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Abstract—Current engineered systems are often brittle and
hard to modify in contrast to living organisms, which adapt to
structural changes in a graceful and integrated manner. We refine
the concept of functional blueprints, an attempt to capture this
adaptability, and present an architecture for adjusting a design
through the execution of a network of functional blueprints.
We then use our architecture to investigate the efficacy of
the functional blueprint approach, presenting a preliminary
empirical study of the convergence dynamics of random networks
of functional blueprints. Convergence is both rapid and reliable
for a wide range of parameters, demonstrating that even simple
blueprints can provide effective design adaptation over a wide
range of circumstances and pointing the way toward both a
deeper theoretical understanding and practical applications.

Keywords—morphological computation, spatial computing

I. INTRODUCTION

Engineered systems tend to be brittle in their design, partic-
ularly as the complexity of a system’s design increases. Once
a system has been constructed, it is difficult to modify the
design without a vast number of consequences that can be
unpredictably difficult and costly to address. Animals, on the
other hand, adapt gracefully as they grow and develop, with
many feedback loops acting together to make changes that
maintain the integration of the organism as a whole. Indeed,
the flexibility and dynamicism of integration appears to be a
key enabler of the evolution of biological life [1], [2].

We wish to enable such adaptability in the design of
engineered systems, so that when a designer modifies one
element of a design, the rest of the design automatically adjusts
to compensate. Our approach is to specify a design using
functional blueprints (FBs) [3], in which the design specifies
behavioral goals and a method for adjusting the structure when
those goals are not met. Previously, we have proven that it is
theoretically possible to construct FBs that allow a system
to navigate through the space of viable designs, and have
demonstrated a cartoon model of tissue growth.

In this paper, we present preliminary results on the gener-
alization of the FB framework for use in an interactive design
tool. We begin with a description of the FB concept and related
work, then present the Morphogenetically Assisted Design
Variation (MADV) architecture for adjusting a design through
the execution of a network of FBs. Finally, we present the
first empirical evaluation of the convergence dynamics of FBs,
by studying the perturbation response of randomly generated
networks of FBs. We find that these networks disperse stress
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quickly, reliably converging to an appropriately adapted set of
values.

II. FUNCTIONAL BLUEPRINTS

A functional blueprint [3] consists of four elements: 1) a
system behavior that degrades gracefully across some range of
viability, 2) a stress metric quantifying the degree and direction
of stress on the system, 3) an incremental program that relieves
stress through growth, shrinkage, or other structural change,
and 4) a program to construct an initial viable minimal system.

Graceful degradation of system behavior asserts that the
core functionality of the system must not have a sharp tran-
sition from viability to non-viability. The stress metric and
incremental program combine to shift a degraded system’s
configuration back toward viability. Finally, the minimal sys-
tem makes sure there is some viable place to start.

Consider the example of a robot designed to climb stairs of
a certain height. As the height of the stair increases, the robot
will begin to struggle and the climbing behavior FB creates
a stress to increase the robot’s body length. As the robot’s
body grows, the additional mass strains the drive system and
the robot’s maximum acceleration rate decreases. A mobility
related FB creates a stress on the motor configuration, which
is relieved through the inclusion of larger motors. The larger
motors provide the desired acceleration but also reduce battery
life, and another FB for endurance creates a stress. This
propagation of stress and relief via FB continues on until the
system reaches a stable configuration. In this way FBs are able
to capture extensive networks of dependencies in a system, not
through the explicit representation of these dependencies, but
through the declaration of desired behavior, and a means of
adjusting parameters when the desired behavior is degraded.

A. Related Work

In recent years, observation of natural systems has led to
investigation of how growable patterns might be programmed,
generally focusing on geometric shape with less attention to
integration of function, e.g., [4], [5], [6], [7]. Most similar to
FBs is Werfel’s work on distributed construction of structures
adapted to environmental conditions [8].

Many projects in self-reconfigurable and swarm robotics
also consider the formation of self-adapting design, e.g., [9],
[10], [11]. Each of these approaches tends to focus on a partic-
ular adaptive structure algorithm, making them complementary
to FBs, which could be applied to make such algorithms
compose together.



Fig. 1. The MADV architecture iteratively adapts a design against a
collection of functional blueprints using a three stage loop: (1) evaluating
system behavior, (2) blending action of all of the functional blueprints in a
morphogenetic simulator, and (3) producing an incrementally modified model.

Control theory also addresses problems of system integra-
tion, but generally has difficulty with large numbers of non-
linearly interacting parts. A notable exception may be viability
theory [12], a branch of mathematical theory which is intended
to address such concerns, thought it still focuses on systems
well-described by differential equations.

III. ARCHITECTURE

The Morphogenetically Assisted Design Variation (MADV)
architecture is structured around a design modification loop,
as illustrated in Figure 1. First, the functionality of the current
design is analyzed by a set of evaluators, each of which
returns a set of metrics. The metrics are processed by the
morphogenetic simulator to produce a set of stresses for
each FB. Each set of stresses is blended together to produce
the collective stress for its blueprint, which is input to the
blueprint’s update function. The outputs of the update function
are changes to design attributes, which are likewise blended
together and used to produce a modified design. The loop is
run until the design converges. The same blending function is
used for blending stresses and for blending attribute updates:
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This blending function preserves the direction of the sum of
the values, resulting in a value that is a fraction of the largest
value in that direction. It is designed to result in smaller values
when blending values with opposite signs, but preserves the
maximum value when all the values have the same sign.

A series of evaluators are used to determine how well a
design accomplishes specific tasks. For example, a robot model
might be evaluated in many ways including cost, component
interaction complexity, and satisfaction of overall objectives.
In one case that we have been considering, our environmental
evaluator examines the time it takes a robot to climb a step
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Fig. 2. (a) Stress function used in experiments for ratio functional blueprints
(top) and the perturbation blueprint (bottom). (b) Example of a randomly
generated functional blueprint network with 6 attributes and 7 blueprints.

in a simulated environment. This time is an evaluation metric,
which is then converted into a stress value by a FB’s stress
function. These evaluators help ensure that the design can
accomplish the desired objectives.

A designer interacts with the MADV architecture by modi-
fying the existing design or environment attributes, with each
modification performed by introducing a “user goal” FB. This
perturbs the design, and, with appropriately formulated FBs,
should drive adaptation until either the designer’s intent is
satisfied or the design reaches a stable partial solution from
which it cannot proceed further.

IV. EMPIRICAL EVALUATION

We now have a framework for FBs and an architecture for
evaluating a network of FBs in order to adapt a design. If the
individual FBs are not designed appropriately, however, then
the system may not be able to re-converge to a non-stressed
state, and adaptation will fail. For the FB approach to become
practically useful, therefore, it is important to investigate the
conditions and dynamics of successful adaptation:

• Under what conditions will a network of FBs re-converge
after it has been perturbed?

• When a network converges, how quickly will it do so?
We present here the results of a preliminary empirical inves-
tigation, using random networks of simple FBs.

A. Experimental Setup

For our experiments, we consider a set of n design at-
tributes, each with a positive real number value. These at-
tributes are linked together by k FBs, each of which constrains
the ratio between two attributes. Thus, in this case the collec-
tion of attributes and FBs may be viewed as a graph, where
attributes are nodes and FBs are edges.

The FBs for the k ratio constraints have piece-wise stress
functions as shown in the top part of Figure 2(a). If the ratio
between two attributes is less than the desired ratio plus 0.05
then there is no stress (V0 = 0.05). If it becomes more
than ratio plus 1 (V1 = 1) then the system is not viable
anymore. When stress is non-zero (in (0, 1]), the incremental
adjustment prescribed by the FB is to shift both attribute values
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Fig. 3. The main component of the mean total stress (a) is the driver used to inject the perturbation: the network of ratio constraints rapidly adapts, keeping
the mean stress over all experiments extremely low (b). Convergence is robust against a wide range of perturbation sizes (c) and drive rates (d).

by stress ∗ 2 in the direction that will reduce stress, e.g., if
the ratio is high, the numerator attribute will be lowered and
the denominator attribute raised.

To generate a random network of k FBs and n attributes,
we first assign each attribute to a random integer in the
range [10, 20]. Each FBs is then assigned to a random pair of
attributes (with no duplication allowed), and its desired ratio
set to the ratio between the attributes values. A typical example
is shown in Figure 2(b).

Perturbations are injected with a FB which prescribes an
increase at rate d towards a desired value of 1 + P times
its original value. This perturbation is applied to the (n/2)nd

attribute. The stress function is shown in the bottom part
of Figure 2(a). The input to this function is the normalized
difference, desired−current

current , where current is the current value
of the attribute and desired is the value set by the user. When
the normalized difference is non-zero, the system is stressed
and becomes non-viable if it varies more than V = 2 ∗ P .
The incremental update when stress is non-zero is either
|desired− current| or current ∗ d whichever is smaller. We
call d the drive rate. Except where otherwise mentioned, we
use a drive rate of d = 0.005, a goal of P = 1, and run each
parameter configuration 20 times, each time running at most
1000 iterations of the design modification loop.

B. Results and Discussion

We begin by examining the behavior of stress over time,
considering four different random network sizes: (n, k) equal
to (4, 4), (6, 7), (8, 12), and (10, 20). In these experiments,
the FBs always converge, leaving the perturbed attribute at
its new value and all other attributes at adjusted zero-stress
values. Figure 3(a) and 3(b) show the total stress over time
and stress only in the ratio constraint network, respectively.
For the latter, we see a “spiky” pattern of small amounts of
stress appearing and rapidly vanishing, showing that these FBs
are rapidly adapting to the driving perturbation across a wide
range of sizes. These figures show highly effective adaptation,
where stress from the perturbation is dispersed as quickly as
it is injected into the network.

This rapid and robust adaptation behavior holds across a
wide range of perturbation sizes and drive rates. Figures 3(c)
and 3(d) show the variation in convergence time with pertur-
bation size ranging from P = 0.5 to 5 and for perturbation

drive rate ranging from d = 0.01 to d = 0.5 (100 iterations
per d value), respectively. Only when we set d to extremely
high values, changing the value of an attribute by more than
35% in a single iteration, does the system fail to converge.

V. CONCLUSION

Building on the previously developed concept of FBs, we
have presented the MADV architecture for adjusting a design
through the execution of a network of FBs. We then used this
architecture to conduct a preliminary empirical study of the
convergence dynamics of random networks of FBs, finding
that convergence is both rapid and reliable for a wide range
of networks and parameters. Although the empirical results
presented here are limited in scope, they are an important
step toward validating the approach, as they demonstrate that
even simple blueprints can provide effective adaptation across
a wide range of designs. Future work includes a broader
empirical investigation and a theoretical investigation of FBs.
We also aim to apply the MADV architecture to the redesign
of an entire mobile robot.
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