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Abstract

Long-lived sensor network applications must be able
to self-repair and adapt to changing demands. We
introduce a new approach for doing so: Constraint
and Restoring Force. CRF is a physics-inspired
framework for computing scalar fields across a sen-
sor network with occasional changes. We illustrate
CRF’s usefulness by applying it to gradients, a com-
mon building block for sensor network systems. The
resulting algorithm, CRF-Gradient, determines lo-
cally when to self-repair and when to stop and save
energy. CRF-Gradient is self-stabilizing, converges
in O(diameter) time, and has been verified experi-
mentally in simulation and on a network of Mica2
motes. Finally we show how CRF can be applied to
other algorithms as well, such as the calculation of
probability fields.

1 Context

Sensor networks are growing both in size and in the
complexity of tasks that we want them to perform.
As they grow, the challenge of obtaining cheap, re-
sponsive, and robust control mechanisms becomes
ever more acute. In this paper, we introduce Con-
straint and Restoring Force, a framework for con-
structing one such class of control mechanisms. CRF
is inspired by the way that local constraints lead to
predictable global outcomes in physical systems, and
can be used to calculate scalar fields on sensor net-
works with occasional changes.

To demonstrate the utility of CRF, we apply it to
the problem of calculating gradients—measurements
of distance to a source region of the network. This
is a common building block in sensor network al-
gorithms; applications include data harvesting (e.g.
Directed Diffusion[13]), routing (e.g. GLIDER[9]),

and coordinate system formation (e.g. [2]), to name
just a few.

Applying the CRF framework yields an improved
algorithm, CRF-Gradient, which expends little en-
ergy when conditions are stable, yet adapts quickly
in the face of failures and changing demands. Anal-
ysis of CRF-Gradient shows that it is self-stabilizing
and converges in time proportional to the diameter
of the network. We have implemented the algorithm
and verified it experimentally both in simulation and
on Mica2 motes.

1.1 Related Work

Our development of CRF depends on previous work
in the Amorphous Medium abstraction. This idea
was introduced in [3] and developed further in [4].
Recently, we described how the abstraction simpli-
fies engineering of emergent behavior[5] and showed
that it can be applied to sensor network problems[1].
While we have preferred to use Proto in our im-
plementation, this algorithm could be implemented,
albeit more awkwardly, using other macroprogram-
ming language such as Regiment[15] or Kairos[11].

Physics-inspired approaches are common for dis-
tributed control of the positions of mobile agents—
see for example the lattice formation in [16], sensor
network deployment in [12], and role assignment in
[17]. CRF is a more general framework for control
of information, with which many of these position-
control systems could be implemented.

Adaptable gradients have been previously ex-
plored. Most similar to our approach is Active
Gradients[7], which increases its distance estimate
when communication is disrupted, but assumes
knowledge of the maximum range of the gradient and
uses only hop-count as a distance measure. Butera’s
gradients[6] delete and rebuild locally, but losing
connection to the source can cause them to thrash.
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Figure 1: A telephone wire demonstrates CRF: the
constraint ensures continuity, gravity is a restoring
force pushing the wire down, and the points fixed to
the poles determine the overall shape.

More common are approaches which periodically
discard and rebuild the gradient, such as GRAB[18]
(which uses a single source and rebuilds when its
error estimate is too high) and TTDD[14] (which
builds the gradient on a static subgraph, which is
rebuilt in case of delivery failure). Although these
approaches are typically well tuned for a particular
use case, the lack of incremental maintenance means
that there are conditions that will cause unnecessary
rebuilding, persistent incorrectness, or both.

2 Constraint & Restoring

Force

We will explain the idea behind CRF with an anal-
ogy: think about how telephone wires look. At a few
places, they are connected to poles that hold them
up in the air. Between the poles, the wire sags down-
ward, pushed evenly by gravity along its length. But
there is a limit to how far the telephone wire sags,
because two parts of the wire can’t be any farther
apart than the length of wire between them. These
three elements—fixed points at the poles, the wire
length constraint, and the force of gravity—interact
locally to produce the global shape of the telephone
wire.

This is the idea behind CRF: fixed points and con-
straints define a goal, and the restoring force pushes
the system values up against it. Let us make this
concrete by applying it to calculation of a gradient.
A gradient is a scalar field of numbers across space
such that the value at each point is the distance from
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Figure 2: A gradient is a scalar field where the value
at each point is the shortest distance to a source re-
gion (blue). The value of a gradient on a network
approximates the value of the gradient in a continu-
ous space containing the network.

that point to the nearest point in the source region
(Figure 2(a)). When we run a gradient on a sensor
network, it will produce a discrete approximation
of this calculation across the devices of the network
(Figure 2(b)).

Now let’s look at this in the CRF framework. Our
fixed points are the source region: any point in the
source is distance zero. Our constraint is the triangle
inequality: the distance from any point to the source
is less than or equal to the distance from that point
to any neighbor plus the distance from that neighbor
to the source. Finally, the restoring force will raise
the distance estimate at a constant rate.

Making it work is almost this easy, but not quite.
The catch is that information does not move instan-
taneously, and in order to get the system to con-
verge quickly and without oscillation, points will
need to predict possible future values of their neigh-
bors. First though, we will formalize the network
model.
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Figure 3: An amorphous medium is a manifold
where every point is a computational device that
shares state with a neighborhood of other nearby
devices.

3 Amorphous Medium & Dis-

crete Network Models

We will develop the CRF framework and algorithms
derived from it using the amorphous medium ab-
straction. This abstraction hides many networking
details from the programmer, simplifying our algo-
rithm and analysis.

An amorphous medium is a theoretical continu-
ous computational material which fills space. The
medium is a manifold, where every point is a com-
putational device which independently executes the
same code as every other device in the medium.1

Nearby devices share state—each device has a
neighborhood of devices nearby whose state it can ac-
cess (Figure 3). Information propagates through the
medium at a fixed velocity c, so the device accesses
values in the past light cone of its neighborhood,
rather than the current values (Figure 4).

We cannot construct an amorphous medium but
we can approximate one by viewing a network as a
discrete sampling of the amorphous medium. Thus,
when we develop an amorphous medium algorithm,
we first prove it works in the abstraction, then show
that the approximate version preserves its function-
ality.

We will use the following discrete network model:

• The number of devices n is finite and may range
from a handful to tens of thousands.

1Executions diverge due to randomness, differences in sen-
sor values, and interaction with their neighborhoods.
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Figure 4: Information propagates through an amor-
phous medium at a fixed rate, so each processor has
access only to values in the intersection of its neigh-
borhood and past light cone.

• Devices are immobile and are distributed arbi-
trarily through space.

• Devices communicate via unreliable broadcast
with all other devices within r units of distance.

• Memory and processing prower are not limiting
resources.2

• Execution happens in partially synchronous
rounds; each device has a clock which ticks regu-
larly, but frequency may vary slightly and clocks
have an arbitrary initial time and phase.

• Naming, routing, and coordinate services are
not provided.3

• Arbitrary stopping failures and joins of points
and regions may occur, including changes in the
connectedness of the network.

The critical link between the discrete and contin-
uous models is state shared via the neighborhood.

2Excessive expenditure of either is still bad, and memory
is an important constraint for the Mica2 implementation.

3They may be made available as sensor values, with ap-
propriate characterization of reliability and error.
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Each device broadcasts periodically to its neighbors,
refreshing their view of its state. The neighborhood
of a device is then defined by the set of devices whose
broadcasts arrive reliably; when no message from a
neighbor has arrived recently, a device assumes that
neighbor is dead.

These broadcasts contain intermediate values po-
tentially needed by a neighbor. Because all of the
devices are programmed identically, a device can
predict what values might be needed by its neigh-
bors and perform any necessary calculations. The
broadcasts are used to estimate the space-time dis-
placement of devices relative to one another, using
information in the message or its manner of delivery.

The neighborhood implementation is the key to
trading off responsiveness and energy efficiency.
When neighborhood information is changing, a de-
vice broadcasts every round. The broadcasts are sent
halfway between computations in order to reduce
skew in the rate at which information propagates.
When there is no change, the device throttles back
its broadcast rate exponentially, multiplying the pe-
riod between updates by k each time, to a maximum
of broadcasting only once every M rounds. Throttle
information is included in the broadcast, so neigh-
bors know to expect slow updates and to not pre-
maturely assume the device has died. When the
neighborhood information changes again, the device
returns its broadcast rate to once per round. Thus,
devices broadcast messages at only 1/M the nor-
mal rate during periods of stability, saving a large
percentage of the energy which would otherwise be
consumed. For more detail on the discrete imple-
mentation see [5].

3.1 Proto

One last excursion before we dive into the algo-
rithms: the code presented below is written in
Proto[5], a language we have developed which uses
the amorphous medium abstraction. The language
is unimportant, but it allows a highly succinct de-
scription and can be verified by direct execution on
Mica Motes.

We will thus briefly explain enough Proto to al-
low the reader to understand the algorithm code.
Please remember that this paper is about an algo-

rithm and not about the Proto language: for more
information on the language or its implementation
on Mica2 Motes, see [5] or [1].

Proto is a functional programming language that
uses LISP syntax, though it is not a full-featured
LISP. An expression in Proto is evaluated globally
against an amorphous medium, producing a field (a
function assigning a value to each point); an operator
takes fields as input and produces a field as output.
For example, the expression (+ 3 5) takes a field
valued 3 at every point and a field valued 5 at every
point and adds them point-wise to produce a field
valued 8 at every point.

A Proto expression is compiled to execute point-
wise on an amorphous medium, where it would eval-
uate synchronously in regular rounds. When approx-
imated on a network, the rounds are no longer syn-
chronized and neighborhood information is an ap-
proximation as described above.

A few Proto operators that we will use are ex-
plained below:

• (inf) is the numeric value infinity.

• (fun args ...) and (def name args ...) define
anonymous and named functions, respectively.

• (tup elt ...), (1st tuple), and (2nd tuple) :
tup creates tuples, the others access elements
of a tuple.

• (fold-hood fold init value) is an operation
on a device’s neighborhood (including the de-
vice itself). The operation starts with the value
init and calls fold to merge each value in the
neighborhood in turn.4

• (nbr-lag), (nbr-range), (radio-range), and
(Dt) are functions that provide space-time in-
formation. The nbr-lag and nbr-range func-
tions can only be used within a neighborhood
operation and provide the time and space dis-
placement to the neighbor under consideration.
Dt gives the elapsed time between rounds.
radio-range gives an upper bound on possible
neighborhood radius.

4Accordingly, value is included in broadcast messages in
the discrete implementation.
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1 ( de f set ? (x ) (< x ( i n f ) ) ) ; h e l p e r : t e s t s whether x i s non− in f in i t e
2

3 ( de f con s t r a i n ( ct q v r f compare aux )
4 ( fold−hood
5 ( fun ( agg nbr )
6 ( l et ∗ ( ( nq (1 s t nbr ) ) ( naux (2nd nbr ) ) ; nq=neighbor ’ s value , naux i s any other i n f o needed
7 ( q e f f ( r f nq ( i f (= v 0) 0 (∗ 2 ( nbr− lag ) ) ) ) )
8 ( ncq ( ct q aux nq naux ) )
9 ( n c q e f f ( c t q aux q e f f naux ) ) )

10 ( i f (or (= ( nbr−range ) 0) ( compare q n cq e f f ) )
11 agg
12 ( i f (not ( set ? agg ) ) ncq
13 ( i f ( compare ncq agg ) ncq agg ) ) ) ) )
14 ( i n f )
15 ( tup q aux ) ) ) ; share va lue and any other i n f o needed
16

17 ( de f c r f ( f i x i n i t c t r f compare aux )
18 ( l e t f e d ( ( s t a t e ; t up l e o f ( value , ra t e o f change )
19 ( tup i n i t 0) ; i n i t i a l va lue
20 ( l et ∗ ( ( q (1 s t s t a t e ) ) ( v (2nd s ta t e ) ) ; q=value , v=rate o f change
21 ( q f ( f i x ) )
22 ( q c ( con s t r a i n ct q v r f compare aux ) )
23 ( q r ( r f q (Dt ) ) ) )
24 ; ; These are mux , not i f , so every poin t shares va lues f o r cons t r a i n t c a l c u l a t i on s
25 (mux ( set ? q f ) ( tup q f 0)
26 (mux ( set ? q c ) ( tup q c 0)
27 ( tup q r (− q r q ) ) ) ) ) ) )
28 (1 s t s t a t e ) ) ) ; re turn the va lue

Figure 5: Code for CRF and its helper functions.

• (mux test true false) and (if test then else)
are the conditional operators of Proto. If runs
only the chosen branch, while mux runs both,
allowing neighbors access to fold-hood values
from the branch not taken.

• (letfed ((var init step) ...) ...) establishes
state via a feedback loop. Starting at init, each
round var is calculated by evaluating step with
its previous value.

4 Algorithm

We can now move on to explaining the CRF algo-
rithm and how we apply it to calculate gradients and
other functions. Remember, the algorithm is not de-
pendent on the language; if you are uncomfortable
with LISP-like languages, please consider the listings
as pseudocode.

4.1 CRF

The Constraint and Restoring Force algorithm (Fig-
ure 5) is parameterized by the three CRF elements
plus an initial value init, as shown on line 18:

• Fixed values are supplied by the function (fix),
which returns either the fixed value or infinity
for unfixed points.

• The constraint has three parts: ct is a function
that calculates the constraint between neighbors
given their values and supplementary informa-
tion aux. Constraint values are then compared
with compare (usually > or <) to find the most
dominant.

• Restoring force is applied with the function (rf
q Dt), which takes a value q and evolves it
without constraint over time Dt.

CRF works by tracking two state variables: the
value of interest q and its rate of change v (line 19).
Every round, a point considers the constraint from
its neighbors (line 23). If the point has a fixed value,
q is set to the fixed value by an impulse, leaving the
system with zero velocity (line 26). Otherwise, it
moves with an impulse if constrained (line 27), or
applies the restoring force if not (line 28). Finally,
CRF returns its current value.

In the function applying the constraint (line 3),
each point shares its value and an optional user value
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Figure 6: When a point becomes unconstrained,
the direction of possible new constraints may differ
from the direction in which the wave of deconstraint
passed through it. When it considers a potential
constraint from a neighbor, then, it must project the
unconstrained value by twice the lag between them.

(line 16) and defaults to being unconstrained (line
15). A point compares its value with the constraints
imposed by its neighbors, not including itself (line
10). Because communication is not instantaneous,
however, this comparison must compensate for time
lag regarding possible changes in the direction of
constraint.

When a point becomes unconstrained, it can be-
come constrained again through any neighbor, in
any direction. The change from constrained to un-
constrained, however, is a wave flowing through the
neighborhood from the direction of the old con-
straint. Thus when an unconstrained point com-
pares its value to that of a neighbor, the possible
new constraint vector may differ by twice the lag
between them (Figure 6). Accordingly, an uncon-
strained point must compensate by projecting the
unconstrained future value of its neighbors (line 7).
Ignoring neighbors whose projected values do not
constrain it (line 11), the point takes the neighbor
value with the tightest constraint (line 13, 14).

If the restoring force acts slowly enough compared
to the speed c at which information propagates, the
algorithm will be stable even without compensation.
In the discrete approximation, however, time and

space are discretized independently, and this can
cause c to be very slow over short distances.

4.2 CRF-Gradient

Now that we have the CRF framework, using it to
build gradients is easy:

1 ( de f t r i ang l e− i n equa l i t y (q aux nq naux )
2 (+ nq ( nbr−range ) ) )
3

4 ( de f c r f−grad i ent ( s r c )
5 ( c r f ( fun ( ) (mux s r c 0 ( i n f ) ) )
6 0
7 t r i ang l e− i n equ a l i t y
8 ( fun ( q dt )
9 (+ q (∗ dt (/ ( radio−range ) 8 ) ) ) )

10 < 0))

The fixed values are zero at the source, and the
initial value at every point is zero. The constraint
is the triangle inequality, which is a minimizing con-
straint, so we set compare to <. The triangle in-
equality needs no information besides the value and
geometry, so we set aux to an arbitrary constant 0.
Finally, we set the restoring force to raise the value
at a small constant rate.

4.3 CRF-Max-Probability

CRF can be applied to other algorithms as well. For
example, CRF can be used to calculate maximum cu-
mulative probability paths to a destination—a com-
ponent used in building a threat avoidance system
such as [8]. The maximum probability calculation
is:

1 ( de f l i n e− i n t e g r a l ( q f nq nf )
2 (∗ nq (pow (/ (− 2 (+ f nf ) ) 2)
3 (∗ 0 .01 (+ 1 ( nbr−range ) ) ) ) ) )
4

5 ( de f cr f−max−probabi l i ty ( dst f )
6 ( c r f ( fun ( ) (mux dst 1 ( i n f ) ) )
7 0
8 l i n e− i n t e g r a l
9 ( fun ( q dt ) (∗ q (pow 0.99 dt ) ) )

10 > f ) )

This algorithm uses a maximizing constraint based
on the approximate line integral between two points,
so compare is set to >. Since we are integrating
the field function f, we pass it to CRF as aux so
that it can be accessible to the constraint function.
The restoring force operates in the opposite direc-
tion, shrinking the calculated probability exponen-
tially. Finally, the destination has a fixed probabil-
ity of 1, and every point starts with zero probability,
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reflecting the lack of a known path to the destina-
tion.

5 Analysis of CRF-Gradient

We will show that CRF-Gradient converges in
O(diameter) time by proving self-stabilization,
where the network converges to correct behavior
from an arbitrary starting state.

Our strategy will be to first prove self-stabilization
for an amorphous medium, then adapt the proof for
approximation on the discrete network.

For the purposes of this proof, we will assume that
the source region remains fixed, and that there are
no failures. We will additionally use the following
definitions and assumptions:

• A is the amorphous medium manifold. A is
smooth, compact, Riemannian, and has finite
diameter and dimension. S ⊆ A is the source
region. We will consider the source region to be
constrained.

• There is an r > 0 such that at every point x a
closed ball of radius r centered at x is entirely
contained within the neighborhood of x.

• qR,t, is the set of values in a region R ⊆ X at
time t and consists of real numbers in the range
[0,∞).

• c is the constant velocity of information prop-
agation in the medium, f is the constant ve-
locity of q imparted by the restoring force, and
f ≤ c/4.

• Given two points x and y, dx,y is the distance
between them and Lx,y is the communication
lag between them. The distance and lag be-
tween regions will be the greatest lower bounds,
dX,Y = inf({dx,y|x ∈ X, y ∈ Y } and LX,Y =
inf({Lx,y|x ∈ X, y ∈ Y }. Given a distance d,
Ld is the lag across distance d.

• Evaluation is continuous (i.e. rounds happen
infinitely often).

• If the source region is non-empty, correct be-
havior is for every point x to assume a value

qx = dx,S equal to the shortest path to a point
in the source region. If there is no source, cor-
rect behavior is for the value at every point to
rise uniformly at rate f .

Given these definitions, we can begin the proofs,
starting with a simple bound showing how the least
values in a region control the whole region.

Lemma 5.1. Let R ⊆ A. At time t = 0, let q0 =
inf(qX,0), and define the minimum region M as the
limit of Mǫ = {closure(x)|qx,0 < q0 + ǫ} as ǫ → 0.
Then at time t, every point x with dx,M < ct has
value qx,t < q0 + ct + 2tf .

Proof. Because A is bounded, metric, and compact,
M is non-empty.5 At time Lr, every point y within
dy,M ≤ r units of the minimum is constrained to
qy,Lr

≤ q0 + r + 2Lrf . Chaining this outward, we
know that x is constrained to qx,Lx,M

≤ q0 + dx,M +
2Lx,Mf . If x is never constrained thereafter, it will
continue to rise for a period of t− Lx,M , to a maxi-
mum value of qx,t ≤ q0 +dx,M +2tf . Since dx,M < ct,
we thus have qx,t < q0 + ct + 2tf .

We also need the converse, a condition under
which a region will have no constraints.

Lemma 5.2 (Floating Island Lemma). Let R ⊆ A
be a region where the maximum difference between
any two points x and y is qx,t − qy,t < dx,y + Lx,yf ,6

and all points are unconstrained. Then, unless R
is acted on by a constraint from outside, no point
within R will be constrained in the future. We will
call a region of this type a “floating island.”

Proof. Assume x and y are neighbors, with qx,t >
qy,t. Then x is receiving the value y held at time t′ =
t−Lx,y, which is bounded qy,t′ ≥ qy,t−Lx,yf . If x is to
remain unconstrained, it must be the case that qx,t <
qy,t′ + dx,y +2Lx,yf ≤ (qy,t−Lx,yf)+ dx,y +2Lx,yf =
qy,t + dx,y + Lx,yf , which is satisfied by assumption.
Since this holds for any pair of neighbors, we can
chain neighborhoods together to show that it holds
for any pair of devices.

5Even if there is no point with value q0, we can use an oc-
cupancy argument to construct a Cauchy sequence converging
to some point in M .

6This is effectively a bound on the derivative of qR, but is
formulated as a difference for easier translation to the discrete
network.
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We can now show self-stabilization in the case
where there are no sources.

Theorem 5.3 (Floating Island Growth). Let R ⊆
A − S be a region without sources. Take the initial
time to be t = 0 and identify the minimum q0 and
minimum region M as before. Then at time t, the
set {x|dx,M < ct/2} is a floating island unless acted
on by a constraint from outside.

Proof. Assume for contradiction that this is not true.
Then either there is a point x ∈ R which is con-
strained or there is a pair of points x, y ∈ R such
that qx,t − qy,t ≥ dx,y + Lx,yf .

Case 1: assume there is a constrained point x.
Since dx,M < ct/2, then by Lemma 5.1 its value
at t is bounded qx,t < q0 + ct/2 + 2tf = q0 + ct.
Since it is constrained, x has a neighbor y such that
qy,(t−Lx,y) < q0 + ct − dx,y. This point y must in
turn have constrained in an interval with t − Lx,y

contained within its limit. This gives a sequence of
dependencies at times converging to t0 = 0. Since
distance drops at least as fast as time, however, the
limit of this sequence is a point l with value ql,0 < q0,
giving us a contradiction.

Case 2: assume there are two points, x, y such
that qx,t − qy,t ≥ dxy + Lxyf . Then, by the interme-
diate value theorem, for any ǫ in the range 0 < ǫ < r
there must be two points xǫ, yǫ which also violate the
bound and are neighbors with distance dxǫ,yǫ < ǫ.
For this to hold, however, yǫ must have been con-
strained by another point z in the interval [t−Lǫ, t],
or else x would have already been constrained by y,
shrinking the difference to within the bound. The
value of z is bounded qz,(t−Ly,z) ≤ qy,t − dy,z, and
it too must have been recently constrained. We can
thus construct a sequence of dependencies as in Case
1, halving ǫ at each step, to produce a limit point
with a value less than the minimum, again yielding
a contradiction.

Corollary 5.4. If the source region S is empty, then
within 2 ∗ diameter/c time every point will be part
of a floating island.

Finally, we can use floating islands to show self-
stabilization for an amorphous medium with sources.

Theorem 5.5. The CRF-Gradient algorithm self-
stabilizes in 4 ∗ diameter/c time on an amorphous
medium.

Proof. First, note that once a point is constrained
by the source, it will always be constrained by the
source—it can only relax towards a shorter path.
The relaxation is finished within the transit time of
information along the shortest path to the source.

Repeated time-shifted applications of Lemma 5.3
and Lemma 5.2 show that the minimum in the area
not constrained by the source rises at rate f .

If the source region is empty, then Corollary 5.4
gives self-stabilization in 2 ∗ diameter/c time.

If the source region is not empty, then at time
t, the region {x|dx,S < ct/4} is constrained by the
source, since for any ǫ in 0 < ǫ < r, a point y
within ǫ of a source-constrained region will become
constrained by the source in 2Lǫ time after reaching
value dy,S. Since f ≤ c/4, the rise rate is the lim-
iting factor. The worst-case rise is from minimum
value zero, so a point y at distance dy,S becomes con-
strained at a time t ≤ dy,S/f = 4dy,S/c. Thus, the
entire network is constrained by the source within
4 ∗ diameter/c time.

Theorem 5.6. The CRF-Gradient algorithm self-
stabilizes in 6 ∗ diameter/c time on a discrete net-
work with no collinear neighbors.7

Proof. On a discrete network, time and distance are
quantized separately, meaning that Lx,y is no longer
proportional to dx,y within a neighborhood. Normal-
izing time to rounds, Ld≤r is in the range [1/2, 3/2]:
it will be approximated in algorithmic use as the
maximum, and c will be approximated as 2

3
r per

round, with r equal to the broadcast radius.
Non-collinear neighbors means that if a device x

is constrained by a neighbor y, then no device con-
straining y is a neighbor of x. With this guaran-
tee, we can bound sequences, given a maximum of
two steps to traverse distance r; without, we cannot
bound them, because the potential lag is multiplied
by the degree of collinearity.

The amorphous medium proofs are affected as fol-
lows:

7Such a network can be produced by adding a small
amount of randomness to geometric information.
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• Lemma 5.1: The minimum region M is still
guaranteed to be non-empty. The lag is no
longer constant, so the constraint of a point
x may happen earlier, giving more time for it
to rise, up to 2/3t. This shifts the bound to
qx,t < q0 + ct + 8

3
tf

• Lemma 5.2: Unchanged, since constraint ap-
plication uses the maximum value of Lx,y.

• Lemma 5.3: Floating islands grow more
slowly, encompassing only everything within
ct/6 of M : the dependency sequences stretch
further in time, with distance dropping as slowly
as 1/2r every 3/2 rounds, which is 1/2c. The
initial value can also be higher due to the dif-
ferences in Lemma 5.1, applying an additional
2/3 multiplier to the guaranteed distance. All
told, instead of everything within ct/2 being
part of a floating island, it is reduced to ev-
erything within ct/6. Time-shifted application
still provides a minimum that rises at the same
rate.

• Corollary 5.4: The time is raised proportion-
ally to 6 ∗ diameter/c for everything to be in-
cluded in a floating island.

• Theorem 5.5: The time to become constrained
by a source-constrained neighbor converges to
2Lr instead of zero, adding that constant to
the convergence rate. The critical path, how-
ever, switches to the empty source case, with
convergence time 6 ∗ diameter/c. The expected
case for random distributions, however, is still
4 ∗ diameter/c.

6 Experiments

We have verified the CRF framework and derived
algorithms both in simulation and on a network of
Mica2 Motes.

6.1 Simulation

In simulation, CRF-Gradient converges and recon-
figures as predicted by our analysis. For example,

Figure 9: Our experimental network of 20 motes,
laid out in a mesh-like network with synthetic coor-
dinates. Reception range was software-limited to 9
inches, producing a 7-hop network. Data is gathered
via the monitor device at the left.

the reconfiguration shown in Figure 7 takes place on
a network of 1000 devices, distributed uniformly ran-
domly to produce a network 19 hops wide. Analy-
sis predicts that the reconfiguration should complete
within 6 ∗ diameter/c = 6 ∗ 19 = 114 rounds, and in
fact it completes in 74 rounds.

Likewise, in simulation CRF-Max-Probability,
used in a threat avoidance program on the same net-
work, allows the program to reconfigure proportional
to the longest path of change, as shown in Figure 8.

6.2 Mica2 Motes

We tested CRF-Gradient on a network of 20 Mica2
Motes running Proto on top of TinyOS[10]. The
motes were laid out at known positions in a mesh-
like network and supplied with perfect synthetic co-
ordinates (Figure 9). Note that, due to the self-
stabilization proved above, we can expect that local-
ization error will not disrupt the gradient as long as
the coordinates are low-pass filtered to change more
slowly than the convergence time.

Reception range was software-limited to 9 inches
(producing a 7-hop network) in order to allow reli-
able monitoring of a multi-hop network through a
single base-station. The length of a round was set to
1 second, and we set the exponential back-off rate to
k = 1.6 and the maximum delay to M = 1.611—one
transmission every 176 seconds.

We verify that the algorithm behaves as ex-
pected by comparing the estimates of distance to
the straight-line distance to the source. The esti-
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(a) T=0 (b) T=11 (c) T=31 (d) T=74

Figure 7: CRF-Gradient reconfigures in response to a change of source location (orange), running in
simulation on a network of 1000 devices, 19 hops across. The network is viewed at an angle, with the value
shown as the height of the red dot above the device (blue). Reconfiguration spreads quickly through areas
where the new value is lower than the old (b), then slows in areas where the new value is significantly
higher (c), completing 74 rounds after the source moves.

(a) T=0 (b) T=21 (c) T=41 (d) T=90

Figure 8: A threat avoidance program using CRF-Max-Probability reconfigures in response to a change
in threat location (orange), running in simulation on a network of 1000 devices, 19 hops across. The vectors
from each device display the estimated minimum-threat path from that device towards the destination
(red). Reconfiguration is slower because the critical path bends around the outer edge of the network,
completing 90 rounds after the threat moves.
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Figure 10: CRF-Gradient calculates good range
estimates on our test network. The high quality of
the estimates is unsurprising, given good connectiv-
ity and perfect range data, but serves to confirm that
CRF-Gradient is behaving as expected.

mates calculated by CRF-Gradient are unsurpris-
ingly accurate, given the mesh-like layout and syn-
thetic coordinates (Figure 10). The error in the es-
timates is entirely due to the difference between the
straight-line path and the straightest path through
the network.

Of more interest is the ability of CRF-Gradient
to stabilize to an energy efficient state. We tested
broadcast throttling by allowing the network to be-
come unconstrained, then adding a source at one
edge of the network. There is an initial flurry of
messages as constraint from the source propagates
through the network, followed by a steady back-off
to a final transmission rate of less than 1% of the
peak approximately five minutes later (Figure 11).

7 Contributions

We have introduced Constraint and Restoring Force
framework and demonstrated that it can be effec-
tive for maintaining scalar fields on sensor networks.
When used to calculate gradients, the framework
produces a self-stabilizing algorithm that adapts
quickly to changes, yet transmits rarely when qui-
escent. CRF can also be applied to other problems,
such as probability calculations for threat avoidance.

This approach appears applicable to a wide variety
of problems, potentially creating more robust ver-
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Figure 11: When the values of CRF-Gradient are
not changing, the discrete implementation automat-
ically throttles the broadcast rate back exponen-
tially. In our experiments, we used a back-off rate
of k = 1.6, to a maximum delay of M = 1.611—once
every 176 seconds. When a source is added to a 20-
device network 7 hops wide with no sources, there is
a brief flurry of activity followed by a steady back-off
to a final rate of less than 1% of the peak.

sions of existing algorithms and serving as a building
block for many sensor network applications. Other
potential future extensions include damping of small
transients and a cleaner continuous time formulation
of CRF.
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