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Organizing genome engineering for the gigabase
scale
Bryan A. Bartley 1,4, Jacob Beal 1,4*, Jonathan R. Karr 2,4 &

Elizabeth A. Strychalski3,4

Genome-scale engineering holds great potential to impact science, industry, medicine, and

society, and recent improvements in DNA synthesis have enabled the manipulation of

megabase genomes. However, coordinating and integrating the workflows and large teams

necessary for gigabase genome engineering remains a considerable challenge. We examine

this issue and recommend a path forward by: 1) adopting and extending existing repre-

sentations for designs, assembly plans, samples, data, and workflows; 2) developing new

technologies for data curation and quality control; 3) conducting fundamental research on

genome-scale modeling and design; and 4) developing new legal and contractual infra-

structure to facilitate collaboration.

Engineering the entire genome of an organism promises to enable large-scale changes to its
organization, function, and interactions with its environment, with broad potential for
impacts across science, industry, medicine, and society1. The past several decades have seen

remarkable progress in our capability to synthesize DNA and modify genomes2–4. Since Khorana
created the first synthetic gene 40 years ago5, our capability to construct DNA sequences has
doubled, approximately every 3 years (Fig. 1a), progressing from plasmids in the early 1990’s6,7,
viruses in the early 2000’s8, and gene clusters in the mid-2000’s9,10, to the first bacterial chro-
mosome in 200811,12. Recently, several groups have re-engineered the 4Mb genomes of
Escherichia coli13,14 and Salmonella typhimurium15, and the Synthetic Yeast (Sc 2.0) project16,17

has nearly completed re-engineering an 11.4 Mb genome for Saccharomyces cerevesiae18.
Looking ahead, in 2016 leaders from academia and industry formed Genome Project-Write1 to
initiate the engineering of the gigabase genomes of higher-order eukaryotes. The goals of the GP-
Write consortium include engineering a virus-resistant, ultra-safe human-derived cell line for
pharmaceutical production19.

From engineering genes to engineering genomes
Moving to the gigabase scale poses major technological and scientific challenges. Challenges
related to DNA synthesis and editing have been discussed extensively in the literature20–23.
Significant attention has also been devoted to the challenges of modeling24,25, designing17,26,27,
and testing28 genomes. Less attention, however, has been devoted to the technologies, reposi-
tories, standards, and other resources needed to integrate these tasks into a cohesive workflow.

We contend that workflow integration is a first-class problem for gigabase-scale genome
engineering. Over the last 40 years, the number of authors of pioneering genome engineering
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projects has risen markedly with genome size, suggesting that the
complexity of genome engineering is also scaling with the size of
the genome (Fig. 1b). If these trends continue, engineering a
gigabase genome would be projected to become possible in ~2050
and require a team with the capabilities of around 500 investi-
gators. To manage projects of such complexity without massive
teams, we advocate for the development of an ecosystem of tools,
services, automation, and other resources, which could enable a
modestly sized team of bioengineers to indirectly access the
equivalent capabilities of hundreds of people. To this end, we
have examined the emerging design–build–test–learn workflow
for genome engineering, identifying key interfaces and making
recommendations for the adoption or development of technolo-
gies, repositories, standards, and frameworks.

An emerging workflow for genome engineering
Recently, a number of groups have proposed or developed
workflows for organism engineering3,18,27–32, converging toward
a common engineering cycle consisting of the four stages shown
in Fig. 2. These stages are (1) Design: bioengineers use models

and design heuristics to specify a genome with an intended
phenotype; (2) Build: genetic engineers construct the desired
DNA sequence in a target organism; (3) Test: experimentalists
assay molecular and behavioral phenotypes of the engineered
organism; (4) Learn: modelers analyze the discrepancies between
the desired and observed phenotypes to develop improved models
and design heuristics. The process is repeated until an organism
with the desired phenotype is identified. This incremental
approach enables engineering despite our incomplete under-
standing of the complexities of biology.

The inner loop in Fig. 2 indicates the workflow used by many
current genome engineering projects, which have primarily
focused on “top-down” refactoring of existing genomes, e.g., by
rewriting codons or reducing genomes to essential sequences. In
the longer term, one of the key aims of synthetic biology is to
engineer organisms that have novel phenotypes by “bottom-up”
assembly of modular parts and devices33. At a much smaller scale,
organism engineers are already beginning to use this approach to
engineer novel metabolic pathways for commercial production of
high-value chemicals34–36. For gigabase genome engineering, this

1980 1990 2000 2010 2020
Year

D
N

A
 s

iz
e 

(b
p)

DNA size (bp) 

100

102 104 106

101

102

106

104

102 C
ol

la
bo

ra
tio

n 
si

ze
 (

au
th

or
s)

a b

Fig. 1 As capabilities for genome engineering have advanced rapidly, the size of teams involved in each pioneering genome engineering project has
also increased. a From 1980 to present, the size of the largest engineered genomes has grown exponentially, doubling approximately every 3 years. This
trend suggests that gigabase engineering could become feasible by 2050. b The number of authors credited with producing these genomes has also grown
exponentially. This trend suggests that engineering gigabase genomes will require the effort of ~500 individuals—either directly as part of a team or
indirectly through an ecosystem of tools, services, automation, and other resources. The data for this figure are provided in Table 1.

Table 1 Year, genome size (bp), and the number of authors involved in pioneering genome engineering projects of the last
30 years.

Year DNA
size (bp)

Collaboration
size (# authors)

Reference Notes

1979 207 1 Khorana5 First synthetic gene
1990 2050 4 Mandecki et al.6 First synthetic plasmid
1995 2700 5 Stemmer et al.7 Synthetic plasmid
2002 7.5000E+03 3 Cello et al.8 Polio virus cDNA
2004 1.4600E+04 7 Tian et al.9 rRNA genes
2004 3.1656E+04 6 Kodumal et al.10 Gene cluster
2008 5.8297E+05 17 Gibson et al.11 Mycoplasma genitalium
2010 5.3100E+05 24 Gibson et al.12 Mycoplasma mycoide, JCVI synthetic cell
2011 9.1010E+04 15 Dymond et al.16 Sc 2.0 synIXR
2014 2.7287E+05 80 Annaluru et al.17 Yeast chromosome synIII
2016 3.9700E+06 21 Ostrov et al.13 Partially recoded E. coli, 62 K edits in genome
2017 2.0000E+05 13 Lau et al.15 Salmonella typhimurium partial genome
2019 4.0000E+06 14 Fredens et al.14 Recoded E. coli
2020 1.14E+07 172 Richardson et al.18 Sc 2.0 estimated completion date; Genome size from Table 3 in

reference; Collaboration size estimated from Sc 2.0 website

These data are plotted in Fig. 1
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approach will likely require more complex workflows that utilize
more sophisticated design tools, phenotypic assays, data analytics,
and models (outer loop of Fig. 2).

Executing these multistep workflows requires exchanging a
wide range of materials, information, and other resources
between numerous tools, people, institutions, and repositories.
The design phase must communicate genome designs to the build
phase, the build phase must deliver DNA constructs and cell lines
to the test phase, the test phase must transmit measurements to
the learn phase, the learn phase must provide models and design
heuristics to the design phase, and workflows must be applied to
coordinate the interaction and execution of tools across all of
these stages.

In addition to these technical challenges, genome engineering
must also address a number of safety, security, legal, contractual,
and ethical issues. Throughout genome engineering workflows,
bioengineers must pay careful attention to biosafety, biosecurity,
and cybersecurity. To execute genome engineering workflows
across multiple institutions, bioengineers must navigate materials
transfer agreements, copyrights, patents, and licenses.

Every aspect of this genome engineering workflow must be
scaled up to handle gigabase genomes. Ultimately, much or all of
each step should be automated, and each interface between steps
should be formalized to facilitate machine reasoning, removing
the ad hoc and human-centric aspects of genome engineering as
much as possible. In many cases, this can be facilitated by
adopting or extending solutions from smaller-scale genome
engineering, as well as solutions from related fields such as sys-
tems biology, genomics, genetics, bioinformatics, software engi-
neering, database engineering, and high-performance computing.
Other challenges of gigabase genome engineering, however, are
likely to require the development of novel systems or additional
fundamental research.

Identifying and closing gaps in the state of the art
In this section, we discuss the integration challenges identified in
the previous section, reviewing the state of the art in technologies
and standards with respect to the emerging needs of gigabase
genome engineering. Instead of focusing on specific evolving
protocols and methods, which are likely to advance rapidly, we
consider the information that must be communicated to enable
protocols or methods to be composed into a comprehensive
workflow. Through this analysis, we identify critical gaps and
opportunities, where additional technologies and standards would
facilitate workflows that can effectively deliver gigabase engi-
neered genomes. Table 2 summarizes the potential solutions that
we have identified, which are detailed in the following
subsections.

Genome refactoring and design
Current genome engineering projects have focused primarily on
refactoring genomes while preserving their cellular function. For
example, three recent projects have involved eliminating non-
essential elements27, reordering genes17, and inserting metabolic
pathways37. At this level, two critical challenges for scaling are
accessing well-annotated source genomes and representing and
exchanging designs for modified genomes. More complex chan-
ges of organism function will pose additional challenges related to
composing parts to produce novel cellular functions.

Currently, genome design generally involves modifying pre-
existing organism sequences, such as those available in the public
archives of the International Nucleotide Sequence Database
Collaboration (INSDC)38, which currently contains ~105 bac-
terial genomes and hundreds of eukaryotic genomes39–43. Func-
tional annotation is key, as genome engineers will need to
consider tissue-specific expression patterns, regulatory elements,
structural elements, replication origins, clinically significant sites
of DNA recombination and instability, etc. The consistency of
annotations is a key challenge, as many genomes have been
annotated by different toolchains that produce significantly dif-
ferent annotations. For example, the human reference genomes
generated by the RefSeq and GENCODE projects have notable
differences44,45 with likely engineering consequences, such as
ability to predict loss-of-function from interaction with alter-
native splicings. Much of this knowledge is also dispersed among
different resources, though annotations can be integrated with the
aid of services such as NCBI Genome Viewer46, WebGestalt47,
and DAVID48. For moving to the gigabase scale, improved
annotation APIs will be valuable, as would estimates of the
confidence and reliability of annotations, such as the RefSeq
database does with the Evidence and Conclusion Ontology49.

The gigabase scale poses challenges for the representation and
exchange of genome designs as well. Common formats such as
GenBank and EMBL are monolithic in their treatment of
sequences, which makes it difficult to integrate or harmonize
editing across multiple concurrent users, and can even cause
difficulties in simply transferring the data. Two formats better
suited for genome engineering are the Generic Feature Format
(GFF) version 3 and the Synthetic Biology Open Language
(SBOL) version 250. GFF3 allows hierarchical organization of
sequence descriptions (e.g., genes may be organized into clusters,
and clusters into chromosomes), uses the Sequence Ontology51 to
annotated sequences, and has already been used in the Sc 2.0
genome engineering project18. SBOL 2 is also routinely used for
hierarchical description of edited genomes52 and can interoperate
with GFF3 (though GFF3 only represents a subset of SBOL)53.
SBOL provides a richer design-centric language, including sup-
port for variants, libraries, and partial designs (e.g., identifying
genes in a cluster, but not yet particular variants or cluster
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Fig. 2 The emerging design–build–test–learn workflow for genome
engineering is shown schematically with current (solid arrows) and likely
future (dashed arrows) tasks, interfaces (circles), and repositories
(cylinders), either digital (light) or physical (dark).
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arrangement), other elements and cellular functions (e.g., pro-
teins, metabolic pathways, regulatory interactions). SBOL also
interoperates with models encoded in the Systems Biology
Markup Language (SBML)54,55. Both GFF3 and SBOL, however,
would benefit from more stable specifications of sequence posi-
tions within chromosomes, as sequence index is fragile to changes
and sequence uncertainties. SBOL supports (and GFF3 could be
extended to support) expression of nonstandard bases and
sequence modifications in an enhanced sequence encoding lan-
guage such as BpForms56.

Representations of genome designs also need to express design
constraints and policies, such as removal of restriction sites,
separation of overlapping features, replacement of codons, and
optimization for DNA synthesis. Projects such as Sc 2.0 have
implemented this with a combination of guidelines for human
hand-editing and custom software tools, and DNA synthesis
providers provide interfaces to check for manufacturability con-
straints. At the gigabase scale, however, it will be beneficial to
adopt more powerful and expressive languages for describing
design policies, such as rule-based ontologies57,58, and to include
assembly and transformation plans in design representations to
simplify adjustments for manufacturability. JGI’s BOOST tool
provides a prototype in this direction59. SBOL is well-suited for
this task, though GenBank and GFF3 could also, at least in
principle, be extended to encode such information.

Modeling will become increasingly important as genome
engineering moves beyond refactoring and recoding into more
complex changes to an organism’s function. Genome-scale
metabolic models60,61 and whole-cell models62 can be

constructed by combining biochemical and genomic information
from multiple databases, such as BioCyc63 and the SEED64.
Models will also need to predict the behavior of organisms that
are composed of separately characterized genetic parts, devices,
pathways, and genome fragments. Substantial fundamental
research still needs to be conducted to make such models prac-
tical at the gigabase scale.

Building engineered genomes
Technology and protocols for building engineered genomes are
advancing rapidly, with potential paths to the gigabase scale
discussed, for example, in ref. 1 and ref. 23. Depending on the
specific host and intended function of the engineered organism,
there are numerous potential approaches and protocols for DNA
synthesis, assembly, and delivery. Currently, there is an unmet
need for guidance on best practices for measuring, tracking, and
sharing information regarding engineered genomes and inter-
mediate samples.

Manipulating DNA during assembly offers ample opportu-
nities for reduced yield, breakage, error, and other sources of
uncertainty in achieving the designed DNA sequence. Protocols
and commercial kits to assemble shorter DNA fragments into
larger constructs often involve amplification, handling, purifica-
tion, transformation, or other storage and delivery steps that can
increase uncertainty in the quality and quantity of the DNA.
Assembled DNA may also include added sequences that are not
biologically active, as in the case for some methods using
restriction enzymes, or scars, such as occur may occur with

Table 2 Potential approaches for integrating the emerging gigabase engineering workflow, labeled for reference.

For each interface in the emerging workflow, our recommendations fall into one of three categories: adopt or extend relatively mature existing methods (green), develop new solutions or expand nascent
methods (yellow), and conduct additional fundamental research (red)
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Golden Gate Assembly65 or MoClo66. Gibson Assembly67 is
scarless, but the yield and specific results may depend on the
secondary structure of the DNA fragments. Thus, in addition to
sequence information, workflows will likely need extended
representations that can also track the full range of information
likely to affect assembly products, including DNA secondary
structure, assembly method, sequences required for assembly and
their location along the DNA molecule (e.g., landing pads or
sequences for compatibility with protocol-hosting strains of E.
coli or yeast), and intended epigenetic modifications. The results
verifying both intermediate and final sequence onstruction are
typically produced in the FASTQ format68, which is generally
sufficient for smaller constructs. To operate on large-scale gen-
omes, however, more comprehensive descriptions of a genome
and its variations may be made with representations such as
GVF69 or SBOL70.

Suitable options for the delivery of large, assembled DNA
constructs and whole genomes are generally lacking. The yield of
existing processes, such as electrical and chemical transformation
or genome transplantation, could be improved significantly to
increase their utility, and a broader range of approaches should be
developed for use with any organism and cell type. This may also
require identifying new cell-free environments or cell-based
chassis for assembling and manipulating DNA that also have
compatibility with genome packaging and delivery systems into
host organisms. To facilitate such development, delivery protocols
and their associated information regarding number of biological
and technical replicate experiments, methods, measurements, etc.
should be available in a machine-readable format. This should
include information regarding the host cell, such as its genotype,
which is often not fully verified. The adoption of best practices
from industrial biomanufacturing settings and implementation of
laboratory information management systems (LIMS) could pro-
vide a path forward toward integrating appropriate measure-
ments, process controls, and information handling, as well as the
tracking and exchange of samples. Advancing the use of auto-
mation to support the build step of the genome engineering
workflow requires evaluating which steps may reduce costs and
speed results, the availability of automated methods, ways to
effectively share those methods and adapt them across platforms
and manufacturers, and ways to more simply integrate and tune
automated workflows.

Testing the function of engineered genomes
Strain fitness and other phenotypes can be assessed via a wide
range of biochemical and omics measurements, the details of
which are beyond the scope of this discussion. In all cases,
however, collaborating organizations will need to agree on spe-
cific measurements, along with control and calibration mea-
surements, to ensure that the results can be compared and used
across the participating laboratories.

DNA constructs are often evaluated for their associated growth
phenotypes to determine the nature and extent of unexpected
consequences for cell function and fitness due to the revised
genome sequence. Engineered cell lines should also be evaluated
for robustness to changes in the environmental context that the
cells are likely to experience during typical use in the intended
application, as well as stability over relevant timescales to evo-
lution or adaptation. This is complicated by the need for shared
definitions and measurements for fitness, metabolic burden, and
other phenotypic properties.

Standard protocols, reference cell lines, and the use of experi-
mental design are examples of tools available to increase the rigor
and confidence in conclusions that can be drawn from testing. It
will likely also be useful to develop standards and measurement

assurance for testing engineered genomes. Such foundations can
be used to help identify relationships between genotype and
phenotype or determine the contributions of biological stochas-
ticity and measurement uncertainty to the overall variability in a
measured trait, though comprehensive methods of this sort are
likely to require significant fundamental research.

Calibration of biological assays aids in comparing results both
within a single laboratory and across different laboratories.
Recent studies, for example, for fluorescence71,72, absorbance73,
and RNAseq74 measurements, demonstrate the possibility of
realizing scalable and cost-effective comparability in biological
measurements. Organism engineering is likely to be facilitated by
the development of additional calibrated measurement methods
and absolute quantitation of an organism’s properties.

Establishing shared representations and practices for metadata,
process controls, and calibration will also be critical. Automation-
assisted integration and comparison of the data, metadata, pro-
cess controls, and calibration across laboratories will facilitate
both the testing process and learning through modeling and
simulation. Some existing ontologies can be leveraged for this
purpose, such as the Experimental Conditions Ontology75 (ECO),
the Experimental Factor Ontology76 (EFO), and the Measure-
ment Method Ontology75 (MMO). In addition, appropriate LIMS
tooling and curation assistance software (e.g., RightField77) will
be vital for enabling such metadata to be created consistently,
correctly, and in a timely fashion, by limiting the required input
from human investigators.

Learning systematically from test results
As genome engineering affects systems throughout an organism,
comprehensive models are needed that can help to both predict
and interpret the relationship between genotype and phenotype.
Although some models have been constructed for a whole cell62

or whole organism78, developing and tuning such models is
extremely challenging. To scale to gigabase genomes, it will be
valuable develop improved capabilities for creating, calibrating,
and verifying models.

The first challenge in learning from the data is discovering and
marshaling the data needed. Partial solutions exist, such as the
workflow model introduced in SBOL 2.250, and ontologies such as
the Open Biological and Biomedical Ontology79, the Experi-
mental Factor Ontology76, the Systems Biology Ontology80, and
phenotype ontologies81,82. These will need to be integrated and
extended to cover the full range of needs for genome engineering.

Automation-assisted generation and verification of models at
scale, however, still have many open fundamental research
challenges, including addressing the combinatorial complexity of
biology and the multiple scales between genomes and organismal
behavior, high-performance simulation of large models, model
verification, and representation of model semantic meaning and
provenance24,25.

Until we have comprehensive predictive models, engineers will
likely rely on ad hoc combinations of predictive models of parts
of organisms, data-driven models, and heuristic design rules. For
example, constraint-based models are often used in metabolic
engineering34, PSORTb83 can be used to help target proteins to
specific compartments, and GC-content optimization can be used
to improve host compatibility84. Gigabase-scale genome engi-
neering will require applying many such models simultaneously,
and thus will benefit from adopting existing standard formats
designed to facilitate biological model sharing and composition,
such as SBML85, CellML86, NeuroML87, and other standards in
the Computational Modeling in Biology Network (COMBINE)88.
Large numbers of models in these formats can already be found
in public databases, such as BioModels89, the NeuroML
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database90, Open Source Brain91, and the Physiome Model
Repository92. Similarly, repositories such as Kipoi93 and the
DockerHub repository94 can already be used to share data-driven
models. Further extensions to such formats, however, will be
valuable for automating the learning process, including asso-
ciating semantic meaning with model components, capturing the
provenance of model elements (e.g., data sources, assumptions,
and design motivations), and capturing information about their
predictive capabilities and applicable scope.

To increase automation in learning such models from data, it
will likely be valuable to develop new repositories of models of
individual biological parts that can be composed into models of
entire organisms95,96; new methods for generating model variants
that explain new observations by incorporating models of addi-
tional parts, alternative kinetic laws, or alternative parameter
values; and new model selection techniques for nonlinear mul-
tiscale models97.

Coordination and sharing in complex workflows
Tasks in isolation are not enough: efficient operation of the
design–build–test–learn cycle for engineering gigabase genomes
will require coordinating all of the numerous heterogeneous tasks
discussed into clear, cohesive, reproducible workflows98,99 for
software interactions, for laboratory protocols, and for manage-
ment of tasks and personnel. Automating workflows also provides
opportunities to implement best practices for cybersecurity,
cyberbiosecurity, and biosecurity.

For integrating informational tasks, computational workflow
engines enable specification, reproducible execution, and
exchange of complex workflows involving multiple software
programs and computing environments. Current workflow tools
include both general tools, such as the Common Workflow
Language (CWL)100, the Dockstore101 and MyExperiment102

sharing environments, and the PROV ontology for tracking
information provenance103 (which is already being applied to link
design–build–test–learn cycles in SBOL50). There are also a
number of bioinformatics-focused engines, including Crom-
well104, Galaxy105, NextFlow106, and Toil107. These can be readily
adopted for gigabase engineering through steps such as including
CWL files in COMBINE archives108, developing REST or other
programmatic interfaces for databases used in genome engi-
neering, containerization109 of genome engineering computa-
tional tools, and depositing these containers to a registry such as
DockerHub94. Other enhancements likely to be useful include the
development of graphical workflow tools for genome engineering,
an ontology for annotating the semantic meaning of workflow
tasks, and the application of issue tracking systems, such as
GitHub issues110 or Jira111, to help coordinate teams on the
complex tasks involved in designing genomes that require human
intervention.

For experimental protocols, a number of technologies have
already been developed to automate and integrate experimental
workflows as well. Laboratory automation systems can greatly
improve both reproducibility and efficiency112 and can also be
integrated with LIMS113 to help track workflows and reagent
stocks. A number of automation languages and systems have been
developed, including Aquarium114, Antha115, and Autoproto-
col116. Although these have not been widely adopted, they have
been successfully applied to genetic engineering (e.g., ref. 117), and
gigascale genome engineering would benefit from standardization
and integration of such systems for application to build and test
protocols.

Once links are established across different portions of a
workflow, unified access to information in databases for various
institutions and stages of the workflow can be accomplished using

standard federation methods and any of the various mature open
tools for database management systems (DBMS). Scalable sharing
would be further enhanced by adoption of the FAIR (findable,
accessible, interoperable, reproducible) data management prin-
ciples118, which puts specific emphasis on automation friendli-
ness of data sharing. Repositories that support these principles
and are applicable to genome engineering include FAIR-
DOMHub119, Experimental Data Depot (EDD)120, and
SynBioHub121.

Contracts, intellectual property, and laws
Large-scale genome engineering also poses novel challenges in
coordinating legal and contractual interactions. When using
digital information, both humans and machines need to know the
accompanying copyright and licensing obligations. Systematic
licensing regimes have been developed for software by the Open
Source Initiative (OSI) and other software organizations122 and
for media and other content with the Creative Commons (CC)
family of licenses123, both of which readily allow either a user or a
machine to determine if a digital object can be reused, if its reuse
is prohibited, or if more complicated negotiation or determina-
tion is required. Such systems can be applied to much of the
digital information in genome engineering. Care will need to be
taken, however, regarding sensitive personal information and
European Union database protection rights, which these do not
address.

Transfer of physical biological materials was first standardized
in 1995 with NIH’s Uniform Biological Materials Transfer
Agreement (UBMTA), which is used extensively by organizations
such as Addgene. Broader and more compatible systems have
been developed in the form of the Science Commons project124

and the OpenMTA125. There are still significant open problems
regarding compliance with local regulatory and legal systems,
however, particularly when materials cross international borders.
Moreover, material transfer agreements generally do not address
the intellectual property for materials, which is typically governed
through patent law. No publicly available system yet supports
automation for patent licensing. Development of automation-
friendly intellectual property management might be supported by
defining tiered levels that are simultaneously intelligible for the
common user, legal experts, and computer systems—though
establishing which material or usages can be classified into which
tiers may be a difficult process of legal interpretation. Effective use
in automation-assisted workflows will also require recording
information about which inputs are involved in the production of
results, using mechanisms such as the PROV ontology103.

Finally, organizations will also need to manage the level of
exposure of information, whether due to issues of privacy, safety,
publication priority, or other similar concerns. Again, no current
system exists, but a basis for developing one may be found in the
cross-domain information sharing protocols that have been
developed in other domains126,127.

Recommendations and outlook
In summary, scaling up to gigabase genomes presents a wide
range of challenges (Table 2). We observe that these challenges
cluster into four general themes, each with a different set of needs
and paths for development.

The first theme is representing and exchanging designs, plans,
data, metadata, and knowledge. Managing information for gigabase
genome design requires addressing many challenges regarding scale,
representation, and standards. Relatively mature technologies exist
to address most individual needs, as well as to assist with
the integration of workflows. The practical implementation of
effective workflows will require significant investment in building
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infrastructure and tools that adopt these technologies, including
domain-specific extensions and refinements.

The second theme is sharing and integrating data quality and
experimental measurements. Sharing and integrating information
arising from measurements of biological material poses sig-
nificant challenges. It remains unclear what information would be
advantageous to share, given the difficulty of obtaining and
interpreting measurements of biological systems and the expense
and unfavorable scaling of data curation. However, effective
integration depends on associating reproducible measurement
data with well-curated knowledge and metadata in compatible
representations. A number of potential solutions exist for each of
these, but significant investment will be needed to investigate how
the state of the art can be extended to address these needs.

The third theme is integration of modeling and design at the
gigabase scale. Considerable challenges surround efforts to
develop a deeper understanding of the relationship between
genotype and phenotype, regarding both the interpretation of
experimental data and the application of that data to create and
validate models, which may be applied in computer-assisted
design. Long-term investment in fundamental research is needed,
and the suite of biological systems of varying complexity, from
cell-free systems to minimal and synthetic cells to natural living
systems, may offer suitable experimental platforms for learning
the relationship between genotype and phenotype.

Finally, the fourth theme is technical support for Ethical, Legal,
and Societal Implications (ELSI) and Intellectual Property (IP) at
scale. At the gigabase scale, computer-assisted workflows will be
necessary to manage contracts, intellectual property, materials
transfers, and other legal and societal interactions. Such work-
flows will need to be developed by interdisciplinary teams
involving experts in law, ELSI issues, software engineering, and
knowledge representation. Moreover, it will be critical to address
these issues early, to minimize the potential for problematic
entanglements associated with the reuse of resources.

In short, engineering gigabase-scale genomes presents sig-
nificant challenges that will require coordinated investment to
overcome. Because many other areas of bioscience face similar
challenges, solutions to these challenges will likely also benefit the
broader bioscience community. Importantly, the challenges of
scale, integration, and lack of knowledge faced in genome engi-
neering are not fundamentally different in nature than those that
have been overcome previously in other engineering ventures,
such as aerospace engineering and microchip design, which
required organizing humans and sharing information across
many institutions over time. Thus, we expect to be able to adapt
solutions from these other fields for genome engineering.

Investment in capabilities for genome engineering workflows is
critical to move from a world in which genome engineering is a
heroic effort to one in which genome engineering is routine, safe,
and reliable. Investment in workflows for genome engineering
will support and enable a vast number of projects, including
many not yet conceived, as was the case for reading the human
genome. As workflow technologies improve, we anticipate that
the trends of expanding team size will eventually reverse, enabling
high-fidelity whole-genome engineering at a modest cost and
supporting a wide range of medical and industrial applications.
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