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Abstract. Recent works foster the idea of engineering distributed situ-
ated systems by taking an aggregate stance: design and development are
better conducted abstracting away from individuals’ details, rather di-
rectly programming overall system behaviour. Concerns like interaction
protocols, self-organisation, adaptation, and large-scaleness, are auto-
matically hidden under the hood of the platform supporting aggregate
programming. One common approach to the engineering of such systems
is to provide a framework whose API exposes some aggregate-level ab-
stractions. Another possibility is to tackle the issue at the language level,
embedding aggregate abstractions directly into language primitives. This
second approach is followed e.g. by MIT Proto, whose very core ideas
were recently formalised into the “Field Calculus”, upon which a new
practical language, Protelis, has been built. The goal of this demo is to
incrementally show the potentiality of such an approach in the design of
distributed, situated systems.

1 Introduction to Aggregate computing

In recent years, a number of different strands of research on self-organizing sys-
tems have come together to create a new “aggregate programming” approach to
the engineering of distributed systems. Aggregate programming is motivated by
a desire to avoid the notoriously intractable “local to global” problem, where the
system designer must predict how to control individual devices to achieve a col-
lective goal. The whole approach starts from the observation that the complexity
of large-scale situated systems must be properly hidden “under-the-hood” of the
programming model, so that composability of collective behaviour can be more
easily supported and allow to better address the construction of complex sys-
tems.

Unifying a number of the proposed aggregate programming approaches is the
notion of a “computational field” that maps each device in the field’s domain
to a local value in its range. This concept was originally developed for spatial
computers, in which communication and geometric position are closely linked,
but can support effective aggregate programming of many non-spatial networks
as well.

Aggregate programming is then based on the following three principles:



1. the “machine” being programmed is a region of the computational environ-
ment whose specific details are abstracted away (perhaps even to a pure
spatial continuum);

2. the program is specified as a manipulation of data constructs with spatial
and temporal extent across that region;

3. these manipulations are actually carried out in a robust and self-organizing
manner by the aggregate of cooperating devices situated in that region, using
local interactions.

A mathematical foundation for such approaches has been formalized recently
with a minimal “field calculus” [5] that appears to be an effective unifying model,
covering a wide range of aggregate programming models, both continuous (e.g.,
geometry-based) and discrete (e.g., graph-based).

The field calculus captures the key ingredients of aggregate neighbour-based
computation into a tiny language suitable for grounding programming and rea-
soning about correctness – recent works addressed type soundness [3] and self-
stabilisation [4].

The unifying abstraction is that of computational field, and every compu-
tation (atomic or composite) is about functionally creating fields out of fields.
Hence, a program is made of an expression to be evaluated in space-time (ideally,
in a continuum space-time, practically, in asynchronous rounds in each device of
the network) and returning a field evolution.

2 Protelis

On this foundation, a practical language has been developed: Protelis [6]. On the
one hand, it incorporates the main spatial computing features of the field calcu-
lus, hence enjoying its universality, consistency, and self-stabilization properties
[2, 4]. On the other hand, it turns the field calculus into a modern specification
language, improving over Proto by providing:

1. access to a richer API through Java integration;
2. support for code mobility through first-order functions;
3. a novel syntax inspired by the more widely adopted C-family languages;
4. a portable architecture.

Field calculus is a theoretical construct; any practical implementation must
embed a field calculus interpreter within an architecture that handles the prag-
matics of communication, execution, and interfacing with hardware, operating
system, and other software. At the same time, it is important that this system be
readily portable across both simulation environments and real networked devices.
Finally, both system development and maintainability are greatly enhanced if
the exact same code is used for execution in all contexts.

For Protelis, we approach these problems following the same general pattern
as was used for the Proto VM [1]. Figure 1(a) shows the abstract architecture
for Protelis virtual devices. First, a parser translates a text Protelis program
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Fig. 1. In the abstract Protelis architecture (a), an interpreter executes a pre-parsed
Protelis program at regular intervals, communicating with other devices and draw-
ing contextual information from a store of environment variables. Alchemist provides
machinery for hosting instances of the Protelis interpreter into simulated devices (b).

into a valid representation of field calculus semantics. This is then executed by a
Protelis interpreter at regular intervals, communicating with other devices and
drawing contextual information from environment variables implemented as a
tuple store of (token, value) pairs. This abstraction is instantiated for use on
particular devices or simulations by setting when executions occur, how commu-
nication is implemented and the contents of the environment. Figure 1(b) shows
the particular instantiation in Alchemist.

3 The demo

The goal of this demo is to showcase Protelis through a series of Alchemist-
backed simulations, starting from simple aggregate computations and incremen-
tally adding complexity up to the support of mobile code. The simplest, intro-
ductory example will be the computation, on a network of mobile devices, of the
distance towards an area in space called “source”. This distributed data struc-
ture, called gradient, is both simple and of paramount importance, since many
coordination algorithms that run on mesh networks rely on it in order to carry
on more complex computation. A more complex example will be the showcase of
mobile code on a real-world scenario, in which different versions of a crowd de-
tection program are injected in random points of a network of devices, and their
update will be observable. Also, there will be an example of agents computing
and sharing a plan. A group of rescuers will be deployed in a urban scenario
in search of hurts needing a triage. Each of them has a pre-defined, waypoint
based plan. At runtime, agents will be able to choose between the original plan
or another one, computed based on what each other agent has discovered about
the surrounding environment.
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Fig. 2. Three snapshots of an example simulation where people are steering towards
the most convenient path. The path emerges as a spatial distortion of a gradient.

Figure 2 shows a possible screenshot sequence, a video is available at https:
//vid.me/gsIm.
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eva Kühn and R. Pugliese, editors, Coordination Languages and Models, volume
8459 of LNCS, pages 163–178. Springer-Verlag, June 2014. Proceedings of the 16th
Conference on Coordination Models and Languages (Coordination 2014), Berlin
(Germany), 3-5 June. Best Paper of Discotec 2014 Federated conference.

5. M. Viroli, F. Damiani, and J. Beal. A calculus of computational fields. In C. Canal
and M. Villari, editors, Advances in Service-Oriented and Cloud Computing, volume
393 of Communications in Computer and Information Sci., pages 114–128. Springer
Berlin Heidelberg, 2013.

6. R. L. Wainwright, J. M. Corchado, A. Bechini, and J. Hong, editors. Protelis:
Practical Aggregate Programming, Salamanca, Spain, 2015. ACM.


