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Abstract

Laboratory automation now commonly allows high-throughput sample preparation,

culturing, and acquisition of microscopy images, but quantitative image analysis is

often still a painstaking and subjective process. This is a problem especially signifi-

cant for work on programmed morphogenesis, where the spatial organization of cells

and cell types is of paramount importance. To address the challenges of quantitative

analysis for such experiments, we have developed TASBE Image Analytics, a soft-

ware pipeline for automatically segmenting collections of cells using the fluorescence

channels of microscopy images. With TASBE Image Analytics, collections of cells can

be grouped into spatially disjoint segments, the movement or development of these

segments tracked over time, and rich statistical data output in a standardized for-

mat for analysis. Processing is readily configurable, rapid, and produces results that

closely match hand annotation by humans for all but the smallest and dimmest seg-

ments. TASBE Image Analytics can thus provide the analysis necessary to complete
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the design-build-test-learn cycle for high-throughput experiments in programmed mor-

phogenesis, as validated by our application of this pipeline to process experiments on

shape formation with engineered CHO and HEK293 cells.
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1 Introduction

Fluorescence microscopy is one of the most commonly used assay tools of synthetic biology,

making use of fluorescent proteins or dyes to deliver rich information about both the state

and structure of individual cells and also about the spatial organization of cells, colonies,

and tissues. As both protocols and laboratory automation have improved, an increasing

number of synthetic biology projects involve high-throughput sample preparation, culturing,

and acquisition of microscopy images. With potentially large numbers of wells observed at

many different time points, the volume of fluorescent image data can rapidly become quite

large, easily going into the tens or hundreds of gigabytes. This is especially true in the case of

work on programmed morphogenesis, where fluorescence images are often used to image the

shape of cell cultures and distribution of cell types over time, repeated across a number of

different experimental parameters. Yet much of the analysis of image datasets—even quite

large ones—is still done qualitatively or by hand. Such analysis is thus typically a time

consuming and painstaking process, as well as subject to a high degree of variability based

on observer interpretation. Automation of quantitative analysis using image processing and

computer vision techniques can provide great benefits in the use of such data, as well as

greatly enhancing the repeatability of these types of experiments.

A number of different image analysis software packages that are specialized to cell biology
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already exist to aid in this process, such as CellProfiler,1 ImageJ,2,3 and WIPP.4 These tools

are designed to be broadly applicable to a wide variety of work flows, but require expert craft-

ing by the user to apply them to any particular class of experiments. This makes it difficult

for these highly general tools to be applied by researchers who do not simultaneously also

have expertise in both software engineering and in developing computer image processing

pipelines. Complementarily, a number of specialized packages exist, which are effective but

highly tailored for specific purposes, such as SuperSegger5 (optimized for rod-shaped bacte-

rial cells), NICE6 (colony counting), or FogBank7 (overlapping cell segmentation). No such

tool, however, had previously been developed for quantifying the shapes of cell populations,

as is typically needed for experiments on programmed morphogenesis.

We thus developed image analysis pipeline to support research in programmed morpho-

genesis, in the form of a highly configurable pipeline for segmentation and quantification of

a broad class of experiments regarding the organization of fluorescent cells in space. We now

present the resulting software package, TASBE Image Analytics, distributed under a free

and open license at https://github.com/TASBE/TASBEImageAnalytics. Our implementa-

tion is a processing pipeline developed using the general ImageJ framework, which segments

cells and regions of cells in fluorescence microscopy images using a thresholding process,

then tracks the evolution of those segments over time. We first describe the architecture

and operation of this processing pipeline, then describe its validation by comparison with

human annotation, and finally provide an example of its operation in the context of shape

formation experiments with engineered CHO and HEK293 cells.

2 Methodology

Figure 1 shows the architecture of the TASBE Image Analytics image processing pipeline

(named for its relationship with prior automation projects8,9), which is implemented as a

set of Jython scripts utilizing ImageJ plugins, proceeding in five stages. First, data and
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Figure 1: The TASBE Image Analytics pipeline executes in five stages: marshaling mi-
croscopy data, metadata and other configuration settings, processing each frame into binary
masks, filtering and clustering to segment the image, calculation of cell cluster statistics, and
tracking of clusters across timesteps.

metadata are marshaled to configure the processing. Second, cells and regions of cells are

segmented in each microscopy image based upon intensity. Third, the binary segment images

are filtered to remove artifacts and clustered to identify connected components. Fourth, per-

frame statistics are computed for each identified component. Finally, these components can

also be tracked through time from one microscopy frame to another.

The steps outlined here represent a common approach to solving this problem. However,

this work aims to create a pipeline that is readily available and can work on a wide variety of

fluorescence microscopy datasets with a minimum amount of reconfiguration. The nature of

the design-build-test-learn cycle, combined with high-throughput sample preparation means

that a large amount of data can be generated in a short period of time, so facilitating quick

analysis of the microscopy experiments can allow the cycle times to be shortened. Jython

scripts (one of the standard options for scripting ImageJ) were chosen to facilitate this, as

they can be run on a directory of microscopy images by just specifying a few parameters in

a configuration file.
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2.1 Step-by-Step Procedure

The first step in the processing pipeline is defining and reading in the data, including meta-

data that describes information about the input microscopy images. The TASBE Image

Analytics pipeline is also highly configurable, with a number of different parameters (inten-

sity threshold parameters, threshold computation algorithm, filtering thresholds, etc.) that

can be adjusted by a pipeline settings configuration file. The scripts are also designed to

handle directories of microscopy images, as high-throughput microscopes can generally be

configured to output files into a structured pattern of directories and filenames for each well in

a plate examined by the microscope. At present, two instrument-specific classes of metadata

are supported: for Leica microscopes, the properties XML files can be parsed to determine

things like number of channels, number of time steps, and number of Z slices, as well as

the dimensions of the images in pixels and physical units. Similarly, for BioTek Cytation

microscopes, the TIFF tags in the input images can be read to pull out available metadata.

For other microscopes, these parameters can be defined manually in the configuration file.

Once the settings and images have been marshaled for processing, the next step is to

segment out the foreground of the image from the background. This is done by computing a

threshold on the image and only keeping the pixels that meet the threshold. Foreground will

be above the threshold for fluorescent images, but for brightfield images an upper threshold

is computed as well and only pixels between the two thresholds are kept. Morphological

closing10 is applied to the resulting binary masks, which helps to fill in holes. ImageJ

supports numerous different methods for computing the threshold values (default, Otsu,

max entropy, and many others, as well as adaptive methods) and these different methods

can be specified in the configuration, if desired.

Once the foreground mask is created, the resulting pixels must be grouped together into

objects. A common approach to this is connected component analysis, which combines pixels

that are touching based on 4-connectedness or 8-connectedness.11 An advanced version of this

approach is performed with ImageJ’s ParticleAnalyzer tool, which also allows the resulting
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objects to be filtered based on several parameters, such as circularity.

A set of statistics is then output for each object detected in each frame, including centroid,

height, width, perimeter, area (in pixels2), area (in microns2), and many other standard im-

age component statistics. Images of the segmentation masks at each stage are also produced

in order to help debug processing.

Once cell clusters have been identified at each timestep, their identities need to be associ-

ated across time such that the progression of each cell is tracked. There are several tracking

plugins available for ImageJ, of which we have selected TrackMate,12 a recent addition that

offers a powerful and flexible interface. We combine TrackMate with the previously described

threshold-based detection mechanism to implement multi-frame tracking. The result is an-

other set of statistics, summarizing all tracking information for all of the components in each

frame.

Once configured, the execution of the complete processing pipeline is quite fast, even

on substantial high-throughput datasets. Because TASBE Image Analytics is built as an

application of mature image processing tools, it is able to operate quickly and efficiently. We

benchmarked performance by processing 1024x1024 images with three channels on an Intel

i7 equipped laptop, finding that each image took an average of only 2.2 seconds to process.

2.2 Validation

We validated the performance of TASBE Image Analytics against hand-labeled ground truth

by comparison of detections for a collection of 60 microscopy images. Hand-labeling was done

with an interactive labeling script created in Python using the GrabCut13 implementation

in OpenCV,14 allowing a human to draw a rectangle around a region of interest and then

mark some background and foreground pixels to generate a segmentation mask.

Human and machine labeling are compared with a standard widely used metric:15 bound-

ing boxes Bh and Bm, determined by human and machine respectively, are compared using
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intersection over union (IOU):

IOU(Bh, Bm) =
area (Bh ∩Bm)

area (Bh ∪Bm)
, (1)

judging two components sufficiently equivalent when IOU is greater than or equal to 50%.

This allows performance to be judged in terms of true positives (TP, equivalent components),

false negatives (FN, human segment with no machine equivalent), and false positives (FP,

machine segment with no human equivalent), from which we compute standard16 perfor-

mance metrics precision, recall, and F1 score:

precision = TP / ( TP + FP ), (2)

recall = TP / ( TP + FN ), (3)

F1 = 2TP / ( 2TP + FN + FP ). (4)

Our evaluation used 60 images (1110 labeled components) from a CHO and HEK293

co-culture experiment, ignoring any component with an area less than 350 microns2. Overall

performance was satisfactory, with a total recall of 82.3%, total precision of 97.1%, and a

total F1 of 89.1%. More importantly, nearly all errors involved small components (statistics

by area range are presented in Figure 2(a)), which tend to have weaker fluorescent returns

and hence can sometimes dip below the automatically computed thresholds, as well as being

more sensitive to small differences in edge location. In many cases, these issues can also be

mitigated by choosing a different threshold computation algorithm or specifying a default

threshold to fall back on if the automated threshold is problematic. TASBE Image Analytics

may thus be expected to provide human-level performance in segmenting microscopy images.
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2.3 Example Results

To illustrate the use of this method, we show an example of how the TASBE Image Analytics

pipeline has been applied experimentally to quantification of microscopy data from shape-

formation experiments. These experiments considered mixtures of CHO and HEK293 cells,

genetically modified to express different fluorescent proteins and using differential levels of

cadherin expression to sort into various spatial patterns (full details of this work may be

found in17). Figure 2(b-d) show samples of results produced using TASBE Image Analytics

from an experiment in which mixtures of HEK293 and CHO were imaged every 20 minutes

over the course of 66 hours, with one 68 minute gap around hour 13.

The rich collection of statistics generated from the TASBE Image Analytics image pro-

cessing pipeline can be plotted and used in various ways to draw conclusions about the

experiment. For example, in the case of these CHO/HEK293 adhesion experiments, it was

predicted that low concentrations of HEK293 cells would result in formation of a multiple

cluster pattern. By plotting the areas of components over time at different concentrations we

were able to visually validate this hypothesis (Figure 2(b)), as well as quantitatively validate

the hypotheses through analysis of the statistics produced from those images.

Figure 2(c) shows another example of a result computed from statistics over time. Here,

the color of each cell in the heat map corresponds to the mean velocity of all components

within an area range and time period. From this plot, we can see that at 30% HEK293,

there are only small components, however around 50% a phase transition begins, where some

larger components form, and by 80% there is a large component that forms (condensing to

a smaller area) and then grows over time. In addition, we can see that smaller components

move faster than large components in this data. Figure 2(d) shows one more example of the

use of tracking, in this case a “phylogeny” tree graph that shows how smaller components

combine to form larger components over time, as well as the area (dot size) and velocity

(color) of these components.

These examples are by no means exhaustive: they merely illustrate a few of the many
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ways in which TASBE Image Analytics can be applied to data from real programmed mor-

phogenesis experiments in order to provide insight and quantification.

3 Notes

The code necessary to run our pipeline can be found in the TASBE organization on GitHub:

https://github.com/tasbe. There are three related repositories: TASBEImageAnalyt-

ics, TASBEImageAnalytics-Tutorial, and TASBEImageAnalytics-Data. The first repository

houses the source code including Jython scripts for running the processing pipeline, Java

code to create a thresholding-based detector for TrackMate, and C++ programs for creating

point clouds from z-stacks generated by a confocal microscope (an aspect not covered in the

main methods description above). The tutorial repository contains some shell scripts that

illustrate how to execute the image analysis pipeline, and which can be used as a template

for configuration of the pipeline for new experiments. The data repository, in turn, contains

example image data used by the tutorial repository scripts.

In order to use the pipeline, one must download the source code and install ImageJ.

For all of our processing we used the ImageJ distribution FIJI1. The scripts in the tutorials

repository give a way to use the processing pipeline and the data in the data repository show

a common layout for the microscopy experiments we have worked with.

Tables 1, 2, and 3 define all of the parameters recognized in the configuration file. These

parameters are split into three groups: control of filename parsing, configuration of dataset

properties, and configuration for processing. The filename parsing is important so that all of

the files are properly marshaled. Data is grouped together by well on the plate, and across

the possible channels, timesteps, and Z slices. Frequently, this information is encoded in the

filename and the script is able to extract this information when the tokens are separated by

underscores (‘_’). Well names generally need to be specified, but channel, timestep, and Z

slice can be found automatically if their tokens contain ‘ch’, ‘t’, and ‘z’ selectively, as are often
1https://fiji.sc/
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used in microscopy filenames. Most of the dataset parameters can be found in microscope

property files. For Leica confocal microscopes, these are contained in a metadata directory

as an xml file. All of the data parsed from the properties files can be specified manually, but

utilizing the xml files cuts down on the amount of configuration that is necessary.

The last set of parameters, the processing parameters, are the ones that have the most

effect on the outputs. If the computed threshold is too low, it can lead to a lot of background

noise being considered and generally yields a poor result. To counter this, the maximum

and minimum thresholds computed by ImageJ are compared: if the difference is too high,

then the computed threshold is replaced by the default threshold. This is controlled by

the maxThreshRange and defaultThreshold parameters. The FIJI distribution of ImageJ

contains over a dozen different methods for computing an intensity threshold, and different

algorithms can yield different results. The method that is used can be specified by the

thresholdMethod parameter, although the default value works for many cases. FIJI has

a good way to see the results of all available thresholding algorithms on a single image by

using Image>Adjust>Auto Threshold... If the Try All method is used, FIJI will display the

results for each image in a single collage. Finally, the default is to compute a threshold for

each image independently of the other images. In some cases, it can be better to compute a

single threshold to use on all images from the image data contained in all of the images. This

can be enabled using the thresholdFromWholeRange option, though this option currently

only works for the cellStatsTracking script.

In some cases, some of the detected cell clusters are too small to include in data anal-

ysis. There are two parameters provided that can help to remove some of the smaller and

more transient detections. The first one, areaAbsoluteThreshold, can be used to remove

any cell cluster with an area smaller then a defined threshold. The second parameter,

areaMaxPercentThreshold, attempts to scale the threshold parameter by thresholding on

a percentage of the largest cluster in the current frame.

The createSegMask parameter can be useful for debugging results, but can also be used
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to apply the cell cluster segmentation in other contexts. When true, segmentation mask

images will be created where each pixel in the output image will identify which cluster the

pixel belongs to. Each cluster will be uniquely colored, and the color used is defined by a

look-up table (LUT), which is defined by the lutPath parameter (FIJI comes with several

different LUT options).

By adjusting these parameters a large number of different situations can be covered.

We have demonstrated that TASBE Image Analytics provides a high-throughput processing

pipeline to segment cells and regions of cells in microscopy images and to track them over

time. This processing pipeline has been validated against hand-labeled data and its util-

ity has been demonstrated in quantifying experiments on shape formation with engineered

CHO and HEK293 cells. We have made this system available under a permissive open-source

license in the hopes that it will prove useful for a broad range of experiments involving fluo-

rescent cells. Future development is anticipated to be incremental maintenance, refinement,

and generalization as driven by the evolving needs of additional users and applications.
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(a) (b)

(c)

(d)

Figure 2: Validation and experimental results: (a) Processing images with TASBE Image
Analytics provides results closely equivalent to hand processing by humans, particularly for
larger components. (b) Segmentation showing formation of a “polka dot” pattern in a mixture
of HEK and CHO cells over time (time progresses left to right then top to bottom). (c) Heat-
maps of component size vs. time showing a transition from small fast-moving components at
30% HEK to a single large slow-moving component at 80% HEK (warmer colors are faster,
dark blue means no components have that area at that time). (d) Tracking “phylogeny tree”
showing how smaller components combine to form larger components over time.
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Table 1: Table of configuration parameters recognized in the configuration .ini file. This
section contains options that determine how the filenames are parsed.
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Table 2: Table of configuration parameters recognized in the configuration .ini file. This
section contains options that specify properties of the dataset, most of which can be read
from microscope property files.
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an

ne
l
la
be

ls
fo
r
ch
an

ne
ls

th
at

sh
ou

ld
be

ig
no

re
d/

sk
ip
.

A
ch
an

ne
l
la
be

le
d

Sk
ip

w
ill

al
so

be
sk
ip
pe

d.
P
hy

si
ca
ls

iz
e
of

pi
xe
ls

pi
xe
lH

ei
gh

t
D
efi
ne
s
ph

ys
ic
al

he
ig
ht

of
ea
ch

pi
xe
l.

R
ea
d
fr
om

m
i-

cr
os
co
pe

pr
op

er
ti
es
.
If

no
t
sp
ec
ifi
ed

th
en

ar
ea
s
w
ill

be
in

th
e
va
lu
e
of

pi
xe
ls
.

P
hy

si
ca
ld

ep
th

of
pi
xe
l

pi
xe
lD

ep
th

D
efi
ne
s
ph

ys
ic
al

de
pt
h
of

ea
ch

pi
xe
l.

R
ea
d
fr
om

m
i-

cr
os
co
pe

pr
op

er
ti
es
.
If

no
t
sp
ec
ifi
ed

th
en

ar
ea
s
w
ill

be
in

th
e
va
lu
e
of

pi
xe
ls
.

P
hy

si
ca
lw

id
th

of
pi
xe
l

pi
xe
lW

id
th

D
efi
ne
s
ph

ys
ic
al

w
id
th

of
ea
ch

pi
xe
l.

R
ea
d
fr
om

m
i-

cr
os
co
pe

pr
op

er
ti
es
.
If

no
t
sp
ec
ifi
ed

th
en

ar
ea
s
w
ill

be
in

th
e
va
lu
e
of

pi
xe
ls
.

D
eb
ug

m
od

e
fla

g
de
bu

gO
ut
pu

t
If

sp
ec
ifi
ed

ad
di
ti
on

al
ou

tp
ut

w
ill

be
cr
ea
te
d
to

he
lp

w
it
h
de
bu

gg
in
g.

O
pt
io
na

l.
Lo

w
er

ri
gh

t
ex
cl
us
io
n
X

lo
w
er
R
ig
ht
E
xc
lu
si
on

X
X

co
or
d
fo
r
bo

x
to

ex
cl
ud

e
in

th
e
lo
w
er

ri
gh

t,
w
he
re

sc
al
e
ba

rs
co
m
m
on

ly
ap

pe
ar
.
O
pt
io
na

l.
Lo

w
er

ri
gh

t
ex
cl
us
io
n
Y

lo
w
er
R
ig
ht
E
xc
lu
si
on

Y
Y

co
or
d
fo
r
bo

x
to

ex
cl
ud

e
in

th
e
lo
w
er

ri
gh

t,
w
he
re

sc
al
e
ba

rs
co
m
m
on

ly
ap

pe
ar
.
O
pt
io
na

l.
U
pp

er
le
ft

ex
cl
us
io
n
X

up
pe

rL
ef
tE

xc
lu
si
on

X
X

co
or
d
fo
r
bo

x
to

ex
cl
ud

e
in

th
e
up

pe
r
le
ft
,
w
he
re

ti
m
es
ta
m
ps

co
m
m
on

ly
ap

pe
ar
.
O
pt
io
na

l.
U
pp

er
le
ft

ex
cl
us
io
n
Y

up
pe

rL
ef
tE

xc
lu
si
on

Y
Y

co
or
d
fo
r
bo

x
to

ex
cl
ud

e
in

th
e
up

pe
r
le
ft
,
w
he
re

ti
m
es
ta
m
ps

co
m
m
on

ly
ap

pe
ar
.
O
pt
io
na

l.
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Table 3: Table of configuration parameters recognized in the configuration .ini file. This
section contains options that affect the output of processing.

P
ro
ce
ss
in
g
O
pt
io
ns

P
ar
am

et
er

N
am

e
in

F
ile

D
es
cr
ip
ti
on

M
ax

th
re
sh
ol
d
ra
ng

e
m
ax

T
hr
es
hR

an
ge

D
ef
au

lt
th
re
sh
ol
d

de
fa
ul
tT

hr
es
ho

ld
T
hr
es
ho

ld
in
g
m
et
ho

d
th
re
sh
ol
dM

et
ho

d
T
hr
es
ho

ld
fr
om

w
ho

le
ra
ng

e
th
re
sh
ol
dF

ro
m
W

ho
le
R
an

ge
A
re
a
th
re
sh
ol
d
-
%

of
m
ax

ar
ea
M
ax

P
er
ce
nt
T
hr
es
ho

ld
A
th
re
sh
ol
d
on

ar
ea

to
re
m
ov
e
un

w
an

te
d
ce
ll

cl
us
te
rs
,d

efi
ne
d
as

a
pe

rc
en
ta
ge

of
th
e
m
ax

-
im

um
ar
ea

fo
un

d
in

th
e
cu
rr
en
t
fr
am

e.
A
re
a
th
re
sh
ol
d
-
ab

so
lu
te

ar
ea
A
bs
ol
ut
eT

hr
es
ho

ld
A
th
re
sh
ol
d
on

ar
ea

to
re
m
ov
e
un

w
an

te
d
ce
ll

cl
us
te
rs
,d

efi
ne

d
as

an
ab

so
lu
te

ar
ea

va
lu
e.

C
re
at
e
se
gm

en
ta
ti
on

m
as
ks

cr
ea
te
Se
gM

as
k

If
sp
ec
ifi
ed
,t
he

ou
tp
ut
s
w
ill

in
cl
ud

e
se
gm

en
-

ta
ti
on

m
as
k
im

ag
es

w
he
re

pi
xe
l
va
lu
es

de
-

no
te

bl
ob

m
em

be
rs
hi
p.

T
hi
s
op

ti
on

do
es

in
-

cr
ea
se

ru
nt
im

e.
LU

T
P
at
h

lu
tP

at
h

Sp
ec
ify

a
fil
e
to

us
e
as

th
e
LU

T
fo
r
se
gm

en
-

ta
ti
on

m
as
ks
.
C
on

tr
ol
s
th
e
co
lo
rs

us
ed

fo
r

ea
ch

de
te
ct
ed

ce
ll
cl
us
te
r.
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