

YELLOWLIGHT=ABOVE & CONTACT

YELLOW=ABOVE & CONTACT

0D=FOCUS & ABOVE & CONTACT

(where 0D is a feature marking a visual object as being small) plus a few more

symbols and inflections for the building and light box.

1The original work on communication bootstrapping assumed its observations would already have
this structure, neatly avoiding the issue.

140

Notice that this also means that an object need not be named with a symbol in

order to be communicated from specialist to specialist: its participation in a relation

implies its presence. Everything besides the focus, however, may be ambiguous in

its identity. The message above, for instance, does not give any information about

how many yellow lights are related to the green light: there may be one that is both

ABOVE and in CONTACT (as is actually the case), one ABOVE and a different

one in CONTACT, or even dozens of yellow lights that all have the same relation

to the green light.

Larger fragments of the model can be conveyed in a single message by increas-

ing the number of relations. One way to do this is with multi-step relations, like

ABOVE-THEN-LEFT for an object that is LEFT of a second object, which is

in turn ABOVE the focus. Another is to use multiple foci, each associated with an

identical set of inflections, so that FOCUS1 goes with ABOVE1, FOCUS2 goes

with ABOVE2, etc.

If there are r relations, then encoding s step relations for f foci requires f
∑s

i=0 ri

inflections. A specialist whose model uses a moderate two dozen relations—eleven

predictive relations and the rest peculiar to that specialist—takes 25 inflections per

focus for one step and 601 inflections per focus for two. In Section 7.3.2, we estimated

that a model of intelligence can afford a range of roughly 10 to 1000 inflections, so

going more than one step in relations is simply not likely to be worth the cost. Going

a single step, however, it is reasonable to assume that we can afford to maintain

several foci.

Increasing the number of relations in this way does, of course, increase the time

it takes for specialists to learn to interpret one another’s inflections. The number of

inflections is still much smaller than the number of symbols, however, so it should not

concern us overly much. There is, however, a new alignment problem: if each special-

ist uses several FOCUS inflections and several ABOVE relations, it is important

that they group them in the same ways: otherwise relations will end up connected to

the wrong objects!

Finally, note that this method of encoding relations into messages largely preserves

the error tolerance of symbol/inflection messages. A symbol or inflection that is lost

or misinterpreted affects only those parts of the message that it is directly involved

in. Better yet, since most objects have more than one feature, a symbol error does

not necessarily mean an error in the relation that symbol supports. The only truly

critical elements are the focus inflections, without which a message lacks context.

We now have a usable definition of the working set of a model: it is the set of

objects marked as foci, the set of relations connected to the foci, and the set of objects

141

at the other end of those relations.

8.2 Shared Focus

With this scheme for encoding relations, we are forced to admit that only a small

fraction of a scene can be communicated at any one time. The vision input from which

Figure 8-1 was excerpted, for example, contains a total of 64 objects, 242 features,

and 515 relations. Worse, current sensations are only one of the sources of model

complexity: we are also likely to want to incorporate memory, prediction, higher-

level interpretations giving a deeper understanding of the scene, etc. It is simply not

reasonable to assume that the whole model, or even a large fraction of it, can be

communicated in a single message.2

This is a threat to communication bootstrapping at its most basic level, since the

signals of specialists no longer necessarily contain shared aspects of their experiences.

If vision keeps its foci on the silent buildings and hearing keeps its foci on the sounds

of cars and pedestrians off to the side and out of sight, then the messages they send

have no shared experiences that can allow communication bootstrapping to occur.

While some relations may still be learned, we cannot expect them to capture rich or

interesting information unless the foci are placed on related objects.

Nor is this just a problem for learning: when a specialist receives a message from

its partner, we would like the message to somehow affect its model. In a large, com-

plicated model, however, the objects the message refers to are likely to be ambiguous.

For example, if hearing mentions the sounds of a car idling close by in front (e.g.

IDLE=FOCUS2, 70=FOCUS2 and F=FOCUS2), then which of the several

cars waiting for the light does it refer to? While there may or may not be any good

way of resolving such ambiguity, if a specialist matches one of its foci to the focus

in the incoming message then it can at least ensure that the ambiguity is resolved

consistently as long as neither focus moves.

It may be helpful to think of foci as the “pronouns” in a conversation between

specialists. With three foci, for example, a specialist can designate objects as “this,”

“that,” and “the other.” If we provide a way for specialists to agree on which object

is “this” and to know when they are agreed, then it will make it much easier for us

to build mechanisms that do something useful with the “conversation.”

Let us call the subject of such an agreement a topic. Two objects in different

specialists are thus the same topic if each specialist’s object matches its interpretation

2While it is possible to design a scheme that would allow most or all of the model to be sent in
a single message, my experiences lead me to doubt that such a scheme would be affordable.

142

pa
rtn

er
s

throttle

reflexes

environment

local

client

low−level equality

distributed focus

foci

(a) Shared Focus Architecture

throttle

reflexes

client

environment

local

foci

distributed focus

throttle

reflexes

client

environment

local

foci

distributed focus

throttle

reflexes

client

environment

local

foci

distributed focus

throttle

reflexes

client

environment

local

foci

distributed focus

throttle

reflexes

client

environment

local

foci

distributed focus

throttle

reflexes

client

environment

local

foci

distributed focus

throttle

reflexes

client

environment

local

foci

distributed focus

throttle

reflexes

client

environment

local

foci

distributed focus

low−level equality

low−level equality

low−level equality

low−level equality

low−level equality

low−level equality

low−level equality

low−level equality

(b) Example Focus Network

Figure 8-2: Specialists share their foci using a distributed mechanism that balances
local requests against the goal of matching their partners’ topics. Local requests may
come either from some other device within the specialist or from reflex responses to
environmental stimuli. The distributed focus mechanism I use will misbehave if local
requests are too frequent, so they are throttled.

of the other’s description. We will remain discretely silent on how exactly a specialist

tests for a match: let it simply be stated that there are many plausible standards, and

that the choice of standard is likely to be specialized for each specialist. For example,

the hearing specialist may use the specialized knowledge that something that is loud

is not also quiet.

I address these problems with the distributed mechanism shown in Figure 8-2.

This mechanism attempts to balance four competing goals: dominance, fairness,

agility, and longevity.

• Dominance means that a few topics occupy almost all of the foci on almost

all of the specialists in the network. Without dominance, specialists are not

participating in the same “conversation.”

• Fairness means that any specialist in the network has an equal chance to

propose a new topic and have it become dominance. Without fairness, the

system cannot respond reliably to surprises.

• Agility means that when the dominant topic shifts, it shifts quickly to a new

dominant topic. Without agility, the network of specialists cannot respond

quickly to surprises.

• Stability means that when a topic has become dominant, it is likely to stay

there for a long time. Without longevity, the “conversation” between specialists

is unlikely to stick to a topic long enough to do anything useful with it.

143

The core of my mechanism is a distributed focus device that balances local re-

quests against the goal of matching its partners’ topics. The device misbehaves when

local requests arrive too quickly, so I add a throttle that manages streams of incoming

requests. Finally, I break up the chicken-and-egg problem of communication boot-

strapping (no relations without dominance, no dominance without topics, no topics

without relations) with a set of reflexes that direct each specialist’s foci independently

to objects likely to be focused on by other specialists, and a low-level equality device

that uses sub-symbolic maps between senses to detect when two objects are the same

topic.

Complete data sheets for the distributed focus and throttle devices may be found

in Appendix C.4 and Appendix C.5, respectively. Low-level equality is implemented

with mechanisms peculiar to each specialist, so it is not detailed.

8.2.1 Distributed Focus

Distributed focus operates on a network of n devices, each containing a set of f foci.

There is no constraint on the structure of the network. The foci act as a set of registers,

with each focus pointing to an object in the model (this may be implemented using a

distributed map). Associated with each focus is a privilege rating, which will be used

to break symmetry between competing topics. When a message is sent, the privilege

rating for each focus could be added using a special set of inflections or conveyed on

a parallel set of connections.

Changes in topic come from two sources: local requests and changes in a partner’s

foci. The local requests are a stream of references to objects that may or may not

already be pointed to by a focus. Changes in a partner’s foci are taken as implicit

requests for a matching change in the device’s own foci, but only if the topic can be

interpreted.

The Purpose of Privilege To become dominant, a topic needs to invade devices

throughout the network. When topics are competing for space, however, we find

ourselves with a symmetry breaking problem: if the competing topics can invade one

another, then they are likely to thrash, trading devices back and forth in a never

ending tussle. If they cannot invade one another, then they are likely to end in

deadlock, with neither becoming dominant.

I will avoid this type of thrashing with a solution based on insight from Rauch’s

work on spatial separation and group evolution[30]. Rauch uses a cellular automata

host/disease model where each cell has three states: live, dead, and infected. There is

a fixed death probability that an infected cell will die, a fixed growth probability that

144

a live cell will spread to adjoining dead cells, and an evolvable infection probability

that an infected cell will spread to adjoining live cells. Rauch discovered that, across

a large range of parameters, the probability of infection evolved to sustain a stable

but shifting population of all three states: local perturbations are damped out by

the action of other areas, and changes in the global parameters change only the

characteristic diameter of regions of cells with each state.

Mapping this back to the shared focus problem, we can consider devices where

a competing topic is invading others to be in the infected state, devices where it

is subject to invasion to be in the dead state, and devices lacking the topic to be

in the live state. Rauch’s work tells us that we can expect thrashing to be a very

durable behavior across a wide range of algorithms. It also tell us how to prevent

thrashing: stability breaks down when the characteristic diameter of any state’s region

approaches that of the network.

I will use this observation to break the stalemate between competing topics. At

low probability, a spreading topic will become privileged for a short time, during

which it cannot be invaded and almost always succeeds in invading. This will break

symmetry, quickly spreading the topic throughout the network. Paradoxically, once

the privilege ends, the topic will typically no longer be spreading, and can be quickly

displaced by its competitors.

In terms of implementation, the normal privilege level is zero: when privilege rises

above this level, it leaks away at a constant rate.

Update Mechanism A distributed focus device updates its foci before each mes-

sage the specialist sends.

Topic requests come from two sources: the local request stream and changes in

neighbor foci. Each device caches both the most recent values from each neighbor

and the values used in the last update. At the update, these values are compared,

and if either the value has changed or it has gained privilege, then that is treated as

a request for focus and added to the collection of local requests (which may contain

multiple requests for the same topic). When there is privilege in the neighbor, it

carries along in requests, decremented by one to ensure dissipation.

To prevent communication delays leading to oscillation, elements of the cache

will sometimes skip updates: each element has a probability pwait of simply ignoring

an update, neither taking a new value nor comparing against the old to produce a

request.

Next, the device selects f requests to service (less if there are less requests total),

giving preference to those with higher privilege (local requests are never privileged).

145

Each serviced request then has a small chance ppriv of its privilege spontaneously

rising to the maximum privilege value tpriv. The chance of privilege is set so that

the expected number of privileged topics in the network is expected to be very low:

ppriv = kp

n·tpriv
, where kp is a small constant and n is the number of devices in the

network.

Finally, the request’s topic is compared with the current foci: if it is already in

a focus, then the privilege of that focus is set to the maximum of its current value

and that of the request. If the topic is not in a focus, then a target focus is selected

according to some policy and its replaced with the request unless its privilege is

higher.

Notice that there is no mention of “salience” or other ratings of relative topic

value—instead, every local request for attention, no matter how trivial, should have

a good chance of dominating the attention of the entire system. It is tempting to

give preference to reflexively important topics like loud noises. I choose not do so,

however, for several reasons:

• Systematically preferring some topics means systematically shying away from

others. Those disregarded topics will sometimes be important, and I do not

want distributed focus to add to the barriers they must overcome.

• There may be no clear way to compare preference strength across specialists.

• Preference can still be expressed clearly by repeated local requests.

Analysis There are four variables controlling the behavior of distributed focus:

pwait, kp, tpriv, and policy. Using the characterization detailed in Appendix C.4, I will

choose pwait = 0.5, kp = 2, tpriv = 20, and a policy of follow—meaning that when a

partner changes from one topic to another, the device will make the same change if

the old topic is in its foci, and replace randomly if the old topic is not.

With these parameters, distributed focus behaves as desired so long as the rate

at which local requests for new topics appear is very low throughout the network.

The number of specialists requesting a topic does not matter, only the number of

topics being requested: when topics are being requested quickly, both longevity and

dominance suffer because new topics are invading the network before the current

topics can even spread throughout. Preventing this form of misbehavior will be the

responsibility of the throttle.

146

8.2.2 Throttling Requests

Although I originally developed my throttle mechanism in order to support dis-

tributed focus, its turns out to be usable not only for focus requests, but for shaping

any set of event streams.

The rate at which events occur in an intelligence can be all over the place, from

slow and lazy to fast and furious. For example, a stray thought might touch off

a cascade of brainstorming, or a turn onto a busy street might suddenly result in

hundreds of cars flowing through the visual field on the other side of the dividing

line.

If the events consume a limited resource (such as foci), we need to be able to control

the consumption in both regimes, servicing every event when events come slowly and

rationing the resource when events come quickly. For example, distributed focus only

behaves well when the rate of requests for new topics is low: when requests come

too quickly, topics cannot dominate for long enough to enable collaboration between

participants. When requests are coming slowly, however, we want topics to become

dominant quickly and reliably.

The challenge comes from the fact that events may come from multiple sources,

and it is important that a previously silent source be able to quickly invade the flow

and take control. For example, consider a vision specialist with two flows competing

to be local requests in the distributed focus system: one from its observations, the

other from internal manipulation of models. If the system is wandering along, deep

in thought, and a car lurches in its direction, the observations need to be able to

suddenly demand attention. On the other hand, driving along a highway with many

cars going the other direction, a sudden insight should be able to invade the flow of

information from observations.

These problems are further complicated when the desired rate of events is very

slow (as is the case for distributed focus) since that makes it difficult to estimate the

rate over short time spans.

I will handle this with a throttle mechanism closely related to a Token Bucket

Filter[11], a widely available network traffic-shaping method. A Token Bucket Filter

works by matching two rates of flow: a rate at which packets arrive and a rate at

which tokens for service are generated. A packet is serviced whenever there is a token

available for it, giving three regimes of operation. When packets are slower than

tokens, tokens accumulate, “saving up” to allow a burst of transmission if the packet

rate spikes. When packets are faster than tokens, the queue fills and packets begin

to drop. On the boundary, when the arrival and service rates are the same, packets

are serviced immediately and tokens do not accumulate. My mechanism is similar,

147

but also mixes streams fairly.3

Mechanism Events arrive at a throttle from s different source streams. The rate

and distribution of the incoming streams is unconstrained. The throttle emits a

filtered stream of events, to be constrained to a sustained rate of no more than rs and

burst of no more than bmax events per burst.

The throttle mechanism is quite simple. Each source stream has an associated

activity level. When an event arrives, the source’s activity level is checked: if it is

more than bmax − 1, the event is discarded, otherwise the event is serviced—sent to

the output stream.

When an event is serviced, the activity level of the source that it came from is

raised by one plus a random number in the range [−cvar/2, cvar/2], where cvar is a

constant range of cost variation. This variant cost works to prevent stuttering by

keeping event servicing from falling into a regular rhythm.

The activity level of a source slowly drops. Every source activity level above zero

decreases at a rate of rs/nactive, where nactive is the number of sources with a positive

activity level. Thus, the total activity level of the system decreases at rate rs, no

matter how many sources are active.

When a source is idle its activity settles toward zero, banking away the ability to

transmit a burst when it next activates. When a source is active, the rate that activity

leaks away dictates how often its events can be serviced, and that rate scales inversely

proportional to the number of active sources, effectively controlling the overall rate.

The throttle behaves well under a wide range of conditions, suffering only dur-

ing the transition between the sparse and rationed behavior regimes, and then only

moderately. Full details are given in Appendix C.5.

8.2.3 Reflexes and Low-Level Equality

The remaining two components, reflexes and low-level equality, work together to

provide a foundation for distributed focus. The reflexes provide a basic level of focus

direction and low-level equality provides a basic test for topic matching. At first,

these are all the network of specialists has to support distributed focus—they are, in

fact, the bootstraps that communication bootstrapping will seize upon.

I will not go into mechanisms for either component, because both are likely to

be highly specialized for particular specialists. It is enough to note that the reflexes

should respond to the sort of things that human reflexes respond to, like change

3I would not be surprised if I have reinvented a mechanism that already exists somewhere in the
field of computer networks.

148

and motion, and that the low-level equality can be built using ordinary cross-modal

learning (for example, a Kohonen map[26], Coen’s slices[12], or Roy’s cross-modal

approach[33] would all be appropriate).

For example, the vision specialist’s reflexes might focus on a WALKLITE that

has just appeared while the hearing specialist’s reflexes focus on a new CUCKOO

sound. The low-level equality map between the vision and hearing specialists connects

the coordinates of the two senses and suggests that these are the same thing. Now

the two specialists’ signal maps can begin to learn that they are EQUAL.

Once the specialists know that WALKLITE and CUCKOO are EQUAL, then

they can start using them to learn about other features and objects that relate to

them. For example, when PERSON is in FRONT of the WALKLITE, the spe-

cialists can learn that the CUCKOO only happens when there are people around.

Another example: each WALKLITE plays its CUCKOO sound at a consistent vol-

ume, so specialists can learn that to associate the WALKLITE with those decibel

levels. Likewise, in future work when we look to have specialists invent abstractions,

the focus needed to support this process of invention can come from the existing

relations that the abstractions incorporate.

The reflexes and low-level equality need not be particularly smart or complicated

mechanisms, just enough to get the first few relations up and running. When the

specialists’ models are better developed, they will still be running, and it is important

that they not interfere too much with the more sophisticated understanding that the

specialists develop. The reflexes keep driving the foci, but begin to compete with other

drives such as curiosity and prediction (which we will not explore in this document).

The low-level equality becomes just one more factor in the test for topic matches,

available only for immediate observations.

8.3 Focus and Relation Learning

We have been talking about how signal maps can only safely learn relations from

matched foci, but have not yet explained exactly why or how. Both, fortunately, are

fairly straightforward, and have already been seen in the simpler case of EQUAL

relations between inflections in Section 7.3.

If we allow a signal map to learn relations between unmatched foci, then there

is no reason to expect that the messages will reflect any sort of shared experience.

If the hearing specialist has the CUCKOO sound in a focus while the vision spe-

cialist is considering the buildings, and we allow learning from unmatched foci, then

the relationship between CUCKOO and WALKLITE will be degraded because

149

WALKLITE is not related to the buildings that the vision specialist is focusing on.

Thus, we must only allow the symbol relation map to run IIES on symbols related

to matched foci, just as we must only allow the inflection relation map to run IIES

on pairs of EQUAL symbols. We still do not, however, need multiple layers in the

symbol relation map.

If we knew which symbols were associated with which objects, all we would need

to do is add a one-round cache and modify IIES to handle four special cases:

• An object obtains focus and a period of matched focus begins: If a pair

of symbols are both present before the period begins, it is not possible to tell

which appeared first, so the IIES finite state machines detecting examples for

the pair should be placed in a superposition of states 2, 4, and 5 from Figure 7-

20. An EQUAL relation gains positive evidence immediately, and any other

predictive relation must wait for one or both of the symbols to vanish before it

can begin running the IIES normally. If only one symbol is present, the IIES

runs normally, transitioning from state zero based on the current input.

• An object obtains focus as it appears: IIES starts with a transition from

state 0 to the cached input, then continues with the current input.

• An object loses focus and a period of matched focus ends: IIES is

disabled and returns to state zero to await the next period of matched focus.

• An object loses focus as it disappears: IIES transitions based on the

current input (possibly producing an example), then is disabled and returns to

state zero to await the next period of matched focus.

With these modifications, IIES should be able to learn safely from periods of matched

focus and remain idle in between.

Unfortunately, the chicken-and-egg problem is still with us, for until learning

begins, there is no way to tell which symbol is associated with which object. This is

particularly problematic since symbols with the same inflection may refer to different

objects, when the inflection expresses a relation rather than focus.

What this means is that we cannot actually implement the modifications to IIES

without opening up a broad new area of questions about assumptions and design

decisions, including:

• Should relation learning be restricted to symbols related to the same foci, which

reduces the opportunity for serendipity, or should the symbols for any foci be

able to interact, which allows interference between unrelated foci?

150

• How should learned relations be incorporated in the decision about whether two

objects match? Especially, what is the role of CAUSE, SEQUENCE, and

DISABLE?

• If any two foci can be matched, how can relations between inflections be learned

effectively, since evidence matching FOCUS1 to its partner’s FOCUS2 is ev-

idence against matching its partner’s FOCUS3?

• Should focus be allowed to shift to a partner’s object if there is no clear trans-

lation into a specialist’s own model?

• To what degree are we willing to alleviate these problem through (expensive

and possibly fragile) hard-wired focus connections or a sequenced deployment

of focal mechanisms?

I will not attempt to resolve these questions in this document, particularly given

that it would involve making decisions about models, and I am not yet comfortable

that I can navigate those decision safely.

What I will ask instead is this: can we learn enough to start matching symbols

to objects without modifying the signal map in any way, merely allowing the shared

focus mechanism to determine the contents of the messages?

This is actually a purer Communication Bootstrapping approach to the problem:

we simply rely on the world to have enough structure that some relations will stick

out like a sore thumb and attract our attention if they are allowed to.

To test this idea, I once again use input from the four-way intersection scenario.

As before, I abstract the bidirectional link and set up a system of two specialists.

This time, however, I do not flatten the sensory input, but keep it intact so that I

may send relations.

For the shared focus mechanism, I use 4 foci per specialist, and set the throttle to

limit the rate of requests to 1 per message. Reflexes will request focus for objects that

appear, add features, or begin to move, but not those that disappear, lose features,

or halt. Low-level equality is taken from object unique identifiers provided by the

simulator, or by the direction to an object in hearing space being within 10 pixels of

the center of an object in vision space. Only those objects that are matched, however,

are transmitted in the messages. No matching is done besides via low-level equality.

I train the system on simulated input, starting at noon and sampling once per

half second for 5,000 seconds (about 80 minutes), then examine what the system has

learned. If our hopes are borne out, then there should be strong sets of relations

learned between closely related objects.

151

Examining the results (shown in Appendix B.3), we see that both vision and

hearing have acquired 448 relations. A full 240 of these relations are ones that could

not have been learned in the flat representation, as they involve features like STEPS

or DARK that are nearly always present somewhere in the input. The set of relations

appears to have largely stabilized as well, changing little during the last 1000 seconds.

Most important, however, are the 79 relations connecting together four clumps of

strongly associated symbols—nearly one in every five relations learned. I will rate a

pair of symbols a member of this set if it has an EQUAL relation and at least three

other SUBCLASS or ENABLE relations. The four clumps correspond to:

• Cars: Mid-level loudness (60), DRIVE, and ENGINE connect to moderately

small (8D), DARK, and CAR. In addition, DRIVE and ENGINE connect

to SEDAN and ENGINE connects to small (0D) objects.

• People: STEPS connects to PERSON and ADULT

• Things in front: Sounds directly in front (F) connect to moderately small

(8D) and DARK objects (apparently either cars or people).

• Close things: Moderately loud sound (70) connects to mid-sized images

(16D).

As can be seen, these strong sets of relations could be used to pair up the hearing

and vision specialist symbols for either people or cars. This shows that the chicken-

and-egg problem of bootstrapping and symbol/object mapping might be averted

through an underlying shared focus device and strong relationships between streams

of sensory input.

8.4 Potential Benefits from Shared Focus

Learning with a focus of attention has the potential to transform the system of spe-

cialists in a profound manner, provided we can overcome questions related to the

symbol/object dichotomy.

First, the problems of saturation we encountered in the last chapter simply van-

ish. It will no longer be impossible to learn about red lights just because there is

always some light that was red: the foci separate the objects from one another. Even

unvarying objects like the sky can be learned about, as the foci move near it and away

from it, cutting a single interval of object presence into a series of focal encounters.

Second, a specialist need not be distracted by the complexity of its environment.

The throttle limits the rate at which even the wildest environmental stimuli can

152

affect the shared focus. More importantly, if specialist’s foci are partially guided

by communications from its partners, then it will tend toward topics on which it

can communicate to its neighbors, and that therefore have the most potential for

additional incremental learning.

Finally, a specialist will only be able learn about things that are closely related to

things it already knows. To learn a relation between symbols, they must be associated

with objects that can be matched, which means they must have low-level equality or

else involve symbols whose relations are already known.

All together, this implies that our system of specialists may be able to naturally

adjust its interpretation of its environment to match its level of understanding. In

the beginning, surrounded by an uninterpretable “blooming, buzzing confusion,” the

system would necessarily focus on the simplest and most tractable elements. As it

begins to understand its environment, it can focus on more subtle parts of the scene,

building off its knowledge of the simpler.

153

154

Chapter 9

Contributions

I began this dissertation with a simple question: how might the various parts of an

intelligence learn to work together as a unified whole? I propose that this question is

key to our understanding of intelligence.

I hypothesize that the specialist parts making up human intelligence learn to

cooperate as a byproduct of learning to communicate, and that they learn to com-

municate by exploiting the phenomenon of communication bootstrapping. This also

suggests the more radical hypothesis that human intelligence may arise largely from

the struggle of the various specialists to understand one another.

I have presented a roadmap for a serious investigation of these hypotheses, a ven-

ture that will require far more than a few years of work by a single graduate student.

In this dissertation, I have laid a solid foundation for work in this area, and have

taken the first few steps following my roadmap. As I have progressed, I have checked

that my ideas are not unreasonable by testing them against a running example: two

specialists, vision and hearing, observing a simulated four-way intersection.

My work in this dissertation contains three key technical contributions: develop-

mental cost (Chapter 4), failure simplification (Chapter 5), and extension of commu-

nication bootstrapping (Chapter 6, 7 and 8).

Developmental Cost Investigation of intelligence through exploratory engineering

has suffered from a lack of useful constraints. I note that engineering and morphogen-

esis labor under similar constraints, so adding constraints from biological development

may help us to discover new organizational principles similar to those exploited by

biology.

To that end, I introduce the notion of developmental cost, so that the cost of a

device includes not only the hardware and time to run the mature device, but also

the cost of encoding and running a program that grows the device and its response

155

to defects in development. We may thus measure the quality of a device in terms of

asymptotic complexity using cost assumptions derived from biology, yet likely to be

undisturbed as our understanding of biological details continues to change.

My communication bootstrapping designs take developmental cost into account,

ensuring that they are within the envelope of biological plausibility and allowing us

to make rough estimates of how they might be employed in a human brain (Sec-

tion 7.3.2).

Failure Simplification Building devices for a use in models of intelligence presents

a major software engineering challenge: the specification for a device is often contra-

dictory, hard to define precisely, and subject to violation by other devices’ misbehav-

ior.

Failure simplification embraces these problems rather than attempting to avoid

them. As we develop a device, we create a dossier that describes its major phases of

good behavior and misbehavior. Failure simplification means that we recognize that

we cannot prevent misbehavior, and instead look to damp its impact. Typically, this

is done by modulating the behavior of a device to select only misbehaviors that are

easy to detect and respond to. A common technique for this is pre-emptive failure,

which sacrifices some good behavior in order to avoid complexity in the boundaries

between phases.

Each of the devices I use in the extension of communication bootstrapping is ana-

lyzed with a dossier documenting its major phases of behavior—the codetector as the

example in Chapter 5, the rest in Appendix C. Their use is consistent with the phi-

losophy of failure simplification, taking into account the likely modes of misbehavior.

Besides aiding our study of intelligence, failure simplification might be applied

to the more pragmatic field of software engineering. As our programs grow in com-

plexity beyond the ability of any single human to comprehend, techniques like failure

simplification will become ever more important.

Extension of Communication Bootstrapping Previous work on communica-

tion bootstrapping was essentially a proof of concept that the phenomenon could

take place in a brain. In this dissertation, I dig into the practical details of what is

actually needed for communication bootstrapping to be useful in a model of intelli-

gence.

In Chapter 6, I generalize the original communication bootstrapping architecture.

I then propose a standard for judging the success of communication bootstrapping

and a new means of encoding inflections that allows more complicated messages to

156

be sent.

Chapter 7 deals with the failure of the assumptions that the previous work relied

on. I first build up a complicated mechanism that allows me to abstract the messages

away from the details of their encoding (Section 7.1). Along the way, I describe what

sort of brain activity would be evidence that a similar process is being carried out

in human brains. I then describe how a specialist can learn to interpret message

elements, using an incremental mechanism to detect examples that provide evidence

for and against a set of eleven predictive relations (Section 7.2).

Finally, Chapter 8 shows how messages can be combined with a notion of focus

to communicate model fragments from one specialist to another. This chapter also

deals with the problem of getting specialists to agree on a set of topics to focus on,

and shows how this apparent difficulty might actually aid learning by allowing the

system to ignore things that it is not close to understanding.

The result of all this work is a design that learns to communicate between two

specialists and in the process sifts interesting knowledge from a cluttered environ-

ment. Nor is it a closed design: the design nearly begs for the next steps in its

development—a proper discussion of models, more investigation of focus, a means of

building abstractions, and a higher-level attentional drive to compete with its reflexes.

9.1 The Larger Architectural Vision

Allow me to indulge, for a moment, in speculation about how a human-level intelli-

gence based on communication bootstrapping might work.

The whole would consist of several large parts, one for each major specialist con-

tributing to intelligence—vision, hearing, sensorimotor, language, social, etc. Each of

these, in turn, would be composed of several smaller specialists: the vision specialist,

for example, might be composed of one specialist for shape, another for color and

texture, another for spatial relations, and so on, each with its own peculiar model

and reasoning system. All told, I would expect there to be around a dozen large

specialists and somewhere between 20 and 100 smaller specialists. Each specialist

connects to several related specialists, so the whole forms a mesh-like network a few

hops in diameter.

These specialists rest atop a supporting infrastructure of sub-symbolic processing,

devices that handle the initial processing of sensory input and the routine parts of

motor control. Simple, information-intensive behaviors like hand-eye coordination are

carried out at this level, and self-organizing maps between domains give the low-level

equality relations needed for communication bootstrapping to start learning symbolic

157

relations. Predictions in the symbolic specialists cause anticipation in the senses and

actuation in the motor controls.

At first, each of the specialists is lost in a sea of meaningless input, unable to

communicate with its partners. As the lower level infrastructure organizes itself,

it begins to drive the symbolic specialists and they begin to learn to interpret one

another’s messages. As the specialists start to learn to communicate, the shared focus

mechanism starts to points them at the same topics, and more and more is learned

as the specialists start to have more experiences in common. Since two specialists

may interpret the same symbol in different ways, translation may in fact become

extrapolation, and the circulation of a structure through the network of specialists

may effectively carry out cooperative reasoning upon it.

Now there is a danger that the learning will senesce, as the specialists get driven

only towards things that they already understand. The next stage of learning, once

some basic competence has been established, is driven by surprise. When a specialist

fails to predict something, or when a specialist’s prediction fails, the failure is an

irritation that requests the focus, drawing the system to poke and prod at things it

does not understand.

At the same time, a surprised specialist begins to propose explanations, inventing

abstractions that combine objects and relations together into an abstract feature.

The explanation is honed on a specialist’s own experiences, then judged by whether

any partner can relate the new feature to its own features or proposed explanations.

These explanations might even contain strategies for shifting the focus about, or for

building explanations, so that a specialist becomes better at cooperating and learning

as it matures.

Thus we may envision a system that starts simple and adds to its understanding

of the world one layer of explanation at a time, each layer patching mysteries in the

layer below it and introducing newer and more subtle forms of confusion. The growth

of understanding is regulated by the ability to communicate, keeping any specialist

from surging off into unsupported flights of fancy—or at least from going very far.

Moreover, each additional insight comes in two parts: an educated guess from a

specialist’s own experience, and an unpredictable discovery of how that guess relates

to the experiences of other specialists. I see, in this duality, the opportunity for true

creativity on the part of a communication bootstrapping system. An artist begins

by doing, then produces a great work by recognizing and exploiting the potential in

what has been done. So too may a specialist’s proposal become something more when

other specialists are asked to interpret it.

In this vision, communication bootstrapping is not a silver bullet that solves all

158

problems—the work that must be invested in the infrastructure and the reasoning

systems for each of the specialists far outweighs it. Rather, I see communication

bootstrapping as the teaspoon of baking powder that allows the cake to rise.

9.2 Next Steps

The next steps that I intend to take toward this larger vision are laid out in the

roadmap all the way back in Section 1.2. The most immediate targets are:

• A clear definition of what makes up a specialist’s model, and an affordable

hardware design to support it.

• Actuation through prediction, and the addition of a motor specialist to the

system, which can then try to learn how to safely cross the street.

• Surprise, from unpredicted changes or unfulfilled predictions, as a driver for

focus.

• Invention of abstractions in response to surprise, to be judged by whether a

partner can relate something in its experience to the abstraction.

Besides these, there are a number of open problems where important contributions

could be made, including:

• refinement of developmental cost metrics by incorporating more information

from synthetic biology, developmental biology, and neuroscience.

• refinement of the various devices to improve costs or capabilities. For example,

the cost of the relation maps in Section 7.3 can likely be greatly reduced.

• development of specialized models and reasoning systems, both improving the

existing specialists and adding new specialists such as language or social rea-

soning.

• integration of more effective and/or realistic processing methods for sensory

input.

• improving the theoretical analysis of the conditions for communication boot-

strapping.

• construction of a theoretical model for failure simplification.

159

• investigation of the relationship between language acquisition and the develop-

ment of cooperation between specialists, including the question of whether an

intermediate proto-language specialist might simplify the cooperation problem.

9.3 Wider Implications

I will be so bold as to propose that this dissertation may represent an important new

direction in the study of human-level intelligence.

Despite a fabulous increase in knowledge, the study of human-level intelligence

has been largely stalled for the past few decades. Neuroscience and cognitive science

have discovered a great many facts about how brains and minds work, but a broadly

integrated quantitative model has stubbornly failed to emerge. Artificial intelligence

has produced a great many clever systems that do remarkable things, but such systems

are notoriously hard to build on or combine, and it is unclear which of these systems

actually represent progress toward the larger goal.

I believe that work changes this landscape in two ways. First, I point out that it is

not even clear how our brains integrate their parts into a computational whole. The

analogy between the problems of development and the problems of engineering make

this largely neglected problem a tantalizing field for investigation. I personally hope

that it will be a case, like Waltz’s shadows[40], where adding complexity simplifies

the problem. This is my own personal hobby-horse, and where I have placed my own

bet that a key part of the answer will be found.

Perhaps more importantly, however, developmental cost and failure simplification

have the potential to improve the standards for exploratory engineering research

on intelligence. Developmental cost leads to very different designs than thinking

about conventional computer hardware, as the reader will have noticed while reading

Chapter 7. Better yet, it also gives us a way to judge the plausibility of a device

without knowing how it will be used or getting embroiled in the fine details of biology.

Failure simplification, on the other hand, is a basically different philosophy of device

integration. If widely adopted, it may make it much easier for researchers to build on

one another’s progress.

As a scientist, I am greatly excited about the prospects for progress on our under-

standing of human-level intelligence, one of the fundamental mysteries of our universe.

The road is long, but perhaps we can once again see the way ahead.

160

Appendix A

Glossary

I have trouble keeping my terminology and definitions fixed as I go through a document—

I forget the terminology I’ve invented before and reinvent it, or as my understanding

of my topic becomes clearer the meanings of words change and I forget to change

the old usages. This list is to help me keep myself consistent, as well as to help the

reader.

Formatting

• italics indicate the introduction of a mathematical variable or technical term,

which will be given a precise definition. Occasionally, it will be used for emphasis

or foreign language—these cases will be clear in context.

• bold face indicates a variable name, defined value in a program, or title of a

list entry.

Definitions

• allocated (coder state): the state of a coder in a unidirectional link when it

is aligned with a complement and has been provided to the link’s client for use

in building messages. This state only exists in the speaker.

• bidirectional link: a device that connects two specialists and allows messages

to be simultaneously sent and received using the same set of symbols and in-

flections. Composed of two unidirectional links whose coders are paired up via

a distributed map as they become mature.

• cable-head: a device in the unidirectional link that bridges between random

links to the symbol coders and a communication path in the channel.

• channel: a thick, twisted bundle of communication paths over which specialists

send messages to one another.

161

• coder, symbol coder, inflection coder: a device that encodes or decodes

signals in a unidirectional link. There are two varieties: a coder for symbols

designates a set of communication paths, a coder for inflections stores a pattern

of pulses.

• codetector: an incremental decision-making device that indicates whether to

accept, reject, or wait on a proposal.

• communication bootstrapping: a phenomenon exhibited when a network

of devices use shared experiences to reach agreement on a system of signals for

communicating with one another.

• communication path: a connection between two devices that can carry in-

formation.

• competition: a device that breaks symmetry in a set, selecting one element at

a time as the current winner.

• conditions: the external environment affecting a device.

• configuration: a particular choice of values for the configuration parameters

of a device.

• configuration parameters: a set of adjustable values controlling the behavior

of a device.

• configuration policy: a description of how to obtain desirable behavior from

a device given a range of conditions.

• cost: the asymptotic complexity of a device with regards to time and space for

development and mature operation, plus expected types of variation and error.

• desirable behavior: criteria for determining whether a device’s actions are

appropriate.

• development: the growth of a biological system, including the construction of

computational hardware.

• developmental cost: the complexity of encoding blueprints for a device, the

time it takes to grow a device from those blueprints, and the structural variation

expected in a device so produced.

• device: a part with a well-characterized interface and behavior.

• dither (codetector behavior): a major behavior phase for a codetector, in

which it is slow to make any decision.

• disabled (coder state): the state of a coder in a unidirectional link when it

is not in use.

• distributed focus: a device that allows a network of specialists to balance

the goals of consensus on a set of topics and allowing each participant an equal

chance to quickly steer the consensus.

162

• distributed map: a device that makes one-to-one connections between ele-

ments of two sets, usable either as a dynamic map or as a reliable multi-path

bus.

• dossier: analysis and experimental surveys of a device’s behavior.

• environment: the context in which a device acts.

• example: a unit of evidence for or against a proposal.

• failure simplification: a method for limiting the impact of device misbehavior

by selecting those modes of misbehavior that are easiest to understand and cope

with.

• fast accept (codetector behavior): a major behavior phase for a codetector,

in which it decides accept quickly and firmly.

• fast convergence (distributed focus behavior): a major behavior phase

for distributed focus, in which dominant topics emerge quickly.

• fast reject (codetector behavior): a major behavior phase for a codetector,

in which it decides reject quickly and firmly.

• feature: an elementary description of an object (e.g. a color, a degree of

loudness, a category).

• focus, focus of attention: a selection of a few objects in the model of a

specialist.

• immature (coder state): the state of a coder in a unidirectional link when it

is attempting to align with a complement.

• incremental interval-based example segmentation, IIES: a device that

detects examples of predictive relations between two message elements.

• inflection: a signal carried on a symbol that ties features together into objects

and relations.

• intelligence: the broad competence and flexibility exhibited by humans, or

any system exhibiting these qualities.

• interface specification: the relationship between a device and its environ-

ment.

• learning by learning to communicate: disagreement on the interpretation

of signals that captures dynamics of a system’s environment.

• limiting conditions: a description of the conditions under which a device is

likely to misbehave.

• listener: the receiving side of a unidirectional link.

• low-level equality: a test for whether objects in different specialists are the

same topic that does not depend on the ability of to interpret messages.

163

• mature (coder state): the state of a coder in a unidirectional link when it is

aligned with a complement. In the speaker, this state means it is ready to be

allocated.

• mechanism: how a device implements its interface specification.

• message: a burst of communication sent by a specialist to describe its working

set to its partner.

• model: a specialist’s description of its environment in terms of objects and

relations.

• object: a persistent bundle of sensory features (e.g. a sound source), rep-

resented as an element of a part’s model with features and relations to other

objects.

• observations: the stream of sensory input provided to a specialist.

• oscillate (codetector behavior): a major behavior phase for a codetector, in

which it rapidly changes decision.

• partner: a specialist’s peers, with whom it exchanges messages.

• privilege: an occasional random assertion of dominance used by distributed

focus to prevent thrashing among competing topics.

• random bipartite graph: a device connecting two sets such that each element

in one set connects to k random elements in the other.

• range of behavior: the set of observable actions that a device may exhibit.

• reflexes: a built-in device peculiar to each specialist for converting its obser-

vations into requests for focus on potentially interesting topics.

• relation, predictive relation, time relation: a descriptor of how two ele-

ments relate to one another. Relations in the model connect pairs of objects,

time relations connect intervals, and predictive relations connect signals to ex-

pectations about how the model will change.

• relation map: a pairwise map of predictive relations between incoming and

outgoing signals. Each signal map contains one for symbols and one for inflec-

tions.

• shared focus: a device that attempts to ensure that a specialist and its partner

are sending messages about closely related topics.

• signal: a message element: a symbol or an inflection.

• signal map: a device that translates between the working set of a specialist

and messages exchanged with its partner.

• speaker: the sending side of a unidirectional link.

• specialist: one of the major peer devices that cooperate to produce intelligence,

such as vision, hearing, or motor.

164

• symbol: an encoding of a feature as a sparse set of communication paths in the

channel.

• thrashing (distributed focus behavior): a major behavior phase for dis-

tributed focus, in which a set of competing topics continually sweep through the

network of specialists, replacing one another.

• throttle: a device that fairly filters several streams of events (such as topic

requests input to distributed focus) down to a single, rate-limited stream of

events.

• topic: objects in different specialists that are judged equivalent, such that they

form a shared focus.

• unidirectional link: a device that transmits messages composed of symbols

and inflections from a speaker to a listener.

• usage specification: a description of how a device should be configured and

used in order to minimize its misbehavior.

• v1.0, communication bootstrapping v1.0: The architecture from the orig-

inal work on communication bootstrapping in [4] and [3].

• working set: the subset of its model that a specialist communicates to its

partners.

165

166

Appendix B

Experimental Data

This chapter contains listings of the experimental data referenced elsewhere in this

dissertation.

B.1 IIES Learning

These are the results of learning relations directly between flattened sense inputs from

the simulator, used in Section 7.2.4.

When relations are shown between a pair of features A and B, they are abbrevi-

ated with single characters: Q is EQUAL, U is SUBCLASS, S is SEQUENCE,

C is CAUSE, E is ENABLE, D is DISABLE. Upper case means the relation

goes from A to B, and lower case means the relation goes from B to A. For ex-

ample, (CUCKOO DONTWALK ”eD”) is short for (DISABLE CUCKOO

DONTWALK) and (ENABLE DONTWALK CUCKOO).

83 minutes, starting at noon, sampling every 0.5 seconds

Video features:

Always: SIDEWALK BUILDING WALKBOX POLE LIGHT REDLIGHT YELLOWLIGHT GREENLIGHT

GRASS ROAD SKY CROSSWALK HOUSE OFFICE ABOVE BELOW LEFT RIGHT FRONT BACK

CONTACT RED YELLOW GREEN DARK BRIGHT 0D 8D 16D 24D 32D 40D 48D 56D

Sometimes: WALKLITE DONTWALK CAR PERSON ADULT CHILD SEDAN TRUCK VAN SUV

AMBULANCE TOWTRUCK CYAN BLUE MAGENTA R UR U UL L DL D DR F B

Never: BLUELIGHT POLICE 64D 72D 80D

Audio features:

Always:

Sometimes: CUCKOO IDLE DRIVE HONK TALK STEPS YELL SIREN ENGINE VOICE F FL L

BL BR R FR 40 50 60 70 80 90 100

Never: BRAKES CRASH SCREAM B

Video interval counts: BLUE 522 CYAN 499 F 333 L 322 MAGENTA 305 R 304 B 275

CHILD 182 DONTWALK 155 SEDAN 125 PERSON 88 VAN 72 ADULT 71 TRUCK 67 SUV 63

CAR 63 WALKLITE 23 U 12 DL 8 UR 8 UL 4 DR 3 D 3 TOWTRUCK 3 AMBULANCE 3 56D 1

48D 1 40D 1 32D 1 24D 1 16D 1 8D 1 0D 1 BRIGHT 1 DARK 1 GREEN 1 YELLOW 1 RED 1

CONTACT 1 BACK 1 FRONT 1 RIGHT 1 LEFT 1 BELOW 1 ABOVE 1 OFFICE 1 HOUSE 1

CROSSWALK 1 SKY 1 ROAD 1 GRASS 1 GREENLIGHT 1 YELLOWLIGHT 1 REDLIGHT 1 LIGHT 1

POLE 1 WALKBOX 1 BUILDING 1 SIDEWALK 1 80D 0 72D 0 64D 0 POLICE 0 BLUELIGHT 0

167

Audio interval counts: 70 428 L 182 R 180 BL 121 BR 118 FR 115 VOICE 107

TALK 106 IDLE 102 DRIVE 75 60 68 F 52 FL 47 CUCKOO 23 50 17 ENGINE 9 100 4

90 4 40 3 SIREN 3 STEPS 2 80 1 YELL 1 HONK 1 B 0 SCREAM 0 CRASH 0 BRAKES 0

Results:

((CUCKOO WALKLITE "QUuEe") (CUCKOO DONTWALK "eD") (CUCKOO CAR "ue")

(CUCKOO PERSON "ue") (CUCKOO ADULT "ue") (CUCKOO SEDAN "ue")

(CUCKOO MAGENTA "e") (IDLE WALKLITE "UE") (IDLE CAR "ue") (IDLE BLUE "D")

(IDLE U "UE") (IDLE L "D") (DRIVE WALKLITE "E") (DRIVE CAR "E")

(DRIVE SEDAN "UE") (DRIVE TRUCK "UE") (DRIVE VAN "UE") (DRIVE SUV "UE")

(DRIVE CYAN "E") (DRIVE BLUE "E") (DRIVE MAGENTA "E") (DRIVE R "UE")

(DRIVE L "QUE") (DRIVE F "QUE") (DRIVE B "UE") (F WALKLITE "UE")

(F CAR "Que") (F SEDAN "e") (F TRUCK "U") (F VAN "U") (F SUV "UE")

(F CYAN "E") (F BLUE "E") (F R "QU") (F L "Q") (F B "Q") (FL CAR "Q")

(FL SEDAN "Q") (FL SUV "E") (FL R "QE") (FL B "Q") (L PERSON "e")

(L ADULT "e") (L CHILD "e") (BR CAR "u") (BR PERSON "e") (BR ADULT "e")

(R CAR "u") (R PERSON "e") (R ADULT "e") (R CHILD "e") (R CYAN "e") (R R "e")

(FR WALKLITE "UE") (FR CAR "QSCd") (FR SEDAN "U") (FR TRUCK "UE")

(FR VAN "UE") (FR SUV "UE") (FR CYAN "E") (FR BLUE "E") (FR MAGENTA "E")

(FR U "UE") (FR L "UE") (FR F "QUE") (FR B "UE") (60 WALKLITE "UE")

(60 CAR "E") (60 SEDAN "UE") (60 TRUCK "UE") (60 VAN "UE") (60 SUV "UE")

(60 CYAN "E") (60 BLUE "E") (60 MAGENTA "E") (60 R "QUE") (60 U "UE")

(60 L "QUE") (60 F "QUE") (60 B "QUE") (70 WALKLITE "UEe") (70 DONTWALK "ue")

(70 CAR "QSCud") (70 PERSON "e") (70 ADULT "e") (70 CHILD "e")

(70 TRUCK "Ed") (70 VAN "Ed") (70 SUV "Ed") (70 BLUE "E") (70 B "Ed"))

83 minutes, starting at noon, sampling every 1.0 seconds

Video features:

Always: SIDEWALK BUILDING WALKBOX POLE LIGHT REDLIGHT YELLOWLIGHT GREENLIGHT

GRASS ROAD SKY CROSSWALK HOUSE OFFICE ABOVE BELOW LEFT RIGHT FRONT BACK

CONTACT RED YELLOW GREEN DARK BRIGHT 0D 8D 16D 24D 32D 40D 48D 56D

Sometimes: WALKLITE DONTWALK CAR PERSON ADULT CHILD SEDAN TRUCK VAN SUV

AMBULANCE TOWTRUCK CYAN BLUE MAGENTA R UR U UL L DL D DR F B

Never: BLUELIGHT POLICE 64D 72D 80D

Audio features:

Always:

Sometimes: CUCKOO IDLE DRIVE HONK TALK STEPS YELL SIREN ENGINE VOICE F FL L

BL BR R FR 40 50 60 70 80 90 100

Never: BRAKES CRASH SCREAM B

Video interval counts: BLUE 310 F 304 CYAN 287 L 271 R 271 B 238 MAGENTA 186

DONTWALK 151 CHILD 121 SEDAN 112 VAN 68 TRUCK 62 CAR 62 SUV 60 PERSON 56

ADULT 47 WALKLITE 23 U 10 UR 4 UL 3 TOWTRUCK 3 AMBULANCE 3 DR 2 D 2 DL 2 56D 1

48D 1 40D 1 32D 1 24D 1 16D 1 8D 1 0D 1 BRIGHT 1 DARK 1 GREEN 1 YELLOW 1 RED 1

CONTACT 1 BACK 1 FRONT 1 RIGHT 1 LEFT 1 BELOW 1 ABOVE 1 OFFICE 1 HOUSE 1

CROSSWALK 1 SKY 1 ROAD 1 GRASS 1 GREENLIGHT 1 YELLOWLIGHT 1 REDLIGHT 1 LIGHT 1

POLE 1 WALKBOX 1 BUILDING 1 SIDEWALK 1 80D 0 72D 0 64D 0 POLICE 0 BLUELIGHT 0

Audio interval counts: 70 409 L 181 R 174 BL 119 BR 117 FR 105 IDLE 93 VOICE 88

TALK 87 DRIVE 69 60 63 F 49 FL 42 CUCKOO 23 50 17 ENGINE 9 100 4 90 4 40 3

SIREN 3 STEPS 2 80 1 YELL 1 HONK 1 B 0 SCREAM 0 CRASH 0 BRAKES 0

Results:

((CUCKOO WALKLITE "QUuEe") (CUCKOO DONTWALK "eD") (CUCKOO CAR "ue")

(CUCKOO PERSON "ue") (CUCKOO ADULT "ue") (CUCKOO SEDAN "ue")

(CUCKOO MAGENTA "e") (IDLE WALKLITE "UE") (IDLE CAR "ue") (IDLE SUV "E")

(IDLE U "UE") (DRIVE WALKLITE "E") (DRIVE CAR "E") (DRIVE SEDAN "UE")

(DRIVE TRUCK "UE") (DRIVE VAN "UE") (DRIVE SUV "UE") (DRIVE CYAN "E")

(DRIVE BLUE "UE") (DRIVE MAGENTA "UE") (DRIVE R "UE") (DRIVE L "QUE")

(DRIVE F "QUE") (DRIVE B "QUE") (F WALKLITE "UE") (F CAR "Que") (F SEDAN "Q")

(F TRUCK "UE") (F VAN "UE") (F SUV "UE") (F CYAN "UE") (F R "Q") (F L "Q")

(F B "Q") (FL CAR "Q") (FL SEDAN "Q") (FL SUV "E") (FL CYAN "E") (FL R "QE")

(FL B "Q") (L PERSON "e") (L ADULT "e") (L MAGENTA "e") (L F "e")

(BL DONTWALK "u") (BR DONTWALK "e") (BR CAR "u") (BR ADULT "e") (R CAR "u")

(R PERSON "e") (R ADULT "e") (R CHILD "e") (R R "e") (FR WALKLITE "UE")

(FR CAR "QSCu") (FR SEDAN "UE") (FR TRUCK "UE") (FR VAN "UE") (FR SUV "UE")

(FR CYAN "E") (FR BLUE "E") (FR MAGENTA "E") (FR R "QU") (FR U "UE")

(FR L "QUE") (FR F "QUE") (FR B "UE") (60 WALKLITE "UE") (60 DONTWALK "e")

(60 CAR "E") (60 SEDAN "UE") (60 TRUCK "UE") (60 VAN "UE") (60 SUV "UE")

(60 CYAN "E") (60 BLUE "UE") (60 MAGENTA "UE") (60 R "UE") (60 L "QUE")

168

(60 F "QUE") (60 B "QUE") (70 WALKLITE "UEe") (70 DONTWALK "ue")

(70 CAR "Qud") (70 PERSON "e") (70 ADULT "e") (70 CHILD "e") (70 TRUCK "Ed")

(70 VAN "Ed") (70 SUV "Ed") (70 BLUE "E") (70 F "e") (70 B "Ed"))

83 minutes, starting at noon, sampling every 1.5 seconds

Video features:

Always: SIDEWALK BUILDING WALKBOX POLE LIGHT REDLIGHT YELLOWLIGHT GREENLIGHT

GRASS ROAD SKY CROSSWALK HOUSE OFFICE ABOVE BELOW LEFT RIGHT FRONT BACK

CONTACT RED YELLOW GREEN DARK BRIGHT 0D 8D 16D 24D 32D 40D 48D 56D

Sometimes: WALKLITE DONTWALK CAR PERSON ADULT CHILD SEDAN TRUCK VAN SUV

AMBULANCE TOWTRUCK CYAN BLUE MAGENTA R UR U L DL D DR F B

Never: BLUELIGHT POLICE 64D 72D 80D UL

Audio features:

Always:

Sometimes: CUCKOO IDLE DRIVE HONK TALK STEPS YELL SIREN ENGINE VOICE F FL L

BL BR R FR 40 50 60 70 80 90 100

Never: BRAKES CRASH SCREAM B

Video interval counts: F 290 R 256 L 241 B 222 BLUE 218 CYAN 198 MAGENTA 136

SEDAN 103 CHILD 95 VAN 70 DONTWALK 65 SUV 62 TRUCK 61 CAR 61 PERSON 42

ADULT 34 WALKLITE 23 U 6 UR 3 TOWTRUCK 3 AMBULANCE 3 DR 2 D 2 DL 2 56D 1 48D 1

40D 1 32D 1 24D 1 16D 1 8D 1 0D 1 BRIGHT 1 DARK 1 GREEN 1 YELLOW 1 RED 1

CONTACT 1 BACK 1 FRONT 1 RIGHT 1 LEFT 1 BELOW 1 ABOVE 1 OFFICE 1 HOUSE 1

CROSSWALK 1 SKY 1 ROAD 1 GRASS 1 GREENLIGHT 1 YELLOWLIGHT 1 REDLIGHT 1 LIGHT 1

POLE 1 WALKBOX 1 BUILDING 1 SIDEWALK 1 UL 0 80D 0 72D 0 64D 0 POLICE 0

BLUELIGHT 0

Audio interval counts: 70 399 L 175 R 171 BL 116 BR 113 FR 89 IDLE 88 VOICE 73

TALK 72 DRIVE 65 60 57 F 49 FL 38 CUCKOO 23 50 16 ENGINE 8 100 4 90 4 40 3

SIREN 3 STEPS 2 80 1 YELL 1 HONK 1 B 0 SCREAM 0 CRASH 0 BRAKES 0

Results:

((CUCKOO WALKLITE "QUuEe") (CUCKOO DONTWALK "eD") (CUCKOO CAR "ue")

(CUCKOO PERSON "ue") (CUCKOO ADULT "ue") (CUCKOO SEDAN "ue")

(CUCKOO R "e") (IDLE WALKLITE "UE") (IDLE CAR "ue") (IDLE SEDAN "u")

(IDLE TRUCK "E") (IDLE F "D") (DRIVE WALKLITE "E") (DRIVE CAR "E")

(DRIVE SEDAN "UE") (DRIVE TRUCK "UE") (DRIVE VAN "UE") (DRIVE SUV "UE")

(DRIVE CYAN "E") (DRIVE BLUE "UE") (DRIVE MAGENTA "E") (DRIVE R "QUE")

(DRIVE L "QUE") (DRIVE F "QUE") (DRIVE B "QUE") (TALK CYAN "E")

(VOICE CYAN "E") (F WALKLITE "UE") (F CAR "Que") (F SEDAN "Qe")

(F TRUCK "UE") (F VAN "UE") (F SUV "UE") (F CYAN "UE") (F BLUE "E") (F R "Q")

(F L "Q") (F B "Q") (FL CAR "Q") (FL SEDAN "Q") (FL SUV "UE") (FL CYAN "UE")

(FL R "E") (FL B "Q") (L L "e") (L F "e") (BL DONTWALK "e") (BR CAR "u")

(R CAR "Que") (R PERSON "e") (R ADULT "e") (R CHILD "e") (R CYAN "e")

(R R "e") (FR WALKLITE "UE") (FR CAR "QuE") (FR SEDAN "QE") (FR TRUCK "UE")

(FR VAN "UE") (FR SUV "UE") (FR CYAN "E") (FR BLUE "E") (FR R "Q")

(FR L "QUE") (FR F "QUE") (FR B "UE") (60 WALKLITE "UE") (60 CAR "E")

(60 SEDAN "UE") (60 TRUCK "UE") (60 VAN "UE") (60 SUV "UE") (60 CYAN "E")

(60 BLUE "UE") (60 MAGENTA "E") (60 R "QUE") (60 L "QUE") (60 F "QUE")

(60 B "QUE") (70 WALKLITE "UE") (70 DONTWALK "ue") (70 CAR "Qud")

(70 SEDAN "d") (70 TRUCK "Ed") (70 VAN "Ed") (70 SUV "Ed") (70 BLUE "E")

(70 R "Ee") (70 F "e") (70 B "UEd"))

83 minutes, starting at noon, sampling every 2.0 seconds

Video features:

Always: SIDEWALK BUILDING WALKBOX POLE LIGHT REDLIGHT YELLOWLIGHT GREENLIGHT

GRASS ROAD SKY CROSSWALK HOUSE OFFICE ABOVE BELOW LEFT RIGHT FRONT BACK

CONTACT RED YELLOW GREEN DARK BRIGHT 0D 8D 16D 24D 32D 40D 48D 56D

Sometimes: WALKLITE DONTWALK CAR PERSON ADULT CHILD SEDAN TRUCK VAN SUV

AMBULANCE TOWTRUCK CYAN BLUE MAGENTA R UR U UL L DL DR F B

Never: BLUELIGHT POLICE 64D 72D 80D D

Audio features:

Always:

Sometimes: CUCKOO IDLE DRIVE TALK STEPS YELL SIREN ENGINE VOICE F FL L BL BR

R FR 40 50 60 70 80 90 100

Never: HONK BRAKES CRASH SCREAM B

Video interval counts: F 281 R 242 L 228 B 210 BLUE 173 CYAN 158 MAGENTA 112

169

SEDAN 104 CHILD 71 VAN 66 TRUCK 59 CAR 59 SUV 58 PERSON 38 ADULT 29

DONTWALK 25 WALKLITE 23 TOWTRUCK 3 AMBULANCE 3 DR 2 U 2 DL 1 UL 1 UR 1 56D 1

48D 1 40D 1 32D 1 24D 1 16D 1 8D 1 0D 1 BRIGHT 1 DARK 1 GREEN 1 YELLOW 1 RED 1

CONTACT 1 BACK 1 FRONT 1 RIGHT 1 LEFT 1 BELOW 1 ABOVE 1 OFFICE 1 HOUSE 1

CROSSWALK 1 SKY 1 ROAD 1 GRASS 1 GREENLIGHT 1 YELLOWLIGHT 1 REDLIGHT 1 LIGHT 1

POLE 1 WALKBOX 1 BUILDING 1 SIDEWALK 1 D 0 80D 0 72D 0 64D 0 POLICE 0

BLUELIGHT 0

Audio interval counts: 70 367 L 176 R 168 BL 116 BR 113 IDLE 85 FR 74 VOICE 64

TALK 63 DRIVE 58 60 50 F 46 FL 32 CUCKOO 23 50 15 ENGINE 7 100 3 90 3 40 3

SIREN 3 STEPS 2 80 1 YELL 1 B 0 SCREAM 0 CRASH 0 BRAKES 0 HONK 0

Results:

((CUCKOO WALKLITE "QUuEe") (CUCKOO DONTWALK "sceD") (CUCKOO CAR "ue")

(CUCKOO PERSON "ue") (CUCKOO ADULT "ue") (CUCKOO SEDAN "ue")

(IDLE WALKLITE "UE") (IDLE CAR "ue") (IDLE TRUCK "E") (IDLE VAN "E")

(IDLE SUV "E") (IDLE CYAN "E") (IDLE F "D") (IDLE B "E")

(DRIVE WALKLITE "UE") (DRIVE DONTWALK "Q") (DRIVE CAR "E") (DRIVE SEDAN "UE")

(DRIVE TRUCK "UE") (DRIVE VAN "UE") (DRIVE SUV "UE") (DRIVE CYAN "E")

(DRIVE BLUE "UE") (DRIVE MAGENTA "UE") (DRIVE R "QUE") (DRIVE L "QUE")

(DRIVE F "QUE") (DRIVE B "QUE") (VOICE PERSON "e") (F WALKLITE "UE")

(F CAR "Que") (F SEDAN "Qce") (F TRUCK "UE") (F VAN "UE") (F SUV "UE")

(F CYAN "UE") (F BLUE "E") (F R "Q") (F L "Q") (F B "QU") (FL VAN "E")

(FL SUV "E") (FL CYAN "UE") (FL R "QE") (FL B "Q") (L CAR "Qu") (L L "e")

(L F "e") (BL CAR "e") (BR CAR "u") (R CAR "Qu") (R ADULT "e") (R CHILD "e")

(R MAGENTA "e") (R R "e") (FR WALKLITE "UE") (FR CAR "QuE") (FR SEDAN "QUE")

(FR TRUCK "UE") (FR VAN "UE") (FR SUV "UE") (FR CYAN "E") (FR BLUE "UE")

(FR MAGENTA "UE") (FR R "E") (FR L "QUE") (FR F "QUE") (FR B "QUE")

(60 WALKLITE "UE") (60 CAR "E") (60 SEDAN "UE") (60 TRUCK "UE") (60 VAN "UE")

(60 SUV "UE") (60 CYAN "E") (60 BLUE "UE") (60 MAGENTA "UE") (60 R "QUE")

(60 L "QUE") (60 F "QUE") (60 B "QUE") (70 WALKLITE "UE") (70 DONTWALK "Que")

(70 CAR "Qud") (70 PERSON "e") (70 CHILD "e") (70 TRUCK "E") (70 VAN "Ed")

(70 SUV "Ed") (70 BLUE "E") (70 R "e") (70 L "e") (70 F "e") (70 B "UEe"))

83 minutes, starting at midnight, sampling every 0.5 seconds

Video features:

Always: SIDEWALK BUILDING WALKBOX DONTWALK POLE LIGHT REDLIGHT YELLOWLIGHT

GREENLIGHT GRASS ROAD SKY CROSSWALK HOUSE OFFICE ABOVE BELOW LEFT RIGHT FRONT

BACK CONTACT RED YELLOW GREEN DARK BRIGHT 0D 8D 16D 24D 32D 40D 48D 56D

Sometimes: BLUELIGHT CAR PERSON ADULT CHILD SEDAN TRUCK VAN SUV AMBULANCE

POLICE CYAN BLUE MAGENTA R UR U UL L DR F B

Never: WALKLITE TOWTRUCK 64D 72D 80D DL D

Audio features:

Always:

Sometimes: IDLE DRIVE STEPS SIREN ENGINE F FL L BL BR R FR 40 50 60 70 90 100

Never: CUCKOO HONK BRAKES CRASH TALK YELL SCREAM VOICE B 80

Video interval counts: L 81 BLUE 77 F 72 CAR 72 R 63 B 56 SEDAN 48 CYAN 45

MAGENTA 37 PERSON 35 CHILD 28 VAN 12 TRUCK 10 ADULT 7 SUV 6 DR 2 UL 1 U 1 UR 1

56D 1 48D 1 40D 1 32D 1 24D 1 16D 1 8D 1 0D 1 BRIGHT 1 DARK 1 GREEN 1 YELLOW 1

RED 1 CONTACT 1 BACK 1 FRONT 1 RIGHT 1 LEFT 1 BELOW 1 ABOVE 1 POLICE 1

AMBULANCE 1 OFFICE 1 HOUSE 1 CROSSWALK 1 SKY 1 ROAD 1 GRASS 1 BLUELIGHT 1

GREENLIGHT 1 YELLOWLIGHT 1 REDLIGHT 1 LIGHT 1 POLE 1 DONTWALK 1 WALKBOX 1

BUILDING 1 SIDEWALK 1 D 0 DL 0 80D 0 72D 0 64D 0 TOWTRUCK 0 WALKLITE 0

Audio interval counts: 50 158 70 99 60 94 DRIVE 93 FR 82 FL 77 F 74 ENGINE 55

R 45 BR 43 L 39 IDLE 39 BL 35 40 31 STEPS 12 100 1 90 1 SIREN 1 80 0 B 0

VOICE 0 SCREAM 0 YELL 0 TALK 0 CRASH 0 BRAKES 0 HONK 0 CUCKOO 0

Results:

((IDLE CAR "ue") (IDLE SEDAN "e") (IDLE L "eD") (DRIVE CAR "QSCUE")

(DRIVE SEDAN "UE") (DRIVE VAN "E") (DRIVE CYAN "E") (DRIVE BLUE "UE")

(DRIVE MAGENTA "E") (DRIVE R "UE") (DRIVE L "UE") (DRIVE F "UE")

(DRIVE B "UE") (ENGINE CAR "QUE") (ENGINE SEDAN "UE") (ENGINE VAN "UE")

(ENGINE CYAN "E") (ENGINE BLUE "UE") (ENGINE MAGENTA "UE") (ENGINE R "UE")

(ENGINE L "UE") (ENGINE F "UE") (ENGINE B "UE") (F CAR "Que") (F SEDAN "e")

(F L "e") (F F "ce") (F B "e") (FL CAR "Q") (FL R "E") (FL L "eD") (L L "e")

(R R "eD") (R F "eD") (FR CAR "Q") (FR BLUE "E") (FR R "eD") (FR L "E")

(40 CAR "u") (50 R "E") (50 F "Ed") (50 B "D") (60 CAR "QSCUE")

(60 SEDAN "UE") (60 VAN "E") (60 CYAN "E") (60 BLUE "UE") (60 MAGENTA "E")

(60 R "UE") (60 L "UE") (60 F "UE") (60 B "UE") (70 CAR "Q") (70 F "eD")

170

(70 B "Ed"))

83 minutes, starting at 8am, sampling every 0.5 seconds

Video features:

Always: SIDEWALK BUILDING WALKBOX POLE LIGHT REDLIGHT YELLOWLIGHT GREENLIGHT

GRASS ROAD SKY CROSSWALK HOUSE OFFICE ABOVE BELOW LEFT RIGHT FRONT BACK

CONTACT RED YELLOW GREEN DARK BRIGHT 0D 8D 16D 24D 32D 40D 48D 56D

Sometimes: WALKLITE DONTWALK BLUELIGHT CAR PERSON ADULT CHILD SEDAN TRUCK VAN

SUV AMBULANCE TOWTRUCK POLICE CYAN BLUE MAGENTA R UR U UL L DL D DR F B

Never: 64D 72D 80D

Audio features:

Always:

Sometimes: CUCKOO IDLE DRIVE HONK BRAKES TALK STEPS YELL SIREN ENGINE VOICE

F FL L BL BR R FR 40 50 60 70 80 90 100

Never: CRASH SCREAM B

Video interval counts: CYAN 494 F 391 MAGENTA 370 L 342 R 334 B 310 BLUE 287

DONTWALK 184 CHILD 150 ADULT 127 PERSON 109 SEDAN 92 SUV 85 TRUCK 83 VAN 77

WALKLITE 27 CAR 23 U 14 UR 13 UL 10 DR 5 D 5 DL 5 BLUELIGHT 4 POLICE 3

TOWTRUCK 3 AMBULANCE 2 56D 1 48D 1 40D 1 32D 1 24D 1 16D 1 8D 1 0D 1 BRIGHT 1

DARK 1 GREEN 1 YELLOW 1 RED 1 CONTACT 1 BACK 1 FRONT 1 RIGHT 1 LEFT 1 BELOW 1

ABOVE 1 OFFICE 1 HOUSE 1 CROSSWALK 1 SKY 1 ROAD 1 GRASS 1 GREENLIGHT 1

YELLOWLIGHT 1 REDLIGHT 1 LIGHT 1 POLE 1 WALKBOX 1 BUILDING 1 SIDEWALK 1 80D 0

72D 0 64D 0

Audio interval counts: 70 436 VOICE 230 TALK 229 R 207 L 175 BR 119 BL 114

IDLE 86 FR 58 60 40 DRIVE 34 F 32 FL 30 CUCKOO 27 90 11 100 10 50 10 HONK 7

80 3 40 3 SIREN 3 YELL 2 ENGINE 1 STEPS 1 BRAKES 1 B 0 SCREAM 0 CRASH 0

Results:

((CUCKOO WALKLITE "QUuEe") (CUCKOO DONTWALK "eD") (CUCKOO CAR "ue")

(CUCKOO PERSON "ue") (CUCKOO ADULT "ue") (CUCKOO SEDAN "ue")

(CUCKOO SUV "e") (CUCKOO CYAN "e") (CUCKOO BLUE "ue") (CUCKOO L "u")

(IDLE WALKLITE "UE") (IDLE CAR "Que") (IDLE SEDAN "Qu") (IDLE TRUCK "E")

(IDLE SUV "U") (IDLE CYAN "E") (IDLE MAGENTA "E") (IDLE L "D")

(DRIVE WALKLITE "UE") (DRIVE TRUCK "UE") (DRIVE VAN "UE") (DRIVE SUV "QUE")

(DRIVE CYAN "QU") (DRIVE MAGENTA "E") (DRIVE R "U") (DRIVE L "QU")

(DRIVE F "QUE") (DRIVE B "QUE") (TALK TRUCK "d") (VOICE TRUCK "d")

(F TRUCK "U") (F SUV "UE") (F CYAN "E") (F MAGENTA "E") (F R "Q")

(FL SUV "UE") (FL CYAN "E") (FL R "E") (FL F "Q") (L PERSON "e")

(L ADULT "e") (L BLUE "e") (BL SEDAN "Q") (BR SEDAN "e") (R ADULT "e")

(R SEDAN "Que") (R R "e") (R U "E") (R F "e") (FR TRUCK "UE") (FR VAN "UE")

(FR SUV "UE") (FR MAGENTA "E") (FR L "U") (FR F "U") (60 WALKLITE "UE")

(60 TRUCK "UE") (60 VAN "UE") (60 SUV "UE") (60 CYAN "U") (60 MAGENTA "E")

(60 R "U") (60 L "UE") (60 F "UE") (60 B "UE") (70 WALKLITE "UE")

(70 DONTWALK "ue") (70 CAR "Q") (70 TRUCK "UE") (70 VAN "Ed") (70 SUV "E")

(70 CYAN "E") (70 MAGENTA "E") (70 B "QE"))

83 minutes, starting at 3pm, sampling every 0.5 seconds

Video features:

Always: SIDEWALK BUILDING WALKBOX POLE LIGHT REDLIGHT YELLOWLIGHT GREENLIGHT

GRASS ROAD SKY CROSSWALK HOUSE OFFICE ABOVE BELOW LEFT RIGHT FRONT BACK

CONTACT RED YELLOW GREEN DARK BRIGHT 0D 8D 16D 24D 32D 40D 48D 56D

Sometimes: WALKLITE DONTWALK BLUELIGHT CAR PERSON ADULT CHILD SEDAN TRUCK VAN

SUV AMBULANCE TOWTRUCK POLICE CYAN BLUE MAGENTA R UR U UL L DL D DR F B

Never: 64D 72D 80D

Audio features:

Always:

Sometimes: CUCKOO IDLE DRIVE HONK BRAKES CRASH TALK STEPS YELL SIREN ENGINE

VOICE F FL L BL BR R FR 40 50 60 70 80 90 100

Never: SCREAM B

Video interval counts: CYAN 518 BLUE 479 MAGENTA 410 L 376 F 368 R 358 B 319

DONTWALK 234 CHILD 165 SEDAN 82 TRUCK 78 PERSON 78 SUV 65 VAN 62 ADULT 47

WALKLITE 35 CAR 34 U 19 UR 15 DL 10 D 9 UL 9 DR 8 POLICE 7 BLUELIGHT 6

TOWTRUCK 5 AMBULANCE 4 56D 1 48D 1 40D 1 32D 1 24D 1 16D 1 8D 1 0D 1 BRIGHT 1

DARK 1 GREEN 1 YELLOW 1 RED 1 CONTACT 1 BACK 1 FRONT 1 RIGHT 1 LEFT 1 BELOW 1

ABOVE 1 OFFICE 1 HOUSE 1 CROSSWALK 1 SKY 1 ROAD 1 GRASS 1 GREENLIGHT 1

171

YELLOWLIGHT 1 REDLIGHT 1 LIGHT 1 POLE 1 WALKBOX 1 BUILDING 1 SIDEWALK 1 80D 0

72D 0 64D 0

Audio interval counts: 70 414 VOICE 254 TALK 253 R 151 L 143 BL 121 BR 99

IDLE 94 DRIVE 82 60 55 FR 51 CUCKOO 35 F 26 FL 15 50 13 90 12 100 10 SIREN 5

HONK 5 80 4 40 3 ENGINE 3 YELL 3 STEPS 2 CRASH 1 BRAKES 1 B 0 SCREAM 0

Results:

((CUCKOO WALKLITE "QUuEe") (CUCKOO DONTWALK "eD") (CUCKOO CAR "ue")

(CUCKOO PERSON "ue") (CUCKOO ADULT "ue") (CUCKOO CHILD "e")

(CUCKOO SEDAN "ue") (CUCKOO MAGENTA "ue") (CUCKOO L "E")

(CUCKOO B "E") (IDLE WALKLITE "UE") (IDLE CAR "ue") (IDLE SEDAN "e")

(IDLE TRUCK "U") (IDLE VAN "UE") (IDLE SUV "U") (IDLE CYAN "D")

(IDLE BLUE "D") (IDLE UR "UE") (IDLE U "E") (IDLE L "D")

(DRIVE WALKLITE "UE") (DRIVE SEDAN "QE") (DRIVE TRUCK "UE") (DRIVE VAN "UE")

(DRIVE SUV "UE") (DRIVE CYAN "D") (DRIVE BLUE "E") (DRIVE R "QUE")

(DRIVE UR "E") (DRIVE U "E") (DRIVE L "QUD") (DRIVE F "QUE") (DRIVE B "QUE")

(TALK WALKLITE "E") (TALK TRUCK "E") (TALK VAN "E") (TALK UR "E")

(TALK U "E") (TALK B "E") (VOICE WALKLITE "E") (VOICE TRUCK "E")

(VOICE VAN "E") (VOICE UR "E") (VOICE U "E") (VOICE B "E") (F CAR "Qe")

(FL CYAN "E") (L DONTWALK "e") (L PERSON "e") (L ADULT "e") (L L "e")

(BL DONTWALK "e") (BR SEDAN "e") (BR L "e") (R WALKLITE "E") (R PERSON "e")

(R UR "E") (R U "E") (FR WALKLITE "UE") (FR TRUCK "UE") (FR VAN "E")

(FR SUV "UE") (FR F "Q") (60 WALKLITE "UE") (60 TRUCK "UE") (60 VAN "UE")

(60 SUV "UE") (60 BLUE "UE") (60 R "QUE") (60 U "E") (60 L "UE") (60 F "QUE")

(60 B "UE") (70 WALKLITE "UE") (70 DONTWALK "ue") (70 CAR "Q") (70 CHILD "e")

(70 TRUCK "E") (70 VAN "Ed") (70 SUV "Ed") (70 B "E") (100 DONTWALK "e"))

B.2 Signal Map Learning

These are the results of two specialists learning to communicate using flattened sense

inputs from the simulator, used in Section 7.3.3. The relations between symbols in

each signal map are omitted (with one exception), as they are precisely identical to

that learned in the IIES test above.

83 minutes, starting at noon, sampling every 0.5 seconds

Audio Relations: [Omitted]

Video Relations: [Omitted]

Inflections: ((PRESENT PRESENT) (PRESENT MOTION))

((PRESENT PRESENT) (MOTION PRESENT))

Predictions:

T=1000 A=[C=1.57 I=0.32 U=312.0] V=[C=0.63 I=0.00 U=697.0]

T=2000 A=[C=4.02 I=8.51 U=285.0] V=[C=1.35 I=3.70 U=562.0]

T=3000 A=[C=3.08 I=13.86 U=337.0] V=[C=2.24 I=10.49 U=591.0]

T=4000 A=[C=3.12 I=14.63 U=149.0] V=[C=0.68 I=10.59 U=484.0]

T=5000 A=[C=2.72 I=11.76 U=179.0] V=[C=4.12 I=9.95 U=357.0]

T=6000 A=[C=1.87 I=13.95 U=196.0] V=[C=1.02 I=4.71 U=255.0]

T=7000 A=[C=1.03 I=6.79 U=135.0] V=[C=1.24 I=2.19 U=329.0]

T=8000 A=[C=0.88 I=12.16 U=191.0] V=[C=1.53 I=2.97 U=320.0]

T=9000 A=[C=1.26 I=16.54 U=232.0] V=[C=0.87 I=5.80 U=374.0]

T=10000 A=[C=0.95 I=24.20 U=306.0] V=[C=0.46 I=1.59 U=530.0]

Number of Relations:

(1 0 0) (2 0 0) (3 0 0) (4 0 0) (5 0 0) (6 0 0) (7 2 2) (8 2 2) (9 1 1)

(10 1 1) (11 1 1) (12 2 2) (13 4 4) (14 7 7) (15 11 11) (16 17 17) (17 20 20)

(18 20 20) (19 28 28) (20 28 28) (21 30 30) (22 38 38) (23 38 38) (24 39 39)

(25 39 39) (26 35 35) (27 40 40) (28 46 46) (29 46 46) (30 50 50) (31 49 49)

(32 56 56) (33 58 58) (34 58 58) (35 59 59) (36 59 59) (37 60 60) (38 60 60)

(39 62 62) (40 62 62) (41 63 63) (42 63 63) (43 64 64) (44 74 74) (45 80 80)

(46 81 81) (47 83 83) (48 83 83) (49 84 84) (50 84 84) (51 83 83) (52 83 83)

(53 88 88) (54 88 88) (55 89 89) (56 91 91) (57 96 96) (58 101 101) (59 96 96)

(60 96 96) (61 104 104) (62 113 113) (63 117 117) (64 123 123) (65 126 126)

(66 126 126) (67 126 126) (68 127 127) (69 127 127) (70 132 132) (71 129 129)

172

(72 131 131) (73 134 134) (74 131 131) (75 134 134) (76 133 133) (77 132 132)

(78 134 134) (79 134 134) (80 138 138) (81 133 133) (82 140 140) (83 142 142)

(84 144 144) (85 143 143) (86 144 144) (87 145 145) (88 148 148) (89 150 150)

(90 146 146) (91 144 144) (92 142 142) (93 142 142) (94 142 142) (95 152 152)

(96 157 157) (97 157 157) (98 158 158) (99 157 157) (100 156 156)

83 minutes, starting at noon, sampling every 1.0 seconds

Audio Relations: [Omitted]

Video Relations: [Omitted]

Inflections: ((PRESENT PRESENT) (PRESENT MOTION))

((PRESENT PRESENT) (MOTION PRESENT))

Predictions:

T=1000 A=[C=2.33 I=4.30 U=569.0] V=[C=4.77 I=6.79 U=981.0]

T=2000 A=[C=11.48 I=16.39 U=446.0] V=[C=5.07 I=34.35 U=786.0]

T=3000 A=[C=5.10 I=25.96 U=357.0] V=[C=6.95 I=29.42 U=488.0]

T=4000 A=[C=7.01 I=28.61 U=296.0] V=[C=2.77 I=7.88 U=552.0]

T=5000 A=[C=4.08 I=30.53 U=483.0] V=[C=2.75 I=4.09 U=693.0]

Number of Relations:

(1 0 0) (2 0 0) (3 1 1) (4 1 1) (5 2 2) (6 2 2) (7 3 3) (8 6 6) (9 17 17)

(10 21 21) (11 30 30) (12 31 31) (13 29 29) (14 37 37) (15 45 45) (16 51 51)

(17 56 56) (18 59 59) (19 60 60) (20 64 64) (21 69 69) (22 84 84) (23 90 90)

(24 91 91) (25 97 97) (26 90 90) (27 94 94) (28 95 95) (29 108 108)

(30 106 106) (31 114 114) (32 124 124) (33 126 126) (34 130 130) (35 131 131)

(36 134 134) (37 138 138) (38 144 144) (39 146 146) (40 145 145) (41 146 146)

(42 149 149) (43 150 150) (44 150 150) (45 156 156) (46 150 150) (47 150 150)

(48 158 158) (49 162 162) (50 164 164)

83 minutes, starting at noon, sampling every 1.5 seconds

Audio Relations: [Omitted]

Video Relations: [Omitted]

Inflections: ((PRESENT PRESENT) (PRESENT MOTION))

((PRESENT PRESENT) (MOTION PRESENT))

Predictions:

T=1000 A=[C=6.81 I=24.43 U=861.0] V=[C=10.26 I=32.55 U=1144.0]

T=2000 A=[C=25.02 I=33.85 U=498.0] V=[C=12.36 I=76.55 U=659.0]

T=3000 A=[C=13.71 I=40.54 U=484.0] V=[C=5.47 I=17.15 U=645.0]

Number of Relations:

(1 0 0) (2 0 0) (3 1 1) (4 1 1) (5 7 7) (6 21 21) (7 23 23) (8 35 35)

(9 41 41) (10 50 50) (11 56 56) (12 56 56) (13 61 61) (14 65 65) (15 82 82)

(16 82 82) (17 86 86) (18 89 89) (19 100 100) (20 106 106) (21 110 110)

(22 121 121) (23 123 123) (24 127 127) (25 132 132) (26 127 127) (27 133 133)

(28 143 143) (29 146 146) (30 150 150) (31 151 151) (32 157 157) (33 162 162)

83 minutes, starting at noon, sampling every 2.0 seconds

Audio Relations: [Omitted]

Video Relations: [Omitted]

Inflections: ((PRESENT PRESENT) (PRESENT MOTION))

((PRESENT PRESENT) (MOTION PRESENT))

Predictions:

T=1000 A=[C=10.10 I=50.42 U=1004.0] V=[C=11.06 I=54.78 U=1311.0]

T=2000 A=[C=25.08 I=68.34 U=668.0] V=[C=7.20 I=72.66 U=711.0]

Number of Relations:

(1 0 0) (2 1 1) (3 1 1) (4 5 5) (5 18 18) (6 24 24) (7 29 29) (8 40 40)

(9 41 41) (10 53 53) (11 70 70) (12 79 79) (13 81 81) (14 92 92) (15 102 102)

(16 115 115) (17 121 121) (18 134 134) (19 134 134) (20 135 135) (21 146 146)

(22 149 149) (23 157 157) (24 172 172) (25 176 176)

83 minutes, starting at midnight, sampling every 0.5 seconds

173

Audio Relations: [Omitted]

Video Relations: [Omitted]

Inflections: ((PRESENT PRESENT) (PRESENT TYPE))

((PRESENT PRESENT) (TYPE PRESENT))

Predictions:

T=1000 A=[C=0.00 I=0.00 U=246.0] V=[C=0.00 I=0.00 U=132.0]

T=2000 A=[C=0.62 I=0.68 U=164.0] V=[C=0.38 I=2.20 U=112.0]

T=3000 A=[C=1.93 I=2.39 U=147.0] V=[C=1.16 I=0.71 U=70.0]

T=4000 A=[C=2.61 I=2.55 U=197.0] V=[C=1.85 I=1.25 U=76.0]

T=5000 A=[C=2.29 I=2.30 U=122.0] V=[C=2.16 I=3.53 U=38.0]

T=6000 A=[C=5.02 I=3.89 U=206.0] V=[C=6.25 I=2.19 U=106.0]

T=7000 A=[C=5.92 I=2.74 U=179.0] V=[C=2.84 I=3.22 U=99.0]

T=8000 A=[C=3.42 I=10.69 U=101.0] V=[C=1.55 I=3.10 U=131.0]

T=9000 A=[C=2.82 I=4.46 U=104.0] V=[C=3.18 I=1.99 U=37.0]

T=10000 A=[C=4.01 I=4.05 U=154.0] V=[C=2.37 I=2.61 U=41.0]

Number of Relations:

(1 0 0) (2 0 0) (3 0 0) (4 0 0) (5 0 0) (6 0 0) (7 0 0) (8 0 0) (9 0 0)

(10 0 0) (11 4 4) (12 11 11) (13 11 11) (14 11 11) (15 14 14) (16 12 12)

(17 15 15) (18 17 17) (19 17 17) (20 25 25) (21 29 29) (22 32 32) (23 32 32)

(24 32 32) (25 32 32) (26 40 40) (27 42 42) (28 43 43) (29 43 43) (30 52 52)

(31 54 54) (32 57 57) (33 57 57) (34 57 57) (35 60 60) (36 62 62) (37 64 64)

(38 64 64) (39 65 65) (40 71 71) (41 71 71) (42 72 72) (43 73 73) (44 73 73)

(45 73 73) (46 73 73) (47 74 74) (48 74 74) (49 74 74) (50 74 74) (51 78 78)

(52 78 78) (53 78 78) (54 78 78) (55 73 73) (56 72 72) (57 72 72) (58 72 72)

(59 73 73) (60 74 74) (61 77 77) (62 80 80) (63 80 80) (64 79 79) (65 82 82)

(66 82 82) (67 83 83) (68 87 87) (69 87 87) (70 87 87) (71 87 87) (72 87 87)

(73 87 87) (74 87 87) (75 87 87) (76 87 87) (77 87 87) (78 86 86) (79 87 87)

(80 87 87) (81 87 87) (82 87 87) (83 90 90) (84 90 90) (85 90 90) (86 90 90)

(87 94 94) (88 94 94) (89 94 94) (90 94 94) (91 93 93) (92 93 93) (93 94 94)

(94 95 95) (95 95 95) (96 95 95) (97 95 95) (98 96 96) (99 96 96) (100 97 97)

83 minutes, starting at 8am, sampling every 0.5 seconds

Audio Relations: [Omitted]

Video Relations: [Omitted]

Inflections: ((PRESENT PRESENT) (PRESENT MOTION))

((PRESENT PRESENT) (MOTION PRESENT))

Predictions:

T=1000 A=[C=0.00 I=0.00 U=313.0] V=[C=0.52 I=0.00 U=659.0]

T=2000 A=[C=0.68 I=1.10 U=415.0] V=[C=3.15 I=1.62 U=698.0]

T=3000 A=[C=1.21 I=5.70 U=178.0] V=[C=4.65 I=4.17 U=625.0]

T=4000 A=[C=0.51 I=0.46 U=151.0] V=[C=4.85 I=12.83 U=567.0]

T=5000 A=[C=1.15 I=7.33 U=148.0] V=[C=3.92 I=4.34 U=540.0]

T=6000 A=[C=1.53 I=15.13 U=150.0] V=[C=1.39 I=3.14 U=501.0]

T=7000 A=[C=0.39 I=14.67 U=311.0] V=[C=4.63 I=14.36 U=389.0]

T=8000 A=[C=1.78 I=33.02 U=426.0] V=[C=4.71 I=3.37 U=480.0]

T=9000 A=[C=2.94 I=29.24 U=490.0] V=[C=1.94 I=22.15 U=326.0]

T=10000 A=[C=2.44 I=15.72 U=281.0] V=[C=0.92 I=4.73 U=360.0]

Number of Relations:

(1 0 0) (2 0 0) (3 0 0) (4 0 0) (5 0 0) (6 0 0) (7 0 0) (8 1 1) (9 1 1)

(10 1 1) (11 1 1) (12 1 1) (13 1 1) (14 1 1) (15 1 1) (16 1 1) (17 3 3)

(18 2 2) (19 4 4) (20 6 6) (21 8 8) (22 7 7) (23 10 10) (24 9 9) (25 9 9)

(26 10 10) (27 16 16) (28 16 16) (29 15 15) (30 15 15) (31 16 16) (32 17 17)

(33 18 18) (34 27 27) (35 28 28) (36 27 27) (37 26 26) (38 26 26) (39 27 27)

(40 27 27) (41 32 32) (42 31 31) (43 31 31) (44 33 33) (45 34 34) (46 36 36)

(47 36 36) (48 37 37) (49 38 38) (50 38 38) (51 38 38) (52 46 46) (53 46 46)

(54 50 50) (55 50 50) (56 53 53) (57 51 51) (58 51 51) (59 59 59) (60 60 60)

(61 67 67) (62 70 70) (63 72 72) (64 79 79) (65 80 80) (66 78 78) (67 77 77)

(68 77 77) (69 79 79) (70 80 80) (71 84 84) (72 84 84) (73 84 84) (74 85 85)

(75 87 87) (76 87 87) (77 88 88) (78 93 93) (79 93 93) (80 93 93) (81 94 94)

(82 97 97) (83 96 96) (84 93 93) (85 91 91) (86 93 93) (87 97 97) (88 98 98)

(89 97 97) (90 95 95) (91 98 98) (92 99 99) (93 101 101) (94 107 107)

(95 109 109) (96 112 112) (97 113 113) (98 115 115) (99 116 116) (100 118 118)

83 minutes, starting at 3pm, sampling every 0.5 seconds

174

Audio Relations: [Identical except missing (70 VAN "d") (VOICE VAN "E")

and (TALK VAN "E")]

Video Relations: [Omitted]

Inflections: ((PRESENT PRESENT) (PRESENT MOTION) (TYPE PRESENT) (TYPE MOTION))

((PRESENT PRESENT) (PRESENT TYPE) (MOTION PRESENT) (MOTION TYPE))

Predictions:

T=1000 A=[C=0.00 I=0.00 U=308.0] V=[C=0.09 I=0.00 U=733.0]

T=2000 A=[C=0.04 I=11.06 U=278.0] V=[C=0.79 I=1.07 U=589.0]

T=3000 A=[C=0.43 I=7.25 U=261.0] V=[C=0.29 I=7.71 U=626.0]

T=4000 A=[C=3.32 I=21.52 U=280.0] V=[C=1.71 I=4.41 U=593.0]

T=5000 A=[C=3.09 I=8.42 U=204.0] V=[C=2.38 I=9.19 U=612.0]

T=6000 A=[C=2.14 I=5.56 U=339.0] V=[C=1.27 I=8.35 U=676.0]

T=7000 A=[C=2.81 I=16.95 U=256.0] V=[C=1.10 I=9.44 U=610.0]

T=8000 A=[C=1.65 I=3.04 U=193.0] V=[C=3.05 I=13.55 U=545.0]

T=9000 A=[C=1.57 I=6.01 U=370.0] V=[C=3.72 I=9.52 U=432.0]

T=10000 A=[C=2.24 I=7.36 U=345.0] V=[C=1.39 I=4.63 U=301.0]

Number of Relations:

(1 0 0) (2 0 0) (3 0 0) (4 0 0) (5 0 0) (6 0 0) (7 1 1) (8 1 1) (9 1 1)

(10 1 1) (11 1 1) (12 1 1) (13 1 1) (14 5 5) (15 6 6) (16 5 5) (17 5 5)

(18 8 8) (19 8 8) (20 12 12) (21 12 12) (22 15 15) (23 16 16) (24 15 15)

(25 27 27) (26 30 30) (27 30 30) (28 28 28) (29 26 26) (30 26 26) (31 30 30)

(32 30 30) (33 31 31) (34 34 34) (35 35 35) (36 40 40) (37 43 43) (38 44 44)

(39 43 43) (40 43 43) (41 45 45) (42 49 49) (43 50 50) (44 50 50) (45 49 49)

(46 53 53) (47 54 54) (48 55 55) (49 53 53) (50 54 54) (51 54 54) (52 53 53)

(53 53 53) (54 53 53) (55 53 53) (56 55 55) (57 55 55) (58 56 56) (59 56 56)

(60 59 59) (61 59 59) (62 63 63) (63 66 66) (64 70 70) (65 70 70) (66 72 72)

(67 73 73) (68 72 72) (69 71 71) (70 71 71) (71 73 73) (72 74 74) (73 78 78)

(74 78 78) (75 85 85) (76 87 87) (77 87 87) (78 88 88) (79 95 95) (80 97 97)

(81 103 103) (82 101 101) (83 105 105) (84 104 104) (85 105 105) (86 110 110)

(87 110 110) (88 111 111) (89 111 111) (90 110 110) (91 116 116) (92 116 116)

(93 117 117) (94 120 120) (95 118 118) (96 124 124) (97 127 127) (98 127 130)

(99 125 128) (100 126 129)

5.6 hours, starting at noon, sampling every 0.5 seconds

Audio Results:

((CUCKOO WALKLITE "QUuEe") (CUCKOO DONTWALK "eD") (CUCKOO CAR "ue")

(CUCKOO PERSON "ue") (CUCKOO ADULT "ue") (CUCKOO CHILD "e")

(CUCKOO SEDAN "ue") (CUCKOO TRUCK "e") (CUCKOO VAN "e") (CUCKOO SUV "e")

(CUCKOO CYAN "e") (CUCKOO BLUE "e") (CUCKOO MAGENTA "e") (CUCKOO UR "E")

(CUCKOO U "E") (CUCKOO F "D") (CUCKOO B "E") (IDLE WALKLITE "UE")

(IDLE CAR "ue") (IDLE SEDAN "u") (IDLE TRUCK "UE") (IDLE VAN "UE")

(IDLE SUV "UE") (IDLE TOWTRUCK "E") (IDLE MAGENTA "E") (IDLE R "D")

(IDLE UR "UE") (IDLE U "UE") (IDLE UL "UE") (IDLE DL "UE") (IDLE D "UE")

(IDLE DR "UE") (DRIVE WALKLITE "UE") (DRIVE DONTWALK "u") (DRIVE CAR "QE")

(DRIVE SEDAN "QUE") (DRIVE TRUCK "UE") (DRIVE VAN "UE") (DRIVE SUV "UE")

(DRIVE TOWTRUCK "UE") (DRIVE CYAN "ED") (DRIVE BLUE "E") (DRIVE MAGENTA "E")

(DRIVE R "UE") (DRIVE UR "UE") (DRIVE U "UE") (DRIVE UL "UE") (DRIVE DL "UE")

(DRIVE D "UE") (DRIVE DR "UE") (DRIVE F "UED") (DRIVE B "UED")

(HONK DONTWALK "e") (HONK CAR "ue") (HONK SEDAN "e") (HONK BLUE "E")

(HONK MAGENTA "E") (HONK R "E") (HONK F "E") (TALK WALKLITE "E")

(TALK PERSON "e") (TALK ADULT "e") (TALK UR "E") (TALK U "E") (TALK UL "E")

(TALK DL "E") (TALK D "E") (TALK DR "UE") (TALK B "E") (ENGINE CAR "QUE")

(ENGINE SEDAN "UE") (ENGINE VAN "UE") (ENGINE B "E") (VOICE WALKLITE "E")

(VOICE PERSON "e") (VOICE ADULT "e") (VOICE UR "E") (VOICE U "E")

(VOICE UL "E") (VOICE DL "E") (VOICE D "E") (VOICE DR "UE") (VOICE B "E")

(F WALKLITE "UE") (F CAR "Que") (F SEDAN "Q") (F TRUCK "U") (F VAN "U")

(F SUV "U") (F TOWTRUCK "E") (F CYAN "E") (F BLUE "E") (F MAGENTA "E")

(F UR "UE") (F U "UE") (F D "UE") (F B "Q") (FL WALKLITE "UE") (FL CAR "Q")

(FL CHILD "E") (FL SEDAN "Q") (FL TRUCK "U") (FL VAN "UE") (FL SUV "U")

(FL BLUE "E") (FL R "QUE") (FL UR "UE") (FL U "UE") (FL DL "UE") (FL B "Q")

(L ADULT "e") (L UR "E") (L U "E") (L DL "E") (L D "E") (L DR "E")

(BL WALKLITE "UE") (BL DONTWALK "ue") (BL PERSON "e") (BL ADULT "e")

(BL CHILD "e") (BL UR "UE") (BL U "E") (BL UL "E") (BL DL "E") (BL D "E")

(BL DR "E") (BR WALKLITE "E") (BR DONTWALK "ue") (BR CAR "Qu")

(BR PERSON "e") (BR ADULT "e") (BR CYAN "D") (BR UR "E") (BR U "E")

(BR UL "E") (BR DL "E") (BR D "E") (BR DR "E") (R WALKLITE "E")

175

(R DONTWALK "u") (R CAR "ue") (R PERSON "e") (R ADULT "e") (R CHILD "e")

(R SEDAN "e") (R R "e") (R UR "E") (R U "E") (R UL "E") (R DL "E") (R D "E")

(R DR "E") (R F "e") (FR WALKLITE "UE") (FR CAR "Q") (FR TRUCK "U")

(FR VAN "UE") (FR SUV "UE") (FR TOWTRUCK "UE") (FR CYAN "E") (FR BLUE "E")

(FR MAGENTA "E") (FR UR "E") (FR U "UE") (FR DL "UE") (FR D "UE") (FR B "E")

(50 WALKLITE "UE") (50 VAN "UE") (50 SUV "UE") (50 TOWTRUCK "UE")

(50 CYAN "E") (50 BLUE "E") (50 MAGENTA "UE") (50 R "E") (50 F "E")

(60 WALKLITE "UE") (60 DONTWALK "ue") (60 CAR "QE") (60 SEDAN "UE")

(60 TRUCK "UE") (60 VAN "UE") (60 SUV "UE") (60 TOWTRUCK "UE") (60 CYAN "ED")

(60 BLUE "UE") (60 MAGENTA "E") (60 R "UE") (60 UR "UE") (60 U "UE")

(60 UL "UE") (60 DL "UE") (60 D "UE") (60 DR "UE") (60 F "UE") (60 B "UE")

(70 WALKLITE "UEe") (70 DONTWALK "ue") (70 CAR "Qud") (70 ADULT "e")

(70 CHILD "e") (70 TRUCK "UEd") (70 VAN "U") (70 SUV "UEd") (70 UR "E")

(70 U "E") (70 UL "E") (70 DL "E") (70 D "E") (70 DR "E") (70 F "e")

(70 B "E") (90 DONTWALK "e") (90 CAR "ue") (90 SEDAN "ue") (90 BLUE "E")

(90 MAGENTA "E") (100 DONTWALK "e") (100 CAR "ue") (100 SEDAN "e"))

Video Results:

((CUCKOO WALKLITE "QUuEe") (IDLE WALKLITE "ue") (DRIVE WALKLITE "ue")

(TALK WALKLITE "e") (VOICE WALKLITE "e") (F WALKLITE "ue") (FL WALKLITE "ue")

(BL WALKLITE "ue") (BR WALKLITE "e") (R WALKLITE "e") (FR WALKLITE "ue")

(50 WALKLITE "ue") (60 WALKLITE "ue") (70 WALKLITE "uEe")

(CUCKOO DONTWALK "Ed") (DRIVE DONTWALK "U") (HONK DONTWALK "E")

(BL DONTWALK "UE") (BR DONTWALK "UE") (R DONTWALK "U") (60 DONTWALK "UE")

(70 DONTWALK "UE") (90 DONTWALK "E") (100 DONTWALK "E") (CUCKOO CAR "UE")

(IDLE CAR "UE") (DRIVE CAR "Qe") (HONK CAR "UE") (ENGINE CAR "Que")

(F CAR "QUE") (FL CAR "Q") (BR CAR "QU") (R CAR "UE") (FR CAR "Q")

(60 CAR "Qe") (70 CAR "QUD") (90 CAR "UE") (100 CAR "UE")

(CUCKOO PERSON "UE") (TALK PERSON "E") (VOICE PERSON "E") (BL PERSON "E")

(BR PERSON "E") (R PERSON "E") (CUCKOO ADULT "UE") (TALK ADULT "E")

(VOICE ADULT "E") (L ADULT "E") (BL ADULT "E") (BR ADULT "E") (R ADULT "E")

(70 ADULT "E") (CUCKOO CHILD "E") (FL CHILD "e") (BL CHILD "E") (R CHILD "E")

(70 CHILD "E") (CUCKOO SEDAN "UE") (IDLE SEDAN "U") (DRIVE SEDAN "Que")

(HONK SEDAN "E") (ENGINE SEDAN "ue") (F SEDAN "Q") (FL SEDAN "Q")

(R SEDAN "E") (60 SEDAN "ue") (90 SEDAN "UE") (100 SEDAN "E")

(CUCKOO TRUCK "E") (IDLE TRUCK "ue") (DRIVE TRUCK "ue") (F TRUCK "u")

(FL TRUCK "u") (FR TRUCK "u") (60 TRUCK "ue") (70 TRUCK "ueD")

(CUCKOO VAN "E") (IDLE VAN "ue") (DRIVE VAN "ue") (ENGINE VAN "ue")

(F VAN "u") (FL VAN "ue") (FR VAN "ue") (50 VAN "ue") (60 VAN "ue")

(70 VAN "u") (CUCKOO SUV "E") (IDLE SUV "ue") (DRIVE SUV "ue") (F SUV "u")

(FL SUV "u") (FR SUV "ue") (50 SUV "ue") (60 SUV "ue") (70 SUV "ueD")

(IDLE TOWTRUCK "e") (DRIVE TOWTRUCK "ue") (F TOWTRUCK "e") (FR TOWTRUCK "ue")

(50 TOWTRUCK "ue") (60 TOWTRUCK "ue") (CUCKOO CYAN "E") (DRIVE CYAN "ed")

(F CYAN "e") (BR CYAN "d") (FR CYAN "e") (50 CYAN "e") (60 CYAN "ed")

(CUCKOO BLUE "E") (DRIVE BLUE "e") (HONK BLUE "e") (F BLUE "e") (FL BLUE "e")

(FR BLUE "e") (50 BLUE "e") (60 BLUE "ue") (90 BLUE "e") (CUCKOO MAGENTA "E")

(IDLE MAGENTA "e") (DRIVE MAGENTA "e") (HONK MAGENTA "e") (F MAGENTA "e")

(FR MAGENTA "e") (50 MAGENTA "ue") (60 MAGENTA "e") (90 MAGENTA "e")

(IDLE R "d") (DRIVE R "ue") (HONK R "e") (FL R "Que") (R R "E") (50 R "e")

(60 R "ue") (CUCKOO UR "e") (IDLE UR "ue") (DRIVE UR "ue") (TALK UR "e")

(VOICE UR "e") (F UR "ue") (FL UR "ue") (L UR "e") (BL UR "ue") (BR UR "e")

(R UR "e") (FR UR "e") (60 UR "ue") (70 UR "e") (CUCKOO U "e") (IDLE U "ue")

(DRIVE U "ue") (TALK U "e") (VOICE U "e") (F U "ue") (FL U "ue") (L U "e")

(BL U "e") (BR U "e") (R U "e") (FR U "ue") (60 U "ue") (70 U "e")

(IDLE UL "ue") (DRIVE UL "ue") (TALK UL "e") (VOICE UL "e") (BL UL "e")

(BR UL "e") (R UL "e") (60 UL "ue") (70 UL "e") (IDLE L "d") (DRIVE L "ue")

(HONK L "e") (FR L "e") (60 L "ue") (90 L "e") (IDLE DL "ue") (DRIVE DL "ue")

(TALK DL "e") (VOICE DL "e") (FL DL "ue") (L DL "e") (BL DL "e") (BR DL "e")

(R DL "e") (FR DL "ue") (60 DL "ue") (70 DL "e") (IDLE D "ue") (DRIVE D "ue")

(TALK D "e") (VOICE D "e") (F D "ue") (L D "e") (BL D "e") (BR D "e")

(R D "e") (FR D "ue") (60 D "ue") (70 D "e") (IDLE DR "ue") (DRIVE DR "ue")

(TALK DR "ue") (VOICE DR "ue") (L DR "e") (BL DR "e") (BR DR "e") (R DR "e")

(60 DR "ue") (70 DR "e") (CUCKOO F "d") (DRIVE F "ued") (HONK F "e")

(R F "E") (50 F "e") (60 F "ue") (70 F "E") (CUCKOO B "e") (DRIVE B "ued")

(TALK B "e") (ENGINE B "e") (VOICE B "e") (F B "Q") (FL B "Q") (FR B "e")

(60 B "ue") (70 B "e"))

Inflections: ((0 0)) ((0 0))

Predictions:

T=1000 A=[C=0.00 I=0.00 U=405.0] V=[C=0.00 I=0.00 U=703.0]

176

T=2000 A=[C=0.04 I=0.00 U=294.0] V=[C=1.04 I=2.00 U=631.0]

T=3000 A=[C=0.51 I=0.52 U=292.0] V=[C=1.09 I=4.26 U=428.0]

T=4000 A=[C=0.48 I=4.16 U=328.0] V=[C=1.78 I=10.11 U=532.0]

T=5000 A=[C=1.17 I=6.91 U=180.0] V=[C=1.37 I=6.08 U=486.0]

T=6000 A=[C=3.31 I=13.76 U=288.0] V=[C=1.90 I=1.99 U=398.0]

T=7000 A=[C=0.87 I=11.64 U=141.0] V=[C=2.12 I=4.29 U=388.0]

T=8000 A=[C=0.94 I=10.97 U=119.0] V=[C=1.93 I=3.46 U=404.0]

T=9000 A=[C=0.00 I=0.25 U=306.0] V=[C=0.94 I=18.70 U=153.0]

T=10000 A=[C=0.00 I=0.00 U=116.0] V=[C=0.14 I=10.22 U=69.0]

T=11000 A=[C=0.17 I=14.15 U=369.0] V=[C=2.29 I=8.84 U=127.0]

T=12000 A=[C=0.56 I=0.41 U=598.0] V=[C=2.88 I=20.94 U=180.0]

T=13000 A=[C=3.84 I=29.41 U=336.0] V=[C=1.33 I=16.88 U=204.0]

T=14000 A=[C=2.86 I=68.85 U=193.0] V=[C=0.29 I=2.72 U=382.0]

T=15000 A=[C=10.60 I=28.07 U=307.0] V=[C=0.62 I=3.00 U=607.0]

T=16000 A=[C=1.70 I=28.58 U=204.0] V=[C=1.01 I=1.05 U=278.0]

T=17000 A=[C=1.15 I=12.22 U=195.0] V=[C=0.97 I=3.27 U=372.0]

T=18000 A=[C=0.35 I=24.81 U=139.0] V=[C=0.30 I=8.01 U=233.0]

T=19000 A=[C=0.75 I=21.10 U=138.0] V=[C=0.51 I=7.86 U=406.0]

T=20000 A=[C=2.52 I=16.41 U=203.0] V=[C=0.30 I=0.52 U=398.0]

T=21000 A=[C=0.44 I=7.84 U=71.0] V=[C=0.37 I=0.46 U=326.0]

T=22000 A=[C=0.54 I=12.92 U=65.0] V=[C=0.29 I=0.37 U=320.0]

T=23000 A=[C=1.21 I=10.15 U=116.0] V=[C=0.18 I=2.59 U=213.0]

T=24000 A=[C=0.28 I=8.53 U=148.0] V=[C=0.36 I=1.17 U=291.0]

T=25000 A=[C=0.31 I=11.26 U=100.0] V=[C=0.21 I=0.64 U=251.0]

T=26000 A=[C=0.70 I=6.47 U=174.0] V=[C=0.79 I=0.86 U=225.0]

T=27000 A=[C=0.72 I=42.47 U=111.0] V=[C=1.17 I=1.29 U=155.0]

T=28000 A=[C=0.90 I=12.30 U=195.0] V=[C=0.45 I=24.16 U=163.0]

T=29000 A=[C=0.09 I=2.95 U=60.0] V=[C=0.54 I=16.52 U=66.0]

T=30000 A=[C=0.50 I=1.50 U=64.0] V=[C=0.42 I=21.83 U=65.0]

T=31000 A=[C=0.02 I=0.42 U=81.0] V=[C=0.72 I=12.61 U=19.0]

T=32000 A=[C=0.00 I=0.10 U=87.0] V=[C=0.31 I=23.64 U=7.0]

T=33000 A=[C=1.16 I=0.33 U=150.0] V=[C=0.23 I=17.04 U=145.0]

T=34000 A=[C=0.65 I=6.91 U=112.0] V=[C=1.66 I=9.50 U=327.0]

T=35000 A=[C=0.00 I=3.00 U=100.0] V=[C=0.59 I=11.91 U=81.0]

T=36000 A=[C=0.00 I=3.00 U=74.0] V=[C=0.89 I=13.50 U=53.0]

T=37000 A=[C=0.00 I=2.50 U=46.0] V=[C=0.95 I=11.81 U=138.0]

T=38000 A=[C=0.01 I=0.00 U=73.0] V=[C=1.35 I=7.36 U=69.0]

T=39000 A=[C=0.00 I=2.50 U=115.0] V=[C=1.01 I=14.51 U=64.0]

T=40000 A=[C=0.00 I=0.00 U=139.0] V=[C=0.82 I=8.61 U=90.0]

Number of Relations:

(1 0 0) (2 0 0) (3 0 0) (4 0 0) (5 0 0) (6 0 0) (7 0 0) (8 0 0) (9 0 0)

(10 0 0) (11 0 0) (12 0 0) (13 0 0) (14 0 0) (15 0 0) (16 8 8) (17 9 10)

(18 10 11) (19 10 11) (20 11 12) (21 15 19) (22 19 23) (23 19 23) (24 21 25)

(25 19 24) (26 20 25) (27 21 28) (28 22 29) (29 23 30) (30 26 33) (31 22 28)

(32 34 41) (33 39 46) (34 40 47) (35 41 48) (36 43 49) (37 46 52) (38 47 54)

(39 54 61) (40 57 64) (41 65 71) (42 63 69) (43 63 69) (44 66 73) (45 68 75)

(46 68 75) (47 69 76) (48 70 77) (49 69 76) (50 69 76) (51 80 87) (52 80 87)

(53 80 87) (54 80 87) (55 80 88) (56 82 90) (57 83 91) (58 88 96) (59 88 96)

(60 88 95) (61 90 98) (62 92 100) (63 92 100) (64 92 100) (65 92 100)

(66 92 100) (67 96 104) (68 97 105) (69 100 108) (70 101 109) (71 102 110)

(72 103 111) (73 104 112) (74 106 114) (75 106 114) (76 105 113) (77 102 110)

(78 102 110) (79 102 110) (80 101 109) (81 99 106) (82 99 105) (83 99 105)

(84 99 105) (85 98 104) (86 98 104) (87 98 104) (88 98 104) (89 99 105)

(90 99 105) (91 99 105) (92 99 105) (93 99 105) (94 99 105) (95 99 105)

(96 99 105) (97 99 105) (98 99 105) (99 99 105) (100 98 104) (101 98 104)

(102 98 104) (103 98 104) (104 98 104) (105 99 105) (106 99 105) (107 100 106)

(108 102 108) (109 102 108) (110 104 110) (111 103 109) (112 103 110)

(113 108 115) (114 107 114) (115 108 115) (116 110 118) (117 112 120)

(118 113 121) (119 118 126) (120 120 128) (121 119 127) (122 120 129)

(123 125 134) (124 128 137) (125 128 137) (126 127 136) (127 132 142)

(128 133 143) (129 134 144) (130 138 148) (131 139 150) (132 138 149)

(133 137 148) (134 138 149) (135 140 151) (136 145 156) (137 145 156)

(138 147 158) (139 147 157) (140 147 157) (141 145 155) (142 143 153)

(143 138 148) (144 137 148) (145 138 148) (146 140 149) (147 140 149)

(148 140 149) (149 141 150) (150 144 153) (151 146 155) (152 148 157)

(153 146 155) (154 149 158) (155 149 159) (156 148 158) (157 148 158)

(158 149 158) (159 150 159) (160 156 165) (161 155 164) (162 156 165)

(163 157 166) (164 161 170) (165 161 170) (166 163 172) (167 167 176)

177

(168 172 181) (169 173 182) (170 175 184) (171 178 187) (172 179 188)

(173 180 189) (174 179 188) (175 181 190) (176 183 192) (177 181 190)

(178 184 193) (179 182 191) (180 184 194) (181 184 193) (182 184 193)

(183 184 193) (184 185 194) (185 190 199) (186 189 198) (187 186 195)

(188 186 195) (189 187 196) (190 187 196) (191 184 194) (192 186 196)

(193 192 203) (194 193 204) (195 196 207) (196 199 210) (197 199 210)

(198 202 213) (199 204 215) (200 205 216) (201 205 216) (202 205 216)

(203 205 216) (204 207 218) (205 207 218) (206 208 219) (207 206 216)

(208 205 215) (209 205 216) (210 204 215) (211 207 218) (212 211 222)

(213 211 222) (214 211 222) (215 211 222) (216 211 222) (217 211 222)

(218 216 227) (219 221 232) (220 232 243) (221 230 241) (222 232 243)

(223 233 244) (224 233 244) (225 234 245) (226 234 245) (227 245 256)

(228 245 256) (229 246 257) (230 248 259) (231 248 259) (232 248 259)

(233 249 259) (234 244 253) (235 244 253) (236 247 257) (237 252 261)

(238 252 261) (239 260 269) (240 260 269) (241 262 271) (242 265 274)

(243 265 274) (244 265 274) (245 269 279) (246 270 280) (247 272 281)

(248 271 280) (249 273 282) (250 271 280) (251 276 286) (252 286 296)

(253 287 297) (254 285 295) (255 286 296) (256 290 300) (257 291 301)

(258 292 302) (259 292 302) (260 292 302) (261 299 309) (262 300 310)

(263 296 306) (264 297 307) (265 296 306) (266 298 308) (267 298 308)

(268 302 312) (269 304 314) (270 307 317) (271 307 317) (272 306 316)

(273 304 314) (274 304 314) (275 307 317) (276 313 322) (277 315 324)

(278 317 325) (279 316 324) (280 316 324) (281 316 324) (282 315 323)

(283 315 323) (284 314 322) (285 314 322) (286 314 322) (287 314 322)

(288 313 321) (289 314 322) (290 314 322) (291 314 322) (292 314 322)

(293 314 322) (294 314 322) (295 314 322) (296 314 323) (297 314 323)

(298 314 323) (299 314 322) (300 314 322) (301 314 323) (302 316 325)

(303 316 325) (304 316 324) (305 316 324) (306 316 324) (307 316 324)

(308 316 324) (309 316 324) (310 316 324) (311 316 324) (312 317 325)

(313 317 325) (314 317 325) (315 317 325) (316 317 325) (317 316 324)

(318 315 323) (319 315 323) (320 315 323) (321 315 323) (322 315 323)

(323 315 323) (324 315 323) (325 315 323) (326 315 323) (327 315 323)

(328 317 325) (329 317 325) (330 315 323) (331 314 323) (332 314 323)

(333 315 324) (334 314 322) (335 317 325) (336 320 328) (337 321 329)

(338 322 330) (339 325 333) (340 327 336) (341 327 336) (342 327 336)

(343 327 336) (344 327 336) (345 331 340) (346 332 341) (347 332 341)

(348 332 341) (349 332 341) (350 332 341) (351 332 341) (352 332 341)

(353 332 341) (354 332 341) (355 332 341) (356 332 341) (357 332 341)

(358 331 340) (359 331 340) (360 331 340) (361 330 339) (362 330 339)

(363 330 339) (364 330 339) (365 331 340) (366 330 339) (367 330 339)

(368 330 339) (369 330 339) (370 331 340) (371 331 340) (372 331 340)

(373 329 337) (374 329 337) (375 329 337) (376 329 337) (377 329 337)

(378 329 337) (379 330 338) (380 330 338) (381 330 338) (382 329 337)

(383 331 339) (384 329 337) (385 329 337) (386 329 337) (387 329 337)

(388 330 338) (389 330 338) (390 330 338) (391 330 338) (392 330 338)

(393 330 338) (394 330 338) (395 330 338) (396 330 338) (397 331 339)

(398 332 340) (399 331 339) (400 330 338)

B.3 Focus Learning

These are the results of two specialists learning to communicate using reflex-driven

focus of attention, used in Section 8.3.

83 minutes, starting at noon, sampling every 0.5 seconds, 4 foci, 1 request
per sample

Audio Results:

((IDLE CAR "ue") (IDLE SEDAN "e") (IDLE RED "e") (IDLE GREEN "E")

(IDLE BLUE "e") (IDLE DARK "ue") (IDLE 0D "e") (IDLE 8D "ue")

(DRIVE CAR "QUuEe") (DRIVE SEDAN "QUEe") (DRIVE TRUCK "UE") (DRIVE VAN "UEe")

(DRIVE SUV "UE") (DRIVE RED "E") (DRIVE YELLOW "E") (DRIVE GREEN "E")

(DRIVE CYAN "E") (DRIVE BLUE "UE") (DRIVE MAGENTA "E") (DRIVE DARK "QUuEe")

178

(DRIVE 0D "UEe") (DRIVE 8D "QUuEe") (DRIVE 16D "UE") (DRIVE 24D "UE")

(DRIVE R "UEe") (DRIVE L "UEe") (DRIVE F "UEe") (DRIVE B "UEe")

(STEPS PERSON "QUuEe") (STEPS ADULT "QUuEe") (STEPS CHILD "UEe")

(STEPS RED "E") (STEPS YELLOW "E") (STEPS GREEN "E") (STEPS CYAN "E")

(STEPS BLUE "E") (STEPS MAGENTA "Ee") (STEPS DARK "uEe") (STEPS 0D "uEe")

(STEPS 8D "uEe") (STEPS 16D "E") (STEPS R "E") (STEPS L "E") (STEPS F "E")

(STEPS B "E") (ENGINE CAR "QUuEe") (ENGINE SEDAN "QUEe") (ENGINE TRUCK "UE")

(ENGINE VAN "UE") (ENGINE SUV "UE") (ENGINE RED "E") (ENGINE YELLOW "E")

(ENGINE GREEN "UE") (ENGINE CYAN "UE") (ENGINE BLUE "UE")

(ENGINE MAGENTA "E") (ENGINE DARK "QUuEe") (ENGINE 0D "QUEe")

(ENGINE 8D "QUuEe") (ENGINE 16D "UE") (ENGINE 24D "UE") (ENGINE R "UEe")

(ENGINE L "UEe") (ENGINE F "UE") (ENGINE B "UEe") (F CAR "uEe")

(F PERSON "UEe") (F ADULT "UEe") (F CHILD "UE") (F SEDAN "Ee")

(F TRUCK "UEe") (F VAN "E") (F SUV "UE") (F RED "UEe") (F YELLOW "UE")

(F GREEN "UE") (F CYAN "UE") (F BLUE "E") (F MAGENTA "E") (F DARK "QuEe")

(F 0D "Ee") (F 8D "QuEe") (F 16D "UE") (F 24D "UE") (F R "UEe") (F L "Ee")

(F F "E") (F B "Ee") (FL CAR "uEe") (FL PERSON "Ee") (FL ADULT "E")

(FL SEDAN "Ee") (FL TRUCK "Ee") (FL VAN "Ee") (FL SUV "Ee") (FL RED "E")

(FL YELLOW "Ee") (FL GREEN "E") (FL CYAN "E") (FL BLUE "E") (FL MAGENTA "E")

(FL DARK "ue") (FL 0D "Ee") (FL 8D "ue") (FL 16D "E") (FL 24D "E")

(FL R "Ee") (FL L "e") (FL F "Ee") (FL B "Ee") (L CAR "e") (L SEDAN "e")

(L DARK "e") (L 8D "eD") (L L "eD") (L F "eD") (BL B "E") (BR SEDAN "E")

(BR R "E") (BR F "E") (R CAR "eD") (R SEDAN "e") (R DARK "ue") (R 16D "eD")

(R 24D "eD") (R R "eD") (R F "eD") (FR CAR "uEe") (FR PERSON "Ee")

(FR ADULT "Ee") (FR SEDAN "Ee") (FR TRUCK "Ee") (FR VAN "Ee") (FR SUV "Ee")

(FR RED "E") (FR YELLOW "E") (FR GREEN "E") (FR CYAN "E") (FR BLUE "E")

(FR MAGENTA "E") (FR DARK "uEe") (FR 0D "Ee") (FR 8D "uEe") (FR 16D "E")

(FR 24D "UE") (FR R "e") (FR L "Ee") (FR F "Ee") (FR B "Ee") (40 CAR "e")

(40 PERSON "Ee") (40 ADULT "Ee") (40 CHILD "E") (40 SEDAN "e") (40 RED "Ee")

(40 YELLOW "E") (40 GREEN "E") (40 CYAN "E") (40 BLUE "E") (40 MAGENTA "E")

(40 DARK "ue") (40 0D "uEe") (40 8D "ue") (50 CAR "ue") (50 PERSON "UEe")

(50 ADULT "UEe") (50 CHILD "UE") (50 SEDAN "Ee") (50 VAN "E") (50 SUV "E")

(50 RED "E") (50 YELLOW "E") (50 GREEN "E") (50 CYAN "E") (50 BLUE "E")

(50 MAGENTA "UE") (50 DARK "uEe") (50 0D "uEe") (50 8D "uEe") (50 16D "E")

(50 24D "E") (50 R "Ee") (50 L "Ee") (50 F "E") (50 B "e") (60 CAR "QUuEe")

(60 SEDAN "UEe") (60 TRUCK "UE") (60 VAN "UEe") (60 SUV "UE") (60 RED "E")

(60 YELLOW "E") (60 GREEN "E") (60 CYAN "UE") (60 BLUE "UE") (60 MAGENTA "E")

(60 DARK "QUuEe") (60 0D "UEe") (60 8D "QUuEe") (60 16D "UE") (60 24D "UE")

(60 R "UEe") (60 L "UEe") (60 F "UEe") (60 B "UEe") (70 CAR "uEe")

(70 SEDAN "Ee") (70 TRUCK "Ee") (70 VAN "Ee") (70 SUV "Ee") (70 RED "e")

(70 YELLOW "e") (70 GREEN "e") (70 BLUE "E") (70 DARK "uEe") (70 0D "e")

(70 8D "ue") (70 16D "QUEe") (70 24D "UE") (70 R "Ee") (70 L "Ee") (70 F "e")

(70 B "Ee"))

Video Results:

((IDLE CAR "UE") (DRIVE CAR "QUuEe") (ENGINE CAR "QUuEe") (F CAR "UEe")

(FL CAR "UEe") (L CAR "E") (R CAR "Ed") (FR CAR "UEe") (40 CAR "E")

(50 CAR "UE") (60 CAR "QUuEe") (70 CAR "UEe") (STEPS PERSON "QUuEe")

(F PERSON "uEe") (FL PERSON "Ee") (FR PERSON "Ee") (40 PERSON "Ee")

(50 PERSON "uEe") (STEPS ADULT "QUuEe") (F ADULT "uEe") (FL ADULT "e")

(FR ADULT "Ee") (40 ADULT "Ee") (50 ADULT "uEe") (STEPS CHILD "uEe")

(F CHILD "ue") (40 CHILD "e") (50 CHILD "ue") (IDLE SEDAN "E")

(DRIVE SEDAN "QuEe") (ENGINE SEDAN "QuEe") (F SEDAN "Ee") (FL SEDAN "Ee")

(L SEDAN "E") (BR SEDAN "e") (R SEDAN "E") (FR SEDAN "Ee") (40 SEDAN "E")

(50 SEDAN "Ee") (60 SEDAN "uEe") (70 SEDAN "Ee") (DRIVE TRUCK "ue")

(ENGINE TRUCK "ue") (F TRUCK "uEe") (FL TRUCK "Ee") (FR TRUCK "Ee")

(60 TRUCK "ue") (70 TRUCK "Ee") (DRIVE VAN "uEe") (ENGINE VAN "ue")

(F VAN "e") (FL VAN "Ee") (FR VAN "Ee") (50 VAN "e") (60 VAN "uEe")

(70 VAN "Ee") (DRIVE SUV "ue") (ENGINE SUV "ue") (F SUV "ue") (FL SUV "Ee")

(FR SUV "Ee") (50 SUV "e") (60 SUV "ue") (70 SUV "Ee") (IDLE RED "E")

(DRIVE RED "e") (STEPS RED "e") (ENGINE RED "e") (F RED "uEe") (FL RED "e")

(FR RED "e") (40 RED "Ee") (50 RED "e") (60 RED "e") (70 RED "E")

(DRIVE YELLOW "e") (STEPS YELLOW "e") (ENGINE YELLOW "e") (F YELLOW "ue")

(FL YELLOW "Ee") (FR YELLOW "e") (40 YELLOW "e") (50 YELLOW "e")

(60 YELLOW "e") (70 YELLOW "E") (IDLE GREEN "e") (DRIVE GREEN "e")

(STEPS GREEN "e") (ENGINE GREEN "ue") (F GREEN "ue") (FL GREEN "e")

(FR GREEN "e") (40 GREEN "e") (50 GREEN "e") (60 GREEN "e") (70 GREEN "E")

(DRIVE CYAN "e") (STEPS CYAN "e") (ENGINE CYAN "ue") (F CYAN "ue")

(FL CYAN "e") (FR CYAN "e") (40 CYAN "e") (50 CYAN "e") (60 CYAN "ue")

179

(IDLE BLUE "E") (DRIVE BLUE "ue") (STEPS BLUE "e") (ENGINE BLUE "ue")

(F BLUE "e") (FL BLUE "e") (FR BLUE "e") (40 BLUE "e") (50 BLUE "e")

(60 BLUE "ue") (70 BLUE "e") (DRIVE MAGENTA "e") (STEPS MAGENTA "Ee")

(ENGINE MAGENTA "e") (F MAGENTA "e") (FL MAGENTA "e") (FR MAGENTA "e")

(40 MAGENTA "e") (50 MAGENTA "ue") (60 MAGENTA "e") (IDLE DARK "UE")

(DRIVE DARK "QUuEe") (STEPS DARK "UEe") (ENGINE DARK "QUuEe") (F DARK "QUEe")

(FL DARK "UE") (L DARK "E") (R DARK "UE") (FR DARK "UEe") (40 DARK "UE")

(50 DARK "UEe") (60 DARK "QUuEe") (70 DARK "UEe") (IDLE 0D "E")

(DRIVE 0D "uEe") (STEPS 0D "UEe") (ENGINE 0D "QuEe") (F 0D "Ee") (FL 0D "Ee")

(FR 0D "Ee") (40 0D "UEe") (50 0D "UEe") (60 0D "uEe") (70 0D "E")

(IDLE 8D "UE") (DRIVE 8D "QUuEe") (STEPS 8D "UEe") (ENGINE 8D "QUuEe")

(F 8D "QUEe") (FL 8D "UE") (L 8D "Ed") (FR 8D "UEe") (40 8D "UE")

(50 8D "UEe") (60 8D "QUuEe") (70 8D "UE") (DRIVE 16D "ue") (STEPS 16D "e")

(ENGINE 16D "ue") (F 16D "ue") (FL 16D "e") (R 16D "Ed") (FR 16D "e")

(50 16D "e") (60 16D "ue") (70 16D "QuEe") (DRIVE 24D "ue") (ENGINE 24D "ue")

(F 24D "ue") (FL 24D "e") (R 24D "Ed") (FR 24D "ue") (50 24D "e")

(60 24D "ue") (70 24D "ue") (DRIVE R "uEe") (STEPS R "e") (ENGINE R "uEe")

(F R "uEe") (FL R "Ee") (BR R "e") (R R "Ed") (FR R "E") (50 R "Ee")

(60 R "uEe") (70 R "Ee") (DRIVE L "uEe") (STEPS L "e") (ENGINE L "uEe")

(F L "Ee") (FL L "E") (L L "Ed") (FR L "Ee") (50 L "Ee") (60 L "uEe")

(70 L "Ee") (DRIVE F "uEe") (STEPS F "e") (ENGINE F "ue") (F F "e")

(FL F "Ee") (L F "Ed") (BR F "e") (R F "Ed") (FR F "Ee") (50 F "e")

(60 F "uEe") (70 F "E") (DRIVE B "uEe") (STEPS B "e") (ENGINE B "uEe")

(F B "Ee") (FL B "Ee") (BL B "e") (FR B "Ee") (50 B "E") (60 B "uEe")

(70 B "Ee"))

Inflections: NIL NIL

Number of Relations:

(1 0 0) (2 32 32) (3 88 88) (4 103 103) (5 133 133) (6 149 149) (7 175 175)

(8 205 205) (9 234 234) (10 234 234) (11 252 252) (12 264 264) (13 261 261)

(14 265 265) (15 280 280) (16 279 279) (17 287 287) (18 303 303) (19 311 311)

(20 320 320) (21 326 326) (22 332 332) (23 338 338) (24 337 337) (25 339 339)

(26 340 340) (27 348 348) (28 348 348) (29 358 358) (30 360 360) (31 367 367)

(32 368 368) (33 368 368) (34 374 374) (35 377 377) (36 373 373) (37 375 375)

(38 379 379) (39 383 383) (40 389 389) (41 386 386) (42 390 390) (43 390 390)

(44 390 390) (45 389 389) (46 392 392) (47 400 400) (48 402 402) (49 400 400)

(50 401 401) (51 403 403) (52 405 405) (53 407 407) (54 407 407) (55 408 408)

(56 412 412) (57 412 412) (58 414 414) (59 417 417) (60 417 417) (61 416 416)

(62 416 416) (63 417 417) (64 420 420) (65 426 426) (66 426 426) (67 429 429)

(68 425 425) (69 427 427) (70 437 437) (71 434 434) (72 434 434) (73 434 434)

(74 432 432) (75 431 431) (76 431 431) (77 433 433) (78 434 434) (79 435 435)

(80 436 436) (81 440 440) (82 438 438) (83 439 439) (84 439 439) (85 441 441)

(86 441 441) (87 440 440) (88 442 442) (89 445 445) (90 443 443) (91 441 441)

(92 444 444) (93 443 443) (94 443 443) (95 446 446) (96 441 441) (97 439 439)

(98 446 446) (99 448 448) (100 448 448)

180

Appendix C

Data Sheets

This appendix contains the data sheets for devices used in this dissertation. See

Chapter 5 for an explanation of the specifications in these data sheets.

C.1 Distributed Map

A distributed map is a device for dynamically creating communication paths between

elements of a set A and elements of another set B. These communication paths act as

a one-to-one mapping between subsets of A and B, carrying signals in either direction.

C.1.1 Interface Specification

Conditions A distributed map connects two sets of identical elements, A and B.

The two sets are not initially aligned with one another and may be of different sizes.

Three types of operations can be carried out on a distributed map:

• Connect: Create a connection between an element a ∈ A and another element

b ∈ B, severing any previous connections to a or b.

• Disconnect: Disconnect a single element from its connection, if any.

• Propagate: Copy all the values held by elements in A to their corresponding

elements in B (or vice versa).

Range of Behavior The range behavior exhibited by the three operations is:

• Connect: Each of the two elements being connected receives a boolean value

indicating whether a connection has been made.

• Disconnect: No observable behavior results.

181

Figure C-1: A distributed map connects two sets through an intermediate set of
rendezvous points. If each set element connects to a sparse random subset of ren-
dezvous points, then a small oversupply of connections and rendezvous points will
make it highly probable that the rendezvous points can be configured to represent
any one-to-one function mapping from one set to the other.

• Propagate: each element in the target set either receives a NULL value or

the value of an element in the source set.

Desirable Behavior A distributed map is behaving as desired when every connect

operation succeeds and when the results of each propagate operation may be predicted

from the preceding sequence of connect and disconnect operations.

C.1.2 Mechanism

A distributed map connects together two sets through an intermediate set of ren-

dezvous points. The number of rendezvous points in the set R is equal to the size of

the smaller set, multiplied by a small oversupply constant os. Each set connects to

the rendezvous points with a random bipartite graph.1 In order for any two elements

to have an expected rendezvous size rs of shared rendezvous points, we have each set

element connect to k =
√
|R| · rs rendezvous points.

The rendezvous points also participate in a competition, which will be used for

determining which of several possible rendezvous points is used to make each connec-

tion.

Connect and Disconnect To create a communication path between two elements,

we send a special creation signal from each element to its rendezvous points. The

1This design is similar to that used by butterfly graphs and other interconnects based on expander
graphs[10].

182

rendezvous points that receive a signal from both sides compete (with preference given

to rendezvous points that are not yet allocated). The winning rendezvous point then

selects its paths that carried the creation signal: it will subsequently relay signals

carried on these paths and ignore all signals on other paths besides creation signals.

Finally, the rendezvous point sends an acknowledgement signal back along both paths

to let the requesting elements know that creation succeeded.

As more paths are allocated, there is an increasing chance that all of the shared

rendezvous points for a new path will already be allocated. In this case, one of the

already allocated rendezvous points will be the winner of the competition and the

path it previously carried will be unceremoniously terminated. Likewise, if a set

element is connected to a new path, it disconnects from its previous path.

Communication paths can also be destroyed unilaterally: if an element sends a

special deletion signal to its rendezvous points, then the rendezvous point for its

communication path will reset, discarding its selections on both sides.

Propagate Propagation is initiated by clearing the values held in the target set.

The source set transmits its values to the rendezvous points. The rendezvous points

superimpose signals arriving on their designated paths to the source set, transmitting

onward to the target set.

C.1.3 Configuration Parameters

A distributed map has two configuration parameters:

• os is a number greater than or equal to 1.

• rs is a number greater than or equal to 1.

C.1.4 Dossier

Given this mechanism, misbehavior will come either from problems with connect op-

erations or from external noise interfering with the signal being propagated. External

noise is not affected by the configuration parameters, so we shall ignore it.

A connect operation can lead to misbehavior in two ways:

• There is no rendezvous point for the two elements, and the connection fails.

• There is no unallocated rendezvous point, so the new connection snaps a pre-

vious connection.

183

Since the likelihood of both of these is affected by distribution variance, we can

make an educated guess than only a small oversupply factor os and moderate ren-

dezvous size rs will be sufficient to make such failures rare.

Saturation Survey

• Conditions: A and B both contain 1000 elements, initially unconnected.

• Configurations: os assumes five values, 1.0, 1.01, 1.1, 1.2 and 1.5, while rs

assumes four, 1, 3, 10, and 30.

• Experiment: For each of the twenty combinations of values, we run ten trials.

A trial consists of a sequence of 1000 connect operations, randomly ordered

to connect each element of A to an element of B in a random permutation.

The success of the connection is tested with two propagate operations, one

from A to B and one from B to A, where every element is given a unique

value and we compare the contents of the target set to that of the source set

to determining how many elements are correctly mapped and how many are

incorrectly mapped.

• Results: No element is ever incorrectly mapped, and the number of correct

mappings is always the same in both directions. Figure C-2 shows graphs of

success rate plotted against the two parameters. Note that for even modest

levels of os and rs nearly every element connects with its pair in the other set.

Finally, rendezvous size appears to have a much stronger impact on behavior

than oversupply factor.

C.1.5 Usage Specification

• Configuration Policy: A rendezvous size of at least rs = 10 and an oversupply

of at least os = 1.2 should suffice to make misbehavior rare.

• Limiting Conditions: Misbehavior is most likely to occur when nearly all of

the potential mappings are being used.

• Failure Simplification: With a reasonable rendezvous size, the likelihood

of two elements being simply unable to connect can be made astronomically

low. Much more likely are failures that occur when a new connection displaces

a pre-existing connection. Assuming that connections are often being made

184

1 1.1 1.2 1.3 1.4 1.5

0.5

0.6

0.7

0.8

0.9

1

Oversupply Factor

Fr
ac

tio
n

of
 F

un
ct

io
na

l P
at

hs

Effect of Oversupply Factor on Distributed Map

rs=1
rs=3
rs=10
rs=30

(a)

0 5 10 15 20 25 30

0.5

0.6

0.7

0.8

0.9

1

Expected Rendezvous Size

Fr
ac

tio
n

of
 F

un
ct

io
na

l P
at

hs

Effect of Expected Rendezvous Size on Distributed Map

os=1.0
os=1.01
os=1.1
os=1.2
os=1.5

(b)

Figure C-2: A small oversupply factor and rendezvous size are all that is necessary
to ensure that a distributed map can simultaneously maintain paths to nearly ev-
ery element of the smaller set. These graphs show the success rate for a random
permutation map between two sets of 1000 elements.

and reassigned, this can be modelled simply as a small cumulative chance of a

connection randomly disappearing over time.

This misbehavior can be detected by echoing a propagation and comparing

to look for missing values. If this is done not for all elements, but only for

those currently being used, then we have a lazy detection mechanism that only

looks for failure when they become relevant. An element that has become

disconnected can always be reconnected (again with a small chance that it

will destroy a currently active link), but over time the pairs most likely to be

unexpectedly disconnected will be those least likely to be used, decreasing the

impact.

Cost The hardware and development costs of the distributed map are set by the two

random bipartite graphs composed to produce it. The execution time for disconnect

and propagate operations is O(1), while the execution time for connect operations

is constrained by the time for competition between possible connections, to O(1)

amortized.
Development Mature

Time O(min(|A|, |B|)) O(1) amortized

Space O(1) O(
√

min(|A|, |B|)rsos·(|A|+
|B|))

Imperfection extra or missing paths and

rendezvous points

noise, failed or dropped con-

nections

185

C.2 Unidirectional Link

A unidirectional link transmits messages composed of symbols and inflections from

a speaker to a listener, across a channel consisting of many communication paths

connecting the speaker to the listener in an arbitrary pattern.

C.2.1 Interface Specification

Conditions There are three interfaces between a unidirectional link and the speaker:

one is a boolean signal that tells the link whether it is free to engage in self-organization,

another handles the allocation and deallocation of the link’s vocabulary, and the third

is for sending messages. On the listener side, there is only a mechanism for receiving

messages.

A link has a potential vocabulary of s symbols and i inflections, where there are

many more symbols than inflections (s >> i). Messages are specified as a set of

symbol/inflection pairs, where there may be up to ms << s symbols and mi << i

inflections per symbol. Any symbol may be combined with any inflection.

An allocation request asks for a symbol or inflection, but does not specify which

particular symbol or inflection; a deallocation request specifies which particular sym-

bol or inflection is to be deallocated.

Range of Behavior The listener side reports messages when they arrive; messages

have the same structure when received as when sent.

An allocation request either returns a newly allocated symbol or inflection or else

reports failure. A deallocation request reports only completion.

Desirable Behavior A unidirectional link is behaving desirably when there is:

• Available vocabulary: up to s symbols and i inflections can be allocated by

the speaker for use in composing messages.

• Clean allocation: a newly allocated symbol or inflection is not entangled in

any way with other currently allocated symbols or inflections or with those that

have been deallocated in the past.

• Persistent vocabulary: once allocated, a symbol or inflection remains con-

sistently usable until deallocated.

186

• Consistent transmission: there is a one-to-one mapping from sent to received

symbols and inflections, and under this mapping the message received is always

equivalent to the one sent.

C.2.2 Mechanism

The architecture for a link is shown in Figure C-3: in both the speaker and the

listener, a crossbar connects the inflection coders to the symbol coders. The channel

between the speaker and listener is an arbitrarily twisted bundle of communication

paths connecting a set of c cable-head devices in the speaker to a set of c cable-

head devices in the listener. The communication paths are directional: only a small

amount of information is allows to flow from listener to speaker. Each symbol coder

is connected by a random sparse map to k out of the c cable-heads on its side of the

channel.

Besides the structure visible in Figure C-3, each set of coders includes a com-

petition (see Section 7.1.1), and the inflections in the speaker are connected in an

all-to-all network.

Inflections are encoded as a sparse patterns of p pulses out of b time slots in

a burst, symbols as sparse subsets of the communication paths, and a message as

the set of active junctions in the crossbar. To transmit a message, the speaker’s

inflection coders activate, sending their patterns across the active crossbar junctions

to superimpose and activate symbol coders. The active symbol coders relay their

patterns to a chosen subset of at least ds communication paths encoding the symbol.

The patterns once again superimpose at the cable-heads, then propagate along the

communication paths from speaker to listener.

On the other side, each listener symbol coder monitors a chosen subset of com-

munication paths, and if at least ds are active, it detects the symbol and activates.

Active symbol coders then calculate a consensus pattern (those portions on at least

dc communication paths) and relay it into the crossbar. Finally, the listener’s inflec-

tion coders fire their patterns into the crossbar and each junction compares the two

incoming patterns, setting if at least di pulses coincide. The contents of the message

can now be read out of the pattern of active crossbar junctions.

Self-Organization Initially, the encodings for symbols and inflections in the speaker

do not match those in the listener. Self-organization produces an aligned set of sym-

bols and inflections, which may then be used for communication.

Symbol and inflection coders thus have four states:

187

=VRB
=PAT
=PAT
=AGT,BEN

A

=17

=23
=43

CAUSED
WALK

RED
PERSON

V

A B

P
P

inflections
symbols

inflections
symbols

D

P

5

8

2

4

P

P
A

P

A P
V

V

V

speaker channel listener

cable−heads cable−heads

B

B

=99
2
4

5
5

8

Figure C-3: A unidirectional link is implemented using sparse coding on top of a
random wiring pattern. Symbols are encoded as sets of active communication paths
and relations as the pattern transmitted on a symbol’s communication paths.

• disabled: coder is not yet in use

• immature: coder is seeking alignment with a partner coder on the other side

of the channel.

• mature: coder has become aligned with a partner coder and is ready for use

in messages

• allocated: coder is aligned and has been allocated for use in building messages.

This state only exists in the speaker.

The self-organization process is designed to co-exist with mature use: as soon as

the first symbols mature, they can be allocated and used; once mature, a symbol is

rarely interfered with by the ongoing self-organization (and critical symbols could be

protected entirely). Eventually, self-organization reaches a stable point, in which no

changes occur except in response to external perturbation.

Self-organization proceeds one coder at a time, beginning with all symbol and

inflection coders disabled in both the speaker and the listener. Whenever a new

coder is needed, the disabled coders compete to be the next enabled. In the speaker,

allocation proceeds in an orderly manner, with a learning target of one symbol coder

and one inflection coder. When the current coder matures or fails, a new one is

allocated, until there are no disabled coders left. In the listener, allocation is in

response to unrecognized activity on the communication paths (as reported by the

cable-heads) or in a pattern, and there may be many immature coders.

The self-organization process is driven by babble generated by the speaker: the

babble includes the current target, but is otherwise random. As the collection of

188

mature elements grows, the size of the average babble message grows as well, ulti-

mately reaching maximum-size messages. Sending multiple symbols makes it possible

to identify problematic interference between symbols and reallocate to try to work

around it.

Because the speaker chooses which coders are used, there is no way for the lis-

tener to distinguish between an unmatched coder and one that is merely rarely used.

Accordingly, mature coders will occasionally join the competition when the supply of

disabled coders is low, and the listener needs an oversupply of coders compared to

the speaker in order to avoid thrashing when almost all coders are allocated. We will

thus give the speaker an oversupply of os times as many of each set of coders.

The speaker inflection coders adapt stochastically. Each one initializes to a ran-

dom pattern. Active inflections send patterns to one another over their all-to-all

network, and if two patterns overlap by at least di/mi pulses, one of the inflections

is randomly chosen to reinitialize itself with a new random pattern. With sparsely

encoded patterns, this converges rapidly to a set of encodings with high noise margins.

All other coders align by comparing subsequent patterns of activation, using a

codetector to decide whether each possible component is part of the pattern (the

parameters are set at accept = 5, reject = 0, rail− = −50, rail+ = 20, miss = −2).

When enough of its components are accepted (ds for symbols, di for inflections), a

coder matures.

The inflection task is easy, since the incoming pattern is filtered by passing through

symbol consensus. Symbol coders, on the other hand, are attempting to rendezvous

with their complement on a small subset of their communication paths; listener sym-

bol coders push a single bit of feedback up their chosen communication paths to the

speaker to enable this rendezvous. The rendezvous is generally very small compared

to the number of cable-heads a symbol coder connects to, since it must be possible

to connect any arbitrary pair of symbol coders.

As a result, we must take careful steps to avoid coders becoming entangled with

one another. When feedback arrives at a speaker cable-head, it relays the pattern is

transmitted so that symbols can ignore contaminated feedback information. When a

successful rendezvous contains too many communication paths, they must be pruned

away one by one down to a maximum size s+, in case a coder has connected to

multiple coders on the other side. Pruning needs to be slow to assure that one coder

remains connected.

Finally, any coder connected to a number of communication paths below activation

threshold (ds or di) deallocates itself and resets. The oversupply in the listener means

that there are many opportunities for any speaker coder to find a complement, so if

189

one attempt at alignment fails, the next is likely to succeed.

Allocation requests are drawn from the pool of mature symbol and inflection

coders. If this pool is empty, then the request fails. Deallocation requests reset

the element, breaking its alignment and returning it to the disabled state for fresh

alignment, likely to a different element.

C.2.3 Configuration Parameters

There are a total of nine configuration parameters: p, b, k, c, s+, dc, ds, di, and os.

C.2.4 Dossier

Rather than explore all the combinations of configuration parameters in detail, we

will start by reducing the number of parameters.

First, any pair of symbol coders is expected to rendezvous at r = k2/c communi-

cation paths that they share. Let us take the symbol parameters as small steps away

from this rendezvous size: dc + 1 = ds = s+ − 1 = r − 2. We may likewise take the

inflection detection threshold from its encoding di = p − 1.

Sparse coding capacity is discussed in [4]: the upshot is that there are many

reasonable values for p, b, r and c that will allow many symbols and inflections to be

encoded with little interference.

We thus are assured reasonable values of all configuration parameters except for

os, which needs exploration.

Regarding the four criteria for desirable behavior: clean allocation is assured by

the self-organization process. The other three we will need to determine experimen-

tally.

Learning Rate First, we will test whether self-organization is fast enough to make

vocabulary available for use.

• Conditions: Vocabulary size is s = 1000 symbols and i = 20 inflections.

Message bounds are ms = 5 symbols and mi = 2 inflections per symbol.

• Configurations: The oversupply multiplier is os = 1.1 for the listener. Inflec-

tions are encoded with p = 11 pulses in b = 60 time-slots in a burst, with a

detection threshold di = 10; symbols are encoded on c = 1000 communication

paths, each symbol connecting to a subset of k = 100, a maximum rendezvous

size of s+ = 9, detection threshold of ds = 8, and consensus threshold of dc = 7.

190

0 0.5 1 1.5 2

x 104

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f M
at

ch
ed

 S
pe

ak
er

 S
ym

bo
ls

Rounds of Self−Organization

Mean Vocab Size
Mean ± 2 Std.Dev.

Figure C-4: When vocabulary size is far from capacity, the mature vocabulary grows
rapidly. After an initial period of fast linear growth, symbols that failed to rendezvous
in their first attempt find complements at a slower rate.

• Experiment: In each of 10 trials, the link is allowed to self-organize for 20,000

rounds. The number of mature symbols and inflections is measured once every

100 rounds.

• Results: The results for symbols are plotted in Figure C-4; inflections mature

almost immediately. When the system is far from capacity, self-organization is

fast. Vocabulary growth is approximately linear, slowing as symbols that failed

to connect on their first try begin to retry.

Excess Capacity The next question we will address is how to set the oversupply

multiplier os.

• Conditions: Vocabulary size is s = 1000 symbols and i = 20 inflections.

Message bounds are ms = 5 symbols and mi = 2 inflections per symbol.

• Configurations: The oversupply multiplier os assumes nine values: 1.0, 1.01,

1.02, 1.05, 1.1, 1.2, 1.5, 2, and 5. All other parameters are set as before.

• Experiment: In each of 10 trials, the link is allowed to self-organize for 20,000

rounds. During the last 2,000 rounds of self organization, once every 100 rounds

a set of 100 random max-size messages is sent, and the rate of perfect transmis-

sion recorded.

191

1 1.1 1.2 1.3 1.4 1.5

95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

Oversupply Multiplier

Pe
rc

en
ta

ge
 o

f M
at

ch
ed

 S
pe

ak
er

 S
ym

bo
ls

Figure C-5: A small constant factor of coder oversupply is sufficient for efficient
self-organization. This graph shows the percentage of 1000 symbols that have found
matches after 20,000 rounds of self-organization at various levels of oversupply (ver-
tical bars show twice standard deviation). Inflections are always fully matched.

• Results: Figure C-5 shows terminal symbol vocabulary size; inflections are al-

ways fully matched. As can be seen, a small constant factor of coder oversupply

in the listener is sufficient for efficient self-organization:

Graceful Degradation The last pair of experiments demonstrate the desirable

properties of persistent vocabulary and consistent transmission by showing that trans-

mission quality decays gracefully when the messages are assailed by extrinsic noise or

symbol-to-symbol interference.

• Conditions: Vocabulary size is s = 1000 symbols and i = 20 inflections.

Message bounds are ms = 5 symbols and mi = 2 inflections per symbol. Noise

is added to every communication path with probability n of disrupting each

individual time slot (adding a pulse where there is none or removing an existing

pulse). Nine levels of noise n are considered: 0.0001, 0.0003, 0.001, 0.003, 0.01,

0.015, 0.02, 0.025, and 0.03.

• Configurations: All parameters are set as for the learning rate test.

• Experiment: In each of 10 trials, the link is allowed to self-organize for 20,000

rounds. During the last 2,000 rounds of self organization, once every 100 rounds

192

−4 −3.5 −3 −2.5 −2 −1.5
0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f P
er

fe
ct

 T
ra

ns
m

is
si

on
s

Log10 Error Rate
−4 −3.5 −3 −2.5 −2 −1.5

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f U
nm

at
ch

ed
 S

pe
ak

er
 S

ym
bo

ls

Perfect Transmissions
Unmatched Symbols

Figure C-6: Noise has minimal impact until around 1% noise, when noise is high
enough to disrupt rendezvous during self-organization. This graph shows the final
behavior for 20,000 rounds of self-organization.

a set of 100 random max-size messages is sent, and the rate of perfect trans-

mission recorded. At the end of the trial the number of mature symbols and

inflections is recorded.

• Results: A small amount of noise on the communication channel does not affect

either self-organization or normal message transmission. Figure C-6 shows that

noise has minimal impact at low levels, then causes a dramatic collapse in

performance at around 1% noise, where the noise bits begin to inhibit symbol

rendezvous during self-organization.

• Conditions: Vocabulary size is s = 1000 symbols and i = 20 inflections.

Message bounds are ms = 5 symbols and mi = 2 inflections per symbol.

• Configurations: The number of communication paths c assumes six values:

100, 200, 300, 400, 500, and 1000. The number of paths connected to each

encoder is adjusted to k =
√

10c, keeping the expected rendezvous size constant.

All other parameters are set as for the learning rate test.

• Experiment: In each of 10 trials, the link is allowed to self-organize for 20,000

rounds. During the last 2,000 rounds of self organization, once every 100 rounds

a set of 100 random max-size messages is sent, and the rate of perfect trans-

193

100 200 300 400 500 600 700 800 900 1000

40

60

80

100

Pe
rc

en
ta

ge
 o

f P
er

fe
ct

 T
ra

ns
m

is
si

on
s

Number of Cables
100 200 300 400 500 600 700 800 900 1000

0

10

20

30

Pe
rc

en
ta

ge
 o

f U
nm

at
ch

ed
 S

pe
ak

er
 S

ym
bo

ls

Perfect Transmissions
Unmatched Symbols

Figure C-7: As the number of communication paths in the channel decreases, self-
organization gradually declines in effectiveness, eventually degrading badly. This
graph shows the final behavior for 20,000 rounds of self-organization.

mission recorded. At the end of the trial the number of mature symbols and

inflections is recorded.

• Results: Figure C-7 shows self-organization success for different sizes of chan-

nel. When the channel is smaller, symbols interfere with one another more: past

a critical threshold, self-organization runs more slowly and gradually collapses

Although this dossier is only a rough survey, it gives us reason to expect desirable

behavior from the unidirectional link over a broad range of conditions and configura-

tions.

C.2.5 Usage Specification

• Configuration Policy: Parameters chosen according to the method in the dossier

section will function well. A broader policy is beyond the scope of this investi-

gation.

• Limiting Conditions: High noise will prevent self-organization, and if not enough

time is allocated for self-organization, symbols will not be available when needed.

Even under ideal conditions, however, it is expected that coders will occasionally

spontaneously deallocate due to problems during self-organization.

194

• Failure Simplification: Assuming that noise is low enough to allow self-organization

to succeed, most difficulties can be handled by the simple expedient of deallo-

cating the elements involved.

When the elements are next organized, they will likely be paired up differently

and use different encoding patterns, making the chance of a recurrent failure

low unless one of the coders is itself bad. If the link is set up to provide

more symbols and inflections than strictly necessary, then the next allocation

of a coder is unlikely to provide the same bad coder, and the bad coders will

eventually end up unused.

Cost Development time is dominated by the time to build the random bipartite

graph connecting the symbols to the channel, which is never worse than the number

of symbols. The set-based architecture means that encoding the hardware is constant

cost.

The time to send a message is dominated by the length of the pulse sequences;

the time of all other operations is no worse than amortized constant.

There are three significant sources of hardware complexity: storage of the pulse

sequences, which is O(ib), the crossbar connecting symbols to inflections, which is

O(si), and the random bipartite graph connecting symbols to communication paths,

which is O(sk). All others are dominated by these three, but it is not guaranteed that

any one of these three will dominate, so we add them to get the hardware complexity.

Finally, variation during development will results in small variations in set size

or the bipartite graph. The only dangerous defects are in the crossbar: any non-

functional crossbar junction means that either the symbol coder or inflection coder

connected to it will not be able to be used effectively.

Development Mature

Time O(s) O(b) amortized

Space O(1) O(ib + si + sk)

Imperfection extra or missing links,

coders, DOA coders

noise, lost or extra message

elements

C.3 Bidirectional Link

A bidirectional link connects two specialists and allows messages to be simultaneously

sent and received using the same set of symbols and inflections.

195

C.3.1 Interface Specification

Conditions There are three interfaces between a bidirectional link and each of the

two specialists it connects. One is a boolean signal that tells the link whether it is

free to engage in self-organization, another handles the allocation and deallocation of

the link’s vocabulary, and the remaining one is for sending and receiving messages.

A link has a potential vocabulary of s symbols and i inflections, where there are

many more symbols than inflections (s >> i). Messages are specified as a set of

symbol/inflection pairs, where there may be up to ms << s symbols and mi << i

inflections per symbol. Any symbol may be combined with any inflection.

An allocation request asks for a symbol or inflection, but does not specify which

particular symbol or inflection; a deallocation request specifies which particular sym-

bol or inflection is to be deallocated.

Range of Behavior Messages are reported to a device when they arrive.

An allocation request either returns a newly allocated symbol or inflection or else

reports failure. A deallocation request reports only completion.

Desirable Behavior A bidirectional link is behaving desirably when there is:

• Available vocabulary: up to s symbols and i inflections can be allocated for

use in composing messages.

• Clean allocation: a newly allocated symbol or inflection is not entangled in

any way with other currently allocated symbols or inflections or with those that

have been deallocated in the past.

• Persistent vocabulary: once allocated, a symbol or inflection remains con-

sistently usable until deallocated.

• Consistent transmission: there is a one-to-one mapping from sent to received

symbols and inflections, and under this mapping the message received is always

equivalent to the one sent.

C.3.2 Mechanism

A bidirectional link is built around two unidirectional links, one in each direction.

The mechanism is explained fully in the main text in Section 7.1.3, so I will not

reproduce the description here.

196

C.3.3 Configuration Parameters

There are eight configuration parameters for a bidirectional link: five for the code-

tectors it uses to make decisions, maxrtt, pgen, and rub.

C.3.4 Dossier

We begin by eliminating parameters. The rails of the codetectors should simply

be placed far enough away that they are unlikely to matter. Our data sheet for the

codetector also tells us that the accept and reject thresholds should not matter much,

so long as they are moderate in size.

We want maxrtt to be as low as possible, and if the two sides run at approximately

the same rate, then we need never set maxrtt above 3—two for a round trip, plus a

third to compensate for any small differences in timing.

That leaves us three values needing experimental investigation: miss, pgen, and

rub. We will determine these using two experiments.

Generation and Miss First we will determine reasonable values of miss and pgen

using idealized unidirectional links. The reason for using the idealized links is to make

the computational cost of the survey affordable.

• Conditions: The number of potential symbols s and inflections i is assumed

to be infinite.

• Configurations: rail+ and rail− are set out at infinity, maxrtt = 3, accept =

5, and reject = −5. pgen ranges from 0.01 to 0.99 in steps of 0.02 and miss

ranges from -5 to -1/5 in steps of 1/5.

• Experiment: Ten trials were run; in each trial, the link was allowed to self-

organize for 10,000 rounds. Every 1000 rounds, 100 test messages of five sym-

bol/inflection pairs were looped from each side, recording the number of mes-

sages that successfully returned to their sender without error. At the end, the

vocabulary sizes were recorded.

• Results: The results are summarized by the chart shown in Figure C-8, where

pgen rises from top to bottom and miss drops from left to right.

The color of each pixel indicates the link’s behavior with the conditions and

configuration for that location in the chart, using two components of its color:

197

0.0

0.2

0.4

0.6

0.8

1.0

ge
n

p

miss
0 −1 −2 −3 −4 −5

Figure C-8: Simulation of a bidirectional link with idealized unidirectional links shows
that a low pgen leads to successful self-organization, and that the miss penalty is
largely irrelevant. Red indicates significant transmission errors, green indicates fast
acquisition of vocabulary, yellow indicates fast acquisition of faulty vocabulary, and
black indicates failure to communicate.

– Red indicates significant transmission errors. Intensity is calculated from

the average percentage of imperfect messages, calibrated so that zero im-

perfections is zero intensity and 25% imperfections is full intensity.

– Green indicates fast vocabulary acquisition. Intensity is calculated from

the average final number of elements (symbols and inflections) in each

side’s vocabularies, calibrated with zero intensity at zero entries and full

intensity at 100 entries.

As can be seen, a pgen of approximately 0.2 or lower leads to successful self-

organization and miss is largely irrelevant.

Self-Organization Ratio With these values in hand, we can investigate our pa-

rameter value, rub, using a system built with real unidirectional links.

• Conditions: Vocabulary size is s = 1000 symbols and i = 20 inflections.

Message bounds are ms = 5 symbols and mi = 2 inflections per symbol.

198

0 1 2 3 4 5
0

10

20

30

40

50

60

70

Unidirectional/Bidirectional Self−Organization Time

Si
ze

 o
f V

oc
ab

ul
ar

y

0 1 2 3 4 5
0.7

0.75

0.8

0.85

0.9

0.95

1

Fr
ac

tio
n

of
 E

rro
r−

Fr
ee

 T
ra

ns
m

is
si

on
s

Growth/Error Tradeoff vs. Self−Organization Ratio

Figure C-9: More self-organization time needs to be devoted to the unidirectional
links than to the bidirectional link: the lower the ratio, the faster the bidirectional
link vocabulary grows, but below around 2:1 unidirectional to bidirectional ratio, the
error begins to increase.

• Configurations: The parameters are set as before, except that miss is -2,

pgen = 1/10, and rub ranges from 1/10 to 5 in steps of 1/10. The unidirectional

link parameters are set as for the learning rate experiment in that dossier.

• Experiment: The link was allowed to self-organize for 5000 rounds. Self-

organization swapped between the unidirectional and bidirectional links no

faster than once every 100 rounds, with the ratio between block sizes equal

to rub. Once every 500 rounds, 100 test messages were looped from each side,

as before, and the final vocabulary sizes recorded.

• Results: Figure C-9 compares speed and success of self-organization for various

values of rub. We see that the lower the ratio, the faster the bidirectional link

vocabulary grows, but below around 2:1 unidirectional to bidirectional ratio,

the error begins to increase.

All told, we have seen that a bidirectional link is able to behave desirably over a

broad range of parameters.

C.3.5 Usage Specification

• Configuration Policy: The ratio of unidirectional to bidirectional self-organization

rub needs to be at least 2:1, and the generation of call-and-response messages

should be no faster than about pgen = 0.2 and should be significantly lower to

be safe.

199

• Limiting Conditions: Misbehavior will occur, as for a unidirectional link, if self-

organization is disrupted by noise or not allowed enough time before symbols

and inflections are needed.

• Failure Simplification: As for a unidirectional link, failure simplification of the

bidirectional link is shaped by the likelihood that a bad pairing, once discarded,

will not be reformed. The panacea is thus to deallocate any problematic symbols

or inflections, with the assumption that the next allocated to fill the need is

unlikely to also be flawed.

Cost The cost of the bidirectional link is largely dominated by the two unidirectional

links it contains. The one exception is in the hardware cost, where the distributed

map connecting the two sets of symbols may dominate if s is large.

Development Mature

Time O(s) O(b) amortized

Space O(1) O(ib + si + sk + s3/2)

Imperfection extra or missing links,

coders, DOA coders

noise, lost or extra message

elements

C.4 Distributed Focus

Distributed focus allows a group of devices to balance the goals of maintaining con-

sensus on a set of focus topics and allowing each device an equal chance to quickly

steer the consensus.

C.4.1 Interface Specification

Conditions Distributed focus operates on a network of n devices, each containing

a set of f foci (Figure C-10). Each of the foci contains a topic that is currently the

subject of attention. There is no constraint on the structure of the network. Each

device has a stream of local requests for attention arriving, which it may service or

discard. Finally, devices update periodically at roughly the same frequency as one

another, and transmit the contents of their foci to their neighbors after each update.

Range of Behavior The observable behavior of distributed focus is contents of the

foci on the various devices.

Desirable Behavior Distributed focus is behaving desirably when it exhibits:

200

pa
rtn

er
s

throttle

reflexes

environment

local

client

low−level equality

distributed focus

foci

Figure C-10: Distributed focus operates on a network of n devices, each of which
contains a set of f foci. Each device decides the contents of its foci based on local
requests for attention (dotted arrow) and the contents of its neighbors foci. The goal
is for the devices to reach consensus on a set of topics, yet allow any device to quickly
change that consensus.

• Dominance: There are always a few topics that are dominant, occupying foci

throughout the network.

• Fairness: Any local request is likely to become a dominant topic

• Agility: Dominant topics can shift quickly

• Stability: Topics are dominant for long enough to allow devices to work to-

gether.

C.4.2 Mechanism

The mechanism is explained fully in the main text in Section 8.2.1, so I will not

reproduce the description here. I will, however, add two notes not included in the

main text.

pext There is another mechanism besides privilege that might aid convergence. The

other option is to give each topic request originating with a neighbor only a probability

pext of being serviced, thus limiting the likelihood of such a request continuing to

propagate. We will see, however, that this is not worth using and end up just setting

pext = 1.

Replacement Policies We will consider three replacement policies: round-robin

(foci are replaced sequentially), random replacement, and follow. Under the follow

policy, if a request originated with a neighbor, then if it is possible, the topic will

replace the same topic that the neighbor replaced; if not, the choice is random.

201

C.4.3 Configuration Parameters

There are five configuration parameters: pwait, tpriv, kp, pext, and policy.

C.4.4 Dossier

As we begin building the dossier, our first concern needs to be bringing the range of

options under control. Since four of the five options are about resolving competition

between topics, we will start by looking at convergence from a state of maximum

competition.

I will not pursue this dossier to completion, but only far enough to have a good

guess at how to set each of the five parameters. Further work is necessary to resolve

questions about how dominance and request patterns relate to one another.

We start with a (very) little analysis. Based on Rauch’s group selection work, we

can predict that tpriv should be set to a value higher than the network diameter, in

order to ensure propagation throughout the network. We do not want it to be much

higher than diameter, though, since privilege fixes a topic unshakably in place while

it runs.

We further expect at least two phases of behavior: the desirable phase, fast conver-

gence, is characterized by a rapid settling into a state where a few topics are dominant

throughout the foci. The undesirable phase, thrashing, is characterized values “chas-

ing each other” through the network, resulting in the system rapidly cycling from

state to state.

Privilege Survey We will now do a restricted survey for tpriv, intended to confirm

our analysis and allow us to eliminate a set of options.

• Conditions: The number of devices n takes five values: 2, 5, 10, 20 and 50,

while the number of foci per node f takes on four values: 1, 2, 4, and 8. The

devices are connected with six types of graph: a four-connected grid and random

graphs with connection probability 0.2 to 1.0 in steps of 0.2. Finally, updates

either take place synchronously or in a random sequence; in the case of the

random sequence, the results of each device update are available to the next

device that updates. There are a total of 240 combinations.

• Configurations: tpriv ranges from 1 to 30 in steps of 1. The other parameters

are fixed at plausible values: pext = 1, kp = 2, pwait = 0.5, and the follow policy.

• Experiment: For each of the 7200 combinations, we run ten trials. At the

beginning of each trial, every focus in every device is changed to a different

202

topic, meaning that there are initially nk competing topics. Update cycles (in

which every device updates once) are then run until no device changes or every

device has updated 1000 times, whichever comes first.2 Convergence time is

then taken to be the number of updates before trial terminates.

• Results: To results of the survey are summarized in the tableau shown in

Figure C-11. Convergence time starts high and drops rapidly as tpriv increases,

levelling off at to consistent low level at a threshold proportional to the diameter

of the network. The strength of the effect depends on the number of nodes in

the network. Random updates are faster to converge than synchronous updates.

We can now effectively eliminate tpriv, since we know how to set the value safely.

Hereafter, we will always use a value of tpriv = 20, since the largest diameter networks

we consider are expected to have diameter 15.

pext Survey Our next target for elimination is pext. Although I had originally

believed this would be an important part of letting the system converge, this is a

dangerous parameter because it stands directly opposed to the goal of spreading

topics throughout the network. The next survey will be to see how much pext actually

changes the convergence time. Even if it helps, if the benefit is small, then we will

fix it at pext = 1, effectively eliminating the parameter, since that puts the least

impediment to the spread of topics.

• Conditions: Conditions range over the same 240 combinations as in the priv-

ilege survey.

• Configurations: The value of pext ranges from 0.5 to 1.0 in steps of 0.02. The

other parameters are fixed at plausible values: tpriv = 20, kp = 2, pwait = 0.5,

and the follow policy.

• Experiment: For each of the 6240 combinations, we run ten trials. The trials

measure convergence time, the same as in the privilege survey.

• Results: The tableau in Figure C-12 summarizes the results of the survey. The

value of pext has no significant effect on the convergence time, so we may safely

eliminate it by setting it always to a value of 1.

2No device changing does not mean no device will change in the future (because of the action of
pwait), but it is usually close.

203

10
20

30
10

0
10

2

privilege

Time

2 D
evices, 1 Foci

10
20

30
10

0
10

2

privilege

Time

2 D
evices, 2 Foci

10
20

30
10

0
10

2

privilege

Time

2 D
evices, 4 Foci

10
20

30
10

0
10

2

privilege

Time

2 D
evices, 8 Foci

10
20

30
10

0
10

2

privilege

Time

5 D
evices, 1 Foci

10
20

30
10

0
10

2

privilege

Time

5 D
evices, 2 Foci

10
20

30
10

0
10

2

privilege

Time

5 D
evices, 4 Foci

10
20

30
10

0
10

2

privilege

Time

5 D
evices, 8 Foci

10
20

30
10

0
10

2

privilege

Time

10 D
evices, 1 Foci

10
20

30
10

0
10

2

privilege

Time

10 D
evices, 2 Foci

10
20

30
10

0
10

2

privilege

Time
10 D

evices, 4 Foci

10
20

30
10

0
10

2

privilege

Time

10 D
evices, 8 Foci

10
20

30
10

0
10

2

privilege

Time

20 D
evices, 1 Foci

10
20

30
10

0
10

2

privilege

Time

20 D
evices, 2 Foci

10
20

30
10

0
10

2

privilege

Time

20 D
evices, 4 Foci

10
20

30
10

0
10

2

privilege
Time

20 D
evices, 8 Foci

10
20

30
10

0
10

2

privilege

Time

50 D
evices, 1 Foci

10
20

30
10

0
10

2

privilege

Time

50 D
evices, 2 Foci

10
20

30
10

0
10

2

privilege

Time

50 D
evices, 4 Foci

10
20

30
10

0
10

2

privilege

Time
50 D

evices, 8 Foci

(a)
Synchronous

U
pdate

10
20

30
10

0
10

2

privilege

Time

2 D
evices, 1 Foci

10
20

30
10

0
10

2

privilege

Time

2 D
evices, 2 Foci

10
20

30
10

0
10

2

privilege

Time

2 D
evices, 4 Foci

10
20

30
10

0
10

2

privilege

Time

2 D
evices, 8 Foci

10
20

30
10

0
10

2

privilege

Time

5 D
evices, 1 Foci

10
20

30
10

0
10

2

privilege

Time

5 D
evices, 2 Foci

10
20

30
10

0
10

2

privilege

Time

5 D
evices, 4 Foci

10
20

30
10

0
10

2

privilege

Time

5 D
evices, 8 Foci

10
20

30
10

0
10

2

privilege

Time

10 D
evices, 1 Foci

10
20

30
10

0
10

2

privilege

Time

10 D
evices, 2 Foci

10
20

30
10

0
10

2

privilege

Time

10 D
evices, 4 Foci

10
20

30
10

0
10

2

privilege

Time

10 D
evices, 8 Foci

10
20

30
10

0
10

2

privilege

Time

20 D
evices, 1 Foci

10
20

30
10

0
10

2

privilege

Time

20 D
evices, 2 Foci

10
20

30
10

0
10

2

privilege

Time

20 D
evices, 4 Foci

10
20

30
10

0
10

2

privilege

Time

20 D
evices, 8 Foci

10
20

30
10

0
10

2

privilege

Time

50 D
evices, 1 Foci

10
20

30
10

0
10

2

privilege

Time

50 D
evices, 2 Foci

10
20

30
10

0
10

2

privilege

Time

50 D
evices, 4 Foci

10
20

30
10

0
10

2

privilege

Time

50 D
evices, 8 Foci

(b)
R

andom
U

pdate

F
igu

re
C

-11:
T
ab

leau
sh

ow
in

g
th

e
resu

lts
of

a
su

rvey
of

d
istrib

u
ted

fo
cu

s
p
riv

ilege
d
u
ration

again
st

con
vergen

ce
tim

e.
C

on
ver-

gen
ce

tim
e

starts
h
igh

an
d

d
rop

s
rap

id
ly

as
t
p
r
iv

in
creases,

levellin
g

off
at

to
con

sisten
t

low
level

at
a

th
resh

old
p
rop

ortion
al

to
th

e
d
iam

eter
of

th
e

n
etw

ork
.

T
h
e

stren
gth

of
th

e
eff

ect
d
ep

en
d
s

on
th

e
n
u
m

b
er

of
n
o
d
es

in
th

e
n
etw

ork
.

R
an

d
om

u
p
d
ates

are
faster

to
con

verge
th

an
sy

n
ch

ron
ou

s
u
p
d
ates.

204

0.
6

0.
8

1
05010
0

p ex
t

Time

2
D

ev
ic

es
, 1

 F
oc

i

0.
6

0.
8

1
05010
0

p ex
t

Time
2

D
ev

ic
es

, 2
 F

oc
i

0.
6

0.
8

1
05010
0

p ex
t

Time

2
D

ev
ic

es
, 4

 F
oc

i

0.
6

0.
8

1
05010
0

p ex
t

Time

2
D

ev
ic

es
, 8

 F
oc

i

0.
6

0.
8

1
05010
0

p ex
t

Time

5
D

ev
ic

es
, 1

 F
oc

i

0.
6

0.
8

1
05010
0

p ex
t

Time

5
D

ev
ic

es
, 2

 F
oc

i

0.
6

0.
8

1
05010
0

p ex
t

Time

5
D

ev
ic

es
, 4

 F
oc

i

0.
6

0.
8

1
05010
0

p ex
t

Time

5
D

ev
ic

es
, 8

 F
oc

i

0.
6

0.
8

1
05010
0

p ex
t

Time

10
 D

ev
ic

es
, 1

 F
oc

i

0.
6

0.
8

1
05010
0

p ex
t

Time

10
 D

ev
ic

es
, 2

 F
oc

i

0.
6

0.
8

1
05010
0

p ex
t

Time
10

 D
ev

ic
es

, 4
 F

oc
i

0.
6

0.
8

1
05010
0

p ex
t

Time

10
 D

ev
ic

es
, 8

 F
oc

i

0.
6

0.
8

1
05010
0

p ex
t

Time

20
 D

ev
ic

es
, 1

 F
oc

i

0.
6

0.
8

1
05010
0

p ex
t

Time

20
 D

ev
ic

es
, 2

 F
oc

i

0.
6

0.
8

1
05010
0

p ex
t

Time

20
 D

ev
ic

es
, 4

 F
oc

i

0.
6

0.
8

1
05010
0

p ex
t

Time

20
 D

ev
ic

es
, 8

 F
oc

i

0.
6

0.
8

1
05010
0

p ex
t

Time

50
 D

ev
ic

es
, 1

 F
oc

i

0.
6

0.
8

1
05010
0

p ex
t

Time

50
 D

ev
ic

es
, 2

 F
oc

i

0.
6

0.
8

1
05010
0

p ex
t

Time

50
 D

ev
ic

es
, 4

 F
oc

i

0.
6

0.
8

1
05010
0

p ex
t

Time

50
 D

ev
ic

es
, 8

 F
oc

i

(a
)

Sy
nc

hr
on

ou
s

U
pd

at
e

0.
6

0.
8

1
05010
0

p ex
t

Time

2
D

ev
ic

es
, 1

 F
oc

i

0.
6

0.
8

1
05010
0

p ex
t

Time

2
D

ev
ic

es
, 2

 F
oc

i

0.
6

0.
8

1
05010
0

p ex
t

Time

2
D

ev
ic

es
, 4

 F
oc

i

0.
6

0.
8

1
05010
0

p ex
t

Time

2
D

ev
ic

es
, 8

 F
oc

i

0.
6

0.
8

1
05010
0

p ex
t

Time

5
D

ev
ic

es
, 1

 F
oc

i

0.
6

0.
8

1
05010
0

p ex
t

Time

5
D

ev
ic

es
, 2

 F
oc

i

0.
6

0.
8

1
05010
0

p ex
t

Time

5
D

ev
ic

es
, 4

 F
oc

i

0.
6

0.
8

1
05010
0

p ex
t

Time

5
D

ev
ic

es
, 8

 F
oc

i

0.
6

0.
8

1
05010
0

p ex
t

Time

10
 D

ev
ic

es
, 1

 F
oc

i

0.
6

0.
8

1
05010
0

p ex
t

Time

10
 D

ev
ic

es
, 2

 F
oc

i

0.
6

0.
8

1
05010
0

p ex
t

Time

10
 D

ev
ic

es
, 4

 F
oc

i

0.
6

0.
8

1
05010
0

p ex
t

Time

10
 D

ev
ic

es
, 8

 F
oc

i

0.
6

0.
8

1
05010
0

p ex
t

Time

20
 D

ev
ic

es
, 1

 F
oc

i

0.
6

0.
8

1
05010
0

p ex
t

Time

20
 D

ev
ic

es
, 2

 F
oc

i

0.
6

0.
8

1
05010
0

p ex
t

Time

20
 D

ev
ic

es
, 4

 F
oc

i

0.
6

0.
8

1
05010
0

p ex
t

Time

20
 D

ev
ic

es
, 8

 F
oc

i

0.
6

0.
8

1
05010
0

p ex
t

Time

50
 D

ev
ic

es
, 1

 F
oc

i

0.
6

0.
8

1
05010
0

p ex
t

Time

50
 D

ev
ic

es
, 2

 F
oc

i

0.
6

0.
8

1
05010
0

p ex
t

Time

50
 D

ev
ic

es
, 4

 F
oc

i

0.
6

0.
8

1
05010
0

p ex
t

Time

50
 D

ev
ic

es
, 8

 F
oc

i

(b
)

R
an

do
m

U
pd

at
e

F
ig

u
re

C
-1

2:
T
ab

le
au

sh
ow

in
g

th
e

re
su

lt
s

of
a

su
rv

ey
of

d
is

tr
ib

u
te

d
fo

cu
s

p e
x
t
ag

ai
n
st

co
n
ve

rg
en

ce
ti

m
e.

T
h
e

va
lu

e
of

p e
x
t
h
as

n
o

si
gn

ifi
ca

n
t

eff
ec

t
on

co
n
ve

rg
en

ce
ti

m
e,

so
w

e
m

ay
fe

el
sa

fe
in

el
im

in
at

in
g

th
e

p
ar

am
et

er
.

205

Convergence Survey With tpriv and pext out of the way, we can take a closer look

at the relationship between the other three parameters and convergence time.

• Conditions: Conditions range over the same 240 combinations as in the priv-

ilege survey.

• Configurations: pwait ranges from 0.05 to 0.85 in steps of 0.05, kp ranges from

0.25 to 4.0 in steps of 0.25, and we try all three replacement policies, for a total

of 816 combinations.

• Experiment: For each of the combinations, we run ten trials. The trials

measure convergence time, the same as in the previous surveys.

• Results: Figure C-13 shows a tableau of charts summarizing the results of the

survey. Within each chart, pwait ranges from 0.05 to 0.85 top to bottom and kp

ranges from 0.25 to 4 left to right.

I expect the follow policy to give the best consensus later, so I will give it

primacy in the visualization, comparing to see where either of the other policies

are significantly better. Thus, the colors of the individual charts are as follows:

– The red component shows the mean convergence time for the follow policy,

scaling linearly from full intensity at 0 cycles to zero intensity at 100 cycles.

– The green component shows when the random policy is better than the

follow policy. The comparison is scaled by the sum of standard deviations,

from zero intensity at 1/2 sum of deviations to full intensity at 3/2 sum of

deviations.

– The blue component shows when the round-robin policy is better than the

follow policy. The comparison is scaled by the sum of standard deviations,

just as for the green component.

Inspecting the results, we see that random updates are generally slightly faster

than synchronous updates, but that there is no qualitative change in behavior between

the two.

At low numbers of devices, the interaction between pairs of devices is the limiting

factor, and so higher levels of pwait produce better convergence times (though the

different is small in absolute terms). Since the numbers are small, even moderate

variation shows up on the chart as a sparse dusting of yellow and magenta pixels.

In the upper left hand corner of the synchronous charts, there is often a dark

“thrashing hole”—this is the result of having both pwait and kp low, effectively dis-

abling both short and long-range symmetry breaking.

206

Number of Foci

2 4 81

n
=

2,
 sy

nc
hr

on
ou

s

G
ri

d
0.

2
0.

4
0.

6
0.

8
A

ll
G

ra
ph

 S
tr

uc
tu

re

Number of Foci

2 4 81

n
=

5,
 sy

nc
hr

on
ou

s

G
ri

d
0.

2
0.

4
0.

6
0.

8
A

ll
G

ra
ph

 S
tr

uc
tu

re

Number of Foci

2 4 81

n
=

2,
 sy

nc
hr

on
ou

s

G
ri

d
0.

2
0.

4
0.

6
0.

8
A

ll
G

ra
ph

 S
tr

uc
tu

re

Number of Foci

2 4 81

n
=

20
, s

yn
ch

ro
no

us

G
ri

d
0.

2
0.

4
0.

6
0.

8
A

ll
G

ra
ph

 S
tr

uc
tu

re

Number of Foci

2 4 81

n
=

50
, s

yn
ch

ro
no

us

G
ri

d
0.

2
0.

4
0.

6
0.

8
A

ll
G

ra
ph

 S
tr

uc
tu

re

Number of Foci

2 4 81

n
=

2,
 r

an
do

m

G
ri

d
0.

2
0.

4
0.

6
0.

8
A

ll
G

ra
ph

 S
tr

uc
tu

re

Number of Foci

2 4 81

n
=

5,
 r

an
do

m

G
ri

d
0.

2
0.

4
0.

6
0.

8
A

ll
G

ra
ph

 S
tr

uc
tu

re

Number of Foci

2 4 81

n
=

10
, r

an
do

m

G
ri

d
0.

2
0.

4
0.

6
0.

8
A

ll
G

ra
ph

 S
tr

uc
tu

re

Number of Foci

2 4 81

n
=

20
, r

an
do

m

G
ri

d
0.

2
0.

4
0.

6
0.

8
A

ll
G

ra
ph

 S
tr

uc
tu

re

Number of Foci

2 4 81

n
=

50
, r

an
do

m

G
ri

d
0.

2
0.

4
0.

6
0.

8
A

ll
G

ra
ph

 S
tr

uc
tu

re

F
ig

u
re

C
-1

3:
T
ab

le
au

sh
ow

in
g

co
n
ve

rg
en

ce
ti

m
e

fo
r

d
is

tr
ib

u
te

d
fo

cu
s.

W
it

h
in

ea
ch

ch
ar

t,
p w

a
it

ra
n
ge

s
fr

om
0.

05
to

0.
85

to
p

to
b
ot

to
m

an
d

k
p

ra
n
ge

s
fr

om
0.

25
to

4
le

ft
to

ri
gh

t.
R

ed
in

te
n
si

ty
sh

ow
s

th
e

sp
ee

d
of

co
n
ve

rg
en

ce
fo

r
th

e
fo

ll
o
w

,
p
ol

ic
y,

gr
ee

n
sh

ow
s

si
gn

ifi
ca

n
tl

y
b
et

te
r

p
er

fo
rm

an
ce

b
y

ra
n
d
o
m

p
ol

ic
y,

an
d

b
lu

e
sh

ow
s

si
gn

ifi
ca

n
tl

y
b
et

te
r

p
er

fo
rm

an
ce

b
y

ro
u
n
d
-r

o
b
in

p
ol

ic
y.

207

For low numbers, having either symmetry breaking strategy suffices. As the num-

bers of devices and foci rise, however, we see that it convergence begins to fail when

either pwait is high or kp is very low. What this is telling us is that the two symmetry-

breaking strategies are actually interfering with one another. The reason is that as

we increase pwait, we are decreasing the effective diameter of privilege, since it takes

longer on average to make each hop. We do need pwait for short-range symmetry

breaking, so what this is telling us is that we want to keep it low, since short-range

symmetry breaking can resolve much faster than long-range.

Considering the three strategies, we can see that overall the round-robin strategy

is never clearly better than the follow strategy—there are a few scattered instances,

but not enough to form a pattern. The random strategy does perform better than

the follow strategy, but only when numbers of devices and foci are high and privilege

is largely disabled.

Interestingly, a detailed inspection of a few surveys suggests that almost all of

the competing topics are eliminated very quickly. The bulk of the convergence time

is spent eliminating the last few competing topics, when they are widespread and

“chasing each others’ tails” around the network. This is exactly what Rauch’s work

would lead us to expect, and is interesting because it suggests that the impact of

competition on behavior is largely unaffected by the number of competing topics.

C.4.5 Usage Specification

• Configuration Policy: pext should be disabled (e.g. set to 1), tpriv should be ap-

proximately the diameter of the network, any of the three replacement strategies

is reasonable, and kp should be relatively high, while pwait is low but non-zero.

• Limiting Conditions: When requests arrive faster than the system can converge,

there is no hope of stabilizing to a set of dominant topics. Determining the

threshold where this becomes true requires more detailed surveying.

• Failure Simplification: The most problematic failure is a lack of dominant topics,

since that failure is difficult for any given device to detect. This failure mode

can be avoided by throttling the rate of requests, such that convergence is

always likely. This effectively sacrifices a small amount of fairness, but need not

sacrifice agility, as we shall see in the design of the request throttle.

Cost Since the number of foci is expected to be low, no great pains have been taken

to ensure that the distributed focus is efficient. In particular, since the set of foci is

a precise set, each must be constructed separately to ensure there is no variance in

208

input streams

throttle
output stream

Figure C-14: A throttle takes several streams of events and filters them to produce
a fairly mixed output stream with a limited overall rate, while allowing short-term
bursts of activity from particular sources.

the size of the set, thus costing encoding and development time linear in the number

of foci.

During operation, a comparison can be done in parallel on nf 2 hardware per node,

but the actual changes are applied serially to the foci.

This fragility also means that variation during development, if it does occur, is

likely to disrupt the operation of a focus entirely. At run time, however, all that will

happen is a perturbation of the contents of a particular node’s foci.

Development Mature

Time O(f) O(f)

Space O(f) O(n2f 2)

Imperfection DOA foci perturbation of contents

C.5 Throttle

A throttle filters several streams of events fairly down to a single, rate-limited stream

of events.

C.5.1 Interface Specification

Conditions Events arrive at the throttle in streams from s different sources. The

rate and distribution of the incoming streams is unconstrained. The throttle then

emits a filtered stream of events, to be constrained to a sustained rate of no more

than rs events per time unit and a burst rate of no more than bmax events per source.

Range of Behavior The throttle’s behavior is the stream of events it emits.

Desirable Behavior A throttle is behaving desirably when it is:

• Responsive: when the overall rate is low, every event input enters the output

stream quickly.

209

• Lock-less: a previously quiet source can always invade a stream dominated by

other, more active sources.

• Limited: neither bursts nor the sustained rate are too large

• Non-stuttering: sustained activity on the inputs ends up producing sustained

(rather than bursty) activity in the output.

• Fair: no source is denied an equal share of the total permitted activity. If a

source does not use its share, however, it can be reapportioned among others.

C.5.2 Mechanism

The throttle is implemented with a simple mechanism closely related to a Token

Bucket Filter[11]. Each source stream has an associated activity level. When an

event arrives, the activity level is checked: if it is more than bmax − 1, the event is

discarded, otherwise the event is serviced—sent to the output stream.

When an event is serviced, the activity level raised by one plus a random number

in the range [−cvar/2, cvar/2], where cvar is a constant range of cost variation. This

variant cost works to prevent stuttering by keeping event servicing from falling into

a regular rhythm.

Finally, activity slowly leaks away. Every activity above zero decreases at a rate

of rs/nactive, where nactive is the number of sources with positive activity. Thus, the

total activity of the system decreases at rate rs, no matter how many sources are

active.

Thus, when the a source is idle its activity settles to zero, banking away the

ability to transmit a burst when it next activates. When a source is active, the rate

that activity leaks away dictates how often its events can be serviced, and that rate

scales inversely proportional to the number of active sources, effectively controlling

the overall rate.

C.5.3 Configuration Parameters

There is only one configuration option, the value of cvar.

C.5.4 Dossier

The token-bucket mechanism guarantees that transactions are lock-less, and a mod-

erate cvar (say, above 0.2) is likely to disrupt any rhythmic patterns of activity. Our

survey will thus attempt to determine whether it is also responsive, limited, and fair.

210

• Conditions: the maximum rate rs assumes four values, 1/100, 1/30, 1/10, and

1/3; the number of sources s is 2, 4, or 8 and bmax is fixed to 4. Sources generate

events at an average rate r ranging from 1/100 to 1/2 in steps of 1/100. Half

of the sources are high rate and the other half low rate, the ratio between rates

set by a parameter skew ranging from 1 to 10 in steps of 1/5.

• Configurations: cvar assumes four values, 0, 0.2, 0.5 and 1.

• Experiment: For each of the combinations of conditions and configuration, I

run a single trial in which the throttle runs for 10,000 rounds. In each round,

a fast source has a probability 2r·skew
skew+1

of generating an event, and a slow source

has a probability 2r
skew+1

. I collect data on how many high and low rate events

are generated (hin, lin) and how many are actually serviced (hout, lout).

• Results: First, the size of the output stream is well controlled to the goal for

the throttle (the target rate, plus a single transient of size bmax in each channel).

Of all the trials, 95% produce a number of output events at or below the goal;

the remaining 4% are mostly at high values of cvar and at worst are only 8%

above the desired rate. Not a single cvar = 0 trial is above the desired rate. All

told, we can be confident that the throttle produces an appropriately limited

stream of events.

The rest of the results are summarized by the tableau shown in Figure C-15.

Each of the four square blocks shows the results for one value of cvar ; within

a block, the number of sources s rises from right to left and the target rate rs

rises from top to bottom. Finally, in each chart, r rises from left to right and

skew rises from top to bottom.

The color of each pixel indicates the behavior of the throttle with the conditions

and configuration for that location in the tableau, using the three components

of its color:

– Red indicates saturation of the output. Intensity is the ratio of actual rate

to target rate (hout+lout

10000rs+bmaxs
), calibrated so 4/5 is zero intensity and 1 is

full intensity.

– Green indicates unfairness. Intensity is calculated as 1−max(lin/lout, lout/hout),

calibrated so 1/2 is full intensity and zero is zero intensity.

– Blue indicates full service of input events. Intensity is the average service

for low and high, lin/lout+hin/hout

2
, calibrated to 4/5 is zero intensity and 1

is full intensity.

211

This survey shows that the throttle makes a smooth transition between respon-

sive service, in which all events are served when the rate is low (solid blue

regions), and fair service, in which each source is apportioned an equal share

of the limited output stream of events (solid red regions). Only on the bound-

ary between the two regions is neither goal fully served, though even here the

service is reasonable. Finally, the only significant unfairness that occurs is in

the region where the low-rate sources are in transition from sparse to saturated

service, an equivalent boundary and therefore not worrisome.

Finally, we can see that the larger the cvar, the rougher the transition between

sparse and saturated usage. This will motivate us to choose moderate values of

cvar, to disrupt rhythms without spreading the transition too much.

C.5.5 Usage Specification

• Configuration Policy: cvar should be set to a moderate value such as 0.2, large

enough that patterns are likely to be disrupted but small enough to avoid spread-

ing the transition between sparse and saturated behavior much.

• Limiting Conditions: Performance is only significantly impaired when a source

is generating events at approximately the same rate that they can be serviced.

• Failure Simplification: The misbehavior of this device is mild and easy to com-

pensate for: no further failure simplification is necessary.

Cost Each source can be handled in parallel, except for the one central activity

measure, which can be calculated in logarithmic time. Execution time is thus the

minimum of this calculation and the number of elements in a burst. The hardware

required is proportional to the number of sources. Errors in the mature system will

lead to events occasionally slipping through or being blocked when they should not

have.

While it can no doubt be implemented more concisely, a naive implementation

of the central activity still takes only development time and encoding linear in the

number of sources. With this naive encoding, however, the only development failure

that may occur is an entire missing source.

Development Mature

Time O(s) O(log s + bmax)

Space O(s) O(s)

Imperfection missing source rate perturbations

212

c

 =
 0

.0

1/
30

1/
10 1/
3

1/
10

0

Goal Rate

8
4

2
So

ur
ce

s

va
r

(a
)

c v
a
r

=
0.

0

c

 =
 0

.2

1/
30

1/
10 1/
3

1/
10

0

Goal Rate

8
4

2
So

ur
ce

s

va
r

(b
)

c v
a
r

=
0.

2

c

 =
 0

.5

1/
30

1/
10 1/
3

1/
10

0

Goal Rate

8
4

2
So

ur
ce

s

va
r

(c
)

c v
a
r

=
0.

5

c

 =
 1

.0

1/
30

1/
10 1/
3

1/
10

0

Goal Rate

8
4

2
So

ur
ce

s

va
r

(d
)

c v
a
r

=
1.

0

F
ig

u
re

C
-1

5:
T
ab

le
au

of
th

ro
tt

le
b
eh

av
io

r
su

rv
ey

:
w

it
h
in

ea
ch

ch
ar

t,
ar

ri
va

l
ra

te
in

cr
ea

se
s

le
ft

to
ri

gh
t

an
d

sk
ew

b
et

w
ee

n
sl

ow
an

d
fa

st
so

u
rc

es
in

cr
ea

se
s

to
p

to
b
ot

to
m

.
F
or

ea
ch

p
ix

el
,
th

e
b
lu

e
co

m
p
on

en
t

sh
ow

s
fu

ll
se

rv
ic

e
of

ev
en

ts
,
re

d
sh

ow
s

sa
tu

ra
ti

on
of

th
e

ou
tp

u
t

ca
p
ac

it
y,

an
d

gr
ee

n
sh

ow
s

u
n
fa

ir
n
es

s
in

se
rv

ic
e.

E
x
ce

p
t

at
th

e
tr

an
si

ti
on

p
oi

n
ts

b
et

w
ee

n
lo

w
an

d
h
ig

h
u
ti

li
za

ti
on

(f
or

ei
th

er
th

e
sl

ow
or

fa
st

p
op

u
la

ti
on

)
th

e
b
eh

av
io

r
is

as
d
es

ir
ed

,
an

d
th

e
m

is
b
eh

av
io

r
in

th
e

tr
an

si
ti

on
re

gi
on

s
is

n
ot

se
ve

re
.

213

214

Bibliography

[1] James F. Allen. Maintaining knowledge about temporal intervals. Communica-
tions of the ACM, 26(11):832–843, 1983.

[2] John Batali. The negotiation and acquisition of recursive grammars as a result
of competition among exemplars. In Ted Briscoe, editor, Linguistic Evolution
through Language Acquisition: Formal and Computational Models, chapter 5.
Cambridge University Press, 2002.

[3] Jacob Beal. An algorithm for bootstrapping communications. In International
Conference on Complex Systems (ICCS 2002), 2002.

[4] Jacob Beal. Generating communications systems through shared context. Mas-
ter’s thesis, MIT, 2002.

[5] Jacob Beal. Sidestepping impossibility: Combat consensus in the assassins’ guild.
In MIT CSAIL Student Workshop 2006, September 2006.

[6] F.P. Brooks. No silver bullet: essence and accident in software engineering. In
Proceedings of the IFIP Tenth World Computing Conference, pages 1069–1076,
1986.

[7] William Butera. Programming a Paintable Computer. PhD thesis, MIT, 2002.

[8] Susan Carey. Bootstrapping and the origin of concepts. Daedalus, pages 59–68,
Winter 2004.

[9] Sean B. Carroll. Endless Forms Most Beautiful. W.W. Norton, 2005.

[10] F. Chong, E. Brewer, F.T. Leighton, and Jr. T. Knight. Building a better but-
terfly: The multiplexed metabutterfly. In International Symposium on Parallel
Architectures, Algorithms, and Netw orks, pages 65–72, 1994.

[11] David D. Clark, Scott Shenker, and Lixia Zhang. Supporting real-time appli-
cations in an integrated services packet network: architecture and mechanism.
SIGCOMM Comput. Commun. Rev., 22(4):14–26, 1992.

[12] M. Coen. Multimodal Dynamics: Self-Supervised Learning in Perceptual and
Motor Systems. PhD thesis, MIT, 2006.

215

[13] Gregory R. Ganger, John D. Strunk, and Andrew J. Klosterman. Self-* storage:
Brick-based storage with automated administration. Technical Report CMU-CS-
03-178, Carnegie Mellon University, 2003.

[14] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasability of con-
sistent, available, partition-tolerant web services. Sigact News, 2002.

[15] R.V. Guha and D.B. Lenat. Cyc: A midterm report. AI Magazine, 1990.

[16] Daniel Hein. Simloid - evolution of biped walking using physical simulation.
Master’s thesis, Institut fur Informatik, Humboldt Universitat of Berlin, 2007.

[17] Linda Hermer and Elizabeth Spelke. Modularity and development: the case of
spatial reorientation. Cognition, 61:195–232, 1996.

[18] Linda Hermer-Vasquez, Anne Moffett, and Paul Munkholm. Language, space
and the development of cognitive flexibility in humans. Cognition, 79:263–299,
2001.

[19] Linda Hermer-Vasquez, Elizabeth Spelke, and Alla Katznelson. Sources of flex-
ibility in human cognition: Dual-task studies of space and language. Cognitive
Psychology, 39:3–36, 1999.

[20] J. Kephart and D. Chess. The vision of autonomic computing. IEEE Computer
Magazine, 2003.

[21] Simon Kirby. Language evolution without natural selection: From vocabulary
to syntax in a population of learners. Technical report, Language Evolution and
Computation Research Unit, University of Edinburgh, 1998.

[22] Simon Kirby. Learning, bottlenecks and the evolution of recursive syntax. In
Ted Briscoe, editor, Linguistic Evolution through Language Acquisition: Formal
and Computational Models, chapter 6. Cambridge University Press, 2002.

[23] Simon Kirby. Natural language from artificial life. Artificial Life, 8:185–215,
2002.

[24] Thomas F. Knight and Gerald Jay Sussman. Cellular gate technology. In First
International Conference on Unconventional Models of Computation (UMC98),
1998.

[25] N Koenig and A Howard. Design and use paradigms for gazebo, an open-source
multi-robot simulator. In Intelligent Robots and Systems, 2004. (IROS 2004),
pages 2149–2154, 2004.

[26] Teuvo Kohonen. Self-Organization and Associative Memory. Springer-Verlag,
Berlin, 3rd edition, 1989.

216

[27] C. Lebiere and J.R. Anderson. A connectionist implementation of the act-r
production system. In Fifteenth Annual Conference of the Cognitive Science
Society, pages 635–640, 1993.

[28] Marvin Minsky. K-lines: A theory of memory. Technical Report AI Lab Memo
516, MIT, June 1979.

[29] Calvin Mooers. Putting probability to work in coding punched cards: Zatocod-
ing. Technical Report Technical Bulletin No. 10, Zator, 1947.

[30] Erik M. Rauch, Hiroki Sayama, and Yaneer Bar-Yam. Dynamics and genealogy
of strains in spatially extended host-pathogen models. Journal of Theoretical
Biology, 221:655–664, 2003.

[31] Registry of standard biological parts. http://parts.mit.edu (visited
5/31/2007).

[32] Martin Rinard, Cristian Cadar, Daniel Dumitran, Daniel M. Roy, Tudor Leu,
and Jr. William S. Beebee. Enhancing server availability and security through
failure-oblivious computing. In 6th Symposium on Operating Systems Design and
Implementation, 2004.

[33] Deb Roy. Learning from Sights and Sounds: A Computational Model. PhD
thesis, MIT, 1999.

[34] Yossi Sheffi. The Resilient Enterprise: Overcoming Vulnerability for Competitive
Advantage. MIT Press, 2005.

[35] Push Singh, Thomas Lin, Erik T Mueller, Grace Lim, Travell Perkins, and
Wan Li Zhu. Open mind common sense: Knowledge acquisition from the general
public. In Robert Meersman and Zahir Tari, editors, On the Move to Meaningful
Internet Systems 2002: DOA/CoopIS/ODBASE 2002, volume 2519 of Lecture
Notes in Computer Science, pages 1223–1237. Springer-Verlag, Heidelberg, 2002.

[36] Russel Smith, Geoff Carlton, Frank Condello, Norman Lin, Martin C. Martin,
Tim Schmidt, Konstantin Slipchenko, Jeffrey Smith, Vadim Macagon, Adam D.
Moss, Erwin de Vries, Nate Waddoups, and David Whittaker. Open dynamics
engine (version 0.7). http://www.ode.org, 2001 to 2006.

[37] Elizabeth Spelke. What makes humans smart? In D. Gentner and S. Goldin-
Meadow, editors, Advances in the Investigation of Language and Thought. MIT
Press, 2003.

[38] L. Steels. Emergent adaptive lexicons. In P. Maes, editor, SAB96, Cambridge,
MA, 1996. MIT Press.

[39] Shimon Ullman. High-Level Vision, chapter “Sequence Seeking and Counter-
Streams”. MIT Press, 1996.

217

[40] D.L. Waltz. Understanding line drawings of scenes with shadows. In Patrick .H.
Winston, editor, The Psychology of Computer Vision, pages 19–92. McGraw-Hill,
1975.

[41] Y. Wang and J.E. Laird. Integrating semantic memory into a cognitive architec-
ture. Technical Report CCA-TR-2006-02, University of Michigan, 2006.

[42] R. Weiss, S. Basu, S. Hooshangi, A. Kalmbach, D. Karig, R. Mehreja, and I. Ne-
travali. Genetic circuit building blocks for cellular computation, communications,
and signal processing. Natural Computing, 2(1):47–84, 2003.

[43] R. Weiss and T. Knight. Engineered communications for microbial robotics. In
Sixth International Meeting on DNA Based Computers (DNA6), 2000.

[44] K Wolff and P Nordin. Learning biped locomotion from first principles on a
simulated humanoid robot using linear genetic programming. In Proceedings of
the Genetic and Evolutionary Computation Conference, GECCO 2003, 2003.

[45] Holly Yanco. Robot communication: issues and implementations. Master’s the-
sis, MIT, 1994.

218

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

