
Engineered Robustness by Controlled Hallucination

Jacob Beal and Gerald Jay Sussman
Massachusetts Institute of Technology

Abstract

Most computer programs are brittle. They may have accept-
able behavior for the range of applications that they are spec-
ified to work for, but they fail miserably for applications even
slightly outside of that range. For example, a program may
work well when its inputs are complete, but be unable to pro-
duce any sensible result if any of its inputs are missing or
noisy.
We propose a strategy for alleviating this kind of brittleness:
because many programs are used repeatedly on a very sparse
but highly structured subset of the possible inputs that might
be provided, we can build wrappers that fill in missing or
noisy data by inducing the missing information from the other
inputs.
We illustrate this strategy with a wrapper that acquires con-
straints on the graphical presentation of characters. When
exposed to the first 317 words of ”Pride and Prejudice,” the
constraints it acquires capture information that can be used
to fill in missing or clarify noisy data in similarly presented
text. This strategy of generalization wrappers can be applied
recursively, to every subsystem of a large system, substan-
tially improving the robustness of the system.

Overview
Hallucination is usually thought of as a perceptual failure,
but it can also be seen as a means of enhancing the robust-
ness of a perceptual mechanism. Input data is invariably
noisy and incomplete, and it is usually unfamiliar. However,
there are mechanisms that heuristically complete incomplete
data, clean noise from data, and generally make sense of un-
familiar situations by coercing them to be more like familiar
situations. Such mechanisms are cheaters: they construct
lies. The construction of convincing lies appears to be a
powerful mechanism of robust perception.

Inspired by this insight into the psychology of perception,
we consider the application of this idea to the enhancement
of robustness in engineered systems. Here we develop a
crude abstract model of such a mechanism. We have begun
to test the idea in simple contexts.

Communities of Specialized Parts
It now seems clear that no single technique, “general
method,” or “unified theory” will ever be powerful enough

to account for general intelligence, and we think it is no ac-
cident that each human brain uses many different mecha-
nisms, each specialized for a particular competence. (Kan-
wisher 1998; Chomsky 2005) Minsky’s theory (Minsky
1985; 2006) is built on exactly this idea: that the mind is
made up of agents, each implementing some specific ca-
pability, bound together in layers. Some of the agents are
“critics” that modulate the behavior of other agents. These
higher-level “critical” processes know or can learn multiple
ways to deal with different kinds of problems, situations, and
obstacles.

In a big system there are many parts, each designed to
provide some particular feature or to deal with some par-
ticular kind of problem. But our mechanisms are often too
tightly specified: they are useful only when the input data
is complete and accurate. This is a severe constraint: sys-
tems built out of tightly-specified subsystems are brittle—
they fail catastrophically if the situations they are presented
with are not exactly within their specified competences.

We need new ways to integrate many different strategies
into a coherent system. But in our present-day hardware and
software designs, if the specifications for the parts are tight
enough to fully constrain them, then those specifications
will be too inflexible to adapt to new requirements. Tradi-
tional “monotheistic” theories of software organization have
proven inadequate for prescribing how to integrate diverse
subsystems into a coherent whole. Small variations in the
problem should not entail large changes in the system. This
kind of brittle design is all too apparent in computer sys-
tems, and in traditional attempts to construct systems with
common sense.

Robustness by Hallucination
We need to make systems that are robust in that they are
useful in circumstances not completely anticipated by their
designers. One approach is to make each subsystem much
more general than it needs to be, so that larger than antici-
pated variations in the inputs to the subsystem can be toler-
ated and can be expected to produce reasonable results. A
system built out of such over-generalized subsystems can be
effective even if there is significant variation in the require-
ments, because there is flexibility built in at every interface.

Although a subsystem may be sharply specified to pro-
vide a particular competence it can often be generalized by



adding a wrapper that coerces inputs from other subsystems
into a form appropriate to this subsystem, whenever possi-
ble. For example, suppose we have a subsystem that per-
forms adequately if its input data is perfect, but there is a
problem: some of its input is noisy and has occasionally
missing components. We can attack this problem in several
ways. If we view missing or noisy data as uncertainty we
are led to probabilistic methods. Alternatively, we can build
mechanisms that try to complete the missing or noisy data.
Although some of these completions will be inappropriate,
the cost of being occasionally misled may be greatly out-
weighed by the cost of working with inconsistent data.

Illusions provide some insight into these mechanisms.
Humans regularly “see” lines that are not actually present
in a visual scene. Kanizsa’s triangle illusion (Kanisza 1979;
Gregory 1977; Nieder 2002) is a spectacular demonstration
of this phenomenon. Apparently there are mechanisms that
“hallucinate” the missing features for the mechanisms that
we have for parsing scenes.

We propose a general strategy, based on controlled hal-
lucination,1 for self-configuring wrappers that extend the
range of applicability of subsystems to cases that they were
not designed or specified to work in, at the cost of produc-
ing some incorrect results in unspecified situations. How-
ever such systems can often produce reasonable behavior in
situations that would otherwise lead to a catastrophic failure.

The Idea in a Nutshell
Suppose that we want to extend the range of applicability of
some specialized but competent expert subsystem. The job
of the subsystem is to perform actions based on its stream of
inputs. The particular action taken at each moment depends
on the recent history of the stream. If an input is noisy or
contains some missing components, the subsystem will be
unable to produce a reasonable response.

Our wrapper will observe the stream of inputs and cap-
ture common patterns from the history. When a bad input
appears, if there is a captured pattern that matches the good
components of the input and the relevant parts of the current
history, the wrapper will produce a patch to the input that
fills in the missing or bad data with an appropriate halluci-
nation.

How do we make such a wrapper? How does it “learn” the
appropriate patterns? What does it need to work usefully?
This idea will make sense only when the possible set of input
data streams is vastly larger than the set of input streams

1This idea has numerous antecedents.
“Creative repetition is of course one of the central principles of

all criticism, which has held for many centuries that poetry presents
a kind of controlled hallucination: something in the past, normally
accessible only to the memory, is brought into the present by the
imagination.” (Frye 1976)

Jan Koenderink and Andrea van Doorn (Koenderink and van
Doorn 2008) have explored a rather formal analysis of the con-
straints of geometrical structure on the structure of visual spaces.
They think of the guesses that a visual system must make to ex-
tract depth information from monocular depth cues as controlled
hallucination, analogous to analysis by synthesis in computer vi-
sion. (Ullman 1996)

that can actually appear, because of unmodeled constraints
in the source of the data. These constraints will show up as
clustering of the sparse data. The power of our idea is to
experimentally extract some of these unmodeled constraints
and exploit the redundancy and sparseness so discovered as
error-correcting codes.

A first approximation
Assume for the moment that the inputs are tuples of symbols
chosen from finite sets. Assume also, for the moment, that
some of the tuples from the product set will produce a rea-
sonable output from the subsystem and others will not. For
example, some argument symbols can represent missing or
noisy data.

We build a wrapper that intercepts the input tuples before
presenting them to the subsystem. It also observes whether
the subsystem is happy with those inputs. The wrapper de-
terministically generalizes on the tuples that produced ac-
ceptable or unacceptable outputs, by a mechanism that we
will explain. When the wrapper receives a tuple that it thinks
will be unacceptable, it perturbs that tuple to be one that is
acceptable, perhaps by filling in missing data in a way that is
consistent with its previous experience, and passes the per-
turbed tuple to the expert subsystem.

The idea, as described above, can only fill in missing or
noisy data based on the current input tuple. But this scheme
can be expanded to deal with time series. For example, if our
wrapper buffers input tuples with a shift register (Yip and
Sussman 1997) then patterns of past behavior can be used
to fill in missing data in the present. But more: information
from the present can be used to fill in missing data in the
past, and if the shift register also contains some slots for the
future, predictions can be made that may be useful when that
future comes to pass. Indeed, past, present, and future data
all can be simultaneously refined.

Unfortunately, the shift register idea depends on a uniform
scale of time. We cannot make correlations over very long
periods if we also want to make detailed short-term corre-
lations. However, if we use more scale-invariant represen-
tations, such as Allen’s relations (Allen 1983), and if we
concentrate on changes (Borchardt 1992), we get powerful
abstractions of the history that can work on multiple time
scales.

An example mechanism
Let’s start with a shift-register example. Each data tuple el-
ement (a “feature”) is allocated one row of the register. The
columns of the register correspond to moments. So each
entry in the register holds the value of a feature at a recent
moment.

Data tuples from the inputs are entered into the “current
moment” column of the shift register. There are columns
after the current moment (the “past” and before the current
moment (the “future”). The future moments are initialized
to a value that may be overridden with real data. We will see
how those are used later.

Entries from the shift register are observed by subsystems
that need its data. If a subsystem cares about only data at a
particular moment it looks at features in exactly one column



of the register. If it is interested in the evolution of some
features it may sample features from several columns. We
assume that past columns extend beyond the point where
any subsystems are observing.

Now, here’s the trick. Let many subsets of the entries
from the shift register, from some rows and some columns,
be selected (perhaps randomly?). For each such subset a data
structure is allocated (a correlator memory) to hold the iden-
tities of the entries and the values currently in those entries.
For each subsequent moment, for each of these correlators,
its remembered values are compared with the current values
in its entries. If almost all of the values match, the correlator
forces the value in the discrepant entries in the shift register
to have the values previously remembered. The correlator
also signs those values it changes with its identity. If a sub-
system using this shift register finds its inputs unacceptable,
and if any of the unacceptable values is traceable to a par-
ticular correlator, that correlator is “killed.” It is cleared and
deallocated and a new subset is chosen and a new correlator
is allocated.

Some correlator subsets may include entries in the shift
register that are in the future—before the current moment
column. These special entries are initialized in a correlator
that references them to values that appear in the current col-
umn, delayed by the number of shifts that the entry is in the
future. Thus, a correlator may make a prediction about the
future. Indeed, if such a prediction is contradicted by the
evidence coming in from the inputs a correlator that makes
the erroneous prediction is killed.

Of course, this is an idealized description; the reality is
more complex. How big is the shift register? How big are
the subsets? How many are they? What does “almost all”
mean? There are a few parameters that determine the per-
formance of such a system.

An Experiment
To investigate this idea we have built a computational appa-
ratus for experimenting with streams of characters, rendered
as pixels. This is a nice medium for experiments because it
is clear what a character should look like, and it is easy to in-
troduce noise, missing data, and distortions into the stream.

However, there are some complications. We don’t want to
deal with the pixels as the primary features of the rendered
characters, because they are not shift invariant, with respect
to vertical position, and they are not scale invariant. We also
want to limit the size of the feature set so that our exper-
iments could be performed without massive computational
resources.

The representation we chose is based on a window that
moves across the characters in the stream from left to right.
As the window slides along, vertical slices of pixels are
progressively assembled together to form lines that inter-
preted as approximately horizontal, rising, falling, or one
of three vertical sizes. For example, consider the letter “P.”
First a Large vertical line appears. Two approximately
Horizontal lines come out of it, at the top and middle.
Before these lines have curved enough to seriously depart
from the horizontal, they terminate going into the top and

Future

C
u
rr
e
n
t

Focus

Time

Past

F
e
a
tu
re
s H

HL

M

Figure 1: The register shifts from right to left. Current in-
formation is entered at the column marked current, over-
writing any predictions entered in the future columns by cor-
relators with fingers in the future. The features representing
the letter “P” have just been entered into the shift register.
The last feature entered is M (for the Medium vertical line
on the right side of the “P”). It is in the focus slot of the
current column.

bottom of a Medium approximately vertical line. These fea-
tures and a few others are the analog of the “distinctive fea-
tures” that are found in the study of phonology.

These features are shifted into our shift register. (See fig-
ure 1.) A new shift occurs only when a change occurs in the
sort of lines appearing in our window. This provides a kind
of invariance with respect to the actual width of the char-
acters in the pixel raster. Also, a changed feature becomes
a focus of attention. If more than one changes, the bottom
change becomes the principal focus. The features are shifted
vertically before being shifted into the register so that the
principal focus is always in a fixed position of the register.
This provides a kind of invariance with respect to vertical
position of the characters on the pixel raster. Finally, each
new feature is placed in a fixed position with respect to the
lines already being tracked, thus making the representation
invariant with respect to vertical scale on the pixel raster, so
long as an approximate scale is specified to allow the type of
vertical line to be determined and to distinguish small verti-
cals from short horizontals.

Our mechanism entails an interesting complication. Be-
cause the focus of attention is always at a particular feature
position in the shift register, the determination of which fu-
ture feature corresponds to a current feature (for prediction)
depends on keeping track of the number of vertical (feature)
shifts occur in the horizontal (time) shifts that bring the to-
be-predicted future to the present.

We have built this mechanism, and our first test of its ef-
ficacy was to expose a population of 1000 correlators to the
first 317 words of Jane Austen’s “Pride and Prejudice.” As
anticipated, we find that the population of correlators has ac-
quired patterns that capture interesting structure in English
text. Figure 2 shows the distribution of number of correct
predictions in the subpopulation of 244 correlators that have



Figure 2: After a population of 1000 correlators is exposed
to the first 317 words of “Pride and Prejudice,” 244 of the
survivors have made at least 1 correct prediction without any
failures, 133 have made at least 10, and 45 have made at least
100.

at least one correct prediction at the end of the exposure.
Nearly 5% of the correlators have predicted their current
pattern 100 times without failure. These extremely strong
patterns generally relate to ’e’, ’a’, or ’s’—letters that are
both complicated and common, making them easy targets
for learning. Other letters are represented as well, with lower
numbers of successful predictions, such as ’g’, ’i’, ’f’, ’y.’
There are even multi-letter patterns, such as one that matches
’as’ and another that matches an ’i’ following a downward
arc, such as ’hi’, ’ni’, ’gi’ and ’mi.’

These results indicate that we the mechanism is working
as predicted and should be able to be used to repair missing
or incorrect information. More work is necessary to answer
questions about the mechanism, such as: How many corre-
lators will be needed? How many features should they look
at? The next obvious test is to add noise to the data and see
how well our mechanism can repair the damage. Finally,
one could render our corpus in a different font and see how
many of the correlators that provided useful work with the
first font can survive the transformation.

Conclusion
In this position paper we propose a rather simple but dirty
way of extending the range of applicability of a subsystem
so that it can usefully accept noisy or incomplete data. Of
course there are other, more principled, ways of dealing with
uncertainty. For example, one can try to explicitly represent
the uncertainty and use probabilistic methods to obtain best
estimates of the values of missing parameters in the face of
uncertain information. Even more conservative mechanisms
may keep all possible alternatives in hand and discard an
alternative only after it is contradicted by reliable informa-
tion (Waltz 1975). However, quick-and-dirty mechanisms
that wish away uncertainty by manufacturing possible com-
pletions may be quite effective in some contexts.

This is only one of many ideas that were originally in-

spired by observation of natural intelligence and developed
into software techniques for experiments in artificial intelli-
gence that may have wider applicability in engineering de-
sign.

References
Allen, J. F. 1983. Maintaining knowledge about temporal
intervals. Communications of the ACM 26(11):832–843.
Borchardt, G. C. 1992. Understanding causal descriptions
of physical systems. In AAAI Tenth National Conference
on Artificial Intelligence.
Chomsky, N. 2005. Three factors in language design. Lin-
guistic inquiry 36(1):1–22.
Frye, N. 1976. The Secular Scripture: A study of the struc-
ture of romance. Harvard University Press. chapter The
Recovery of Myth.
Gregory, R. L. 1977. Vision with isoluminant colour con-
trast: 1. a projection technique and observations. Percep-
tion 6(1):113–119.
Kanisza, G. 1979. Organization in vision. Essays on gestalt
perception. Praeger, New York.
Kanwisher, N. 1998. The modular structure of human vi-
sual recognition: Evidence from functional imaging. In
Sabourin, M.; Craik, F.; and Robert, M., eds., Advances
in psychological science, Vol. 2: Biological and cognitive
aspects. Psychology Press. 199–214.
Koenderink, J., and van Doorn, A. 2008. The structure
of visual spaces. Journal of Mathematical Imaging and
Vision.
Minsky, M. 1985. The Society of Mind. Simon & Schuster.
Minsky, M. 2006. The Emotion Machine: Commonsense
Thinking, Artificial Intelligence, and the Future of the Hu-
man Mind. Simon & Schuster.
Nieder, A. 2002. Seeing more than meets the eye: process-
ing of illusory contours in animals. Journal of Comparative
Physiology A: Neuroethology, Sensory, Neural, and Behav-
ioral Physiology 188(4):249–260.
Ullman, S. 1996. High-Level Vision. MIT Press. chapter
Sequence Seeking and Counter-Streams.
Waltz, D. 1975. Understanding line drawings of scenes
with shadows. In Winston, P. H., ed., The Psychology of
Computer Vision. McGraw-Hill. 19–92.
Yip, K., and Sussman, G. J. 1997. Sparse representations
for fast, one-shot learning. In AAAI/IAAI, 521–527.


