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Abstract

Laboratory automation now commonly allows high-throughput sample preparation, culturing, and acqui-
sition of microscopy images, but quantitative image analysis is often still a painstaking and subjective
process. This is a problem especially significant for work on programmed morphogenesis, where the spatial
organization of cells and cell types is of paramount importance. To address the challenges of quantitative
analysis for such experiments, we have developed TASBE Image Analytics, a software pipeline for automati-
cally segmenting collections of cells using the fluorescence channels of microscopy images. With TASBE
Image Analytics, collections of cells can be grouped into spatially disjoint segments, the movement or
development of these segments tracked over time, and rich statistical data output in a standardized format
for analysis. Processing is readily configurable, rapid, and produces results that closely match hand annota-
tion by humans for all but the smallest and dimmest segments. TASBE Image Analytics can thus provide the
analysis necessary to complete the design-build-test-learn cycle for high-throughput experiments in pro-
grammed morphogenesis, as validated by our application of this pipeline to process experiments on shape
formation with engineered CHO and HEK293 cells.

Key words Image processing, Cell quantification, Fluorescence microscopy, Programmed morpho-
genesis, Software tools

1 Introduction

Fluorescence microscopy is one of the most commonly used assay
tools of synthetic biology, making use of fluorescent proteins or
dyes to deliver rich information about both the state and structure
of individual cells and also about the spatial organization of cells,
colonies, and tissues. As both protocols and laboratory automation
have improved, an increasing number of synthetic biology projects
involve high-throughput sample preparation, culturing, and acqui-
sition of microscopy images. With potentially large numbers of
wells observed at many different time points, the volume of
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fluorescent image data can rapidly become quite large, easily going
into the tens or hundreds of gigabytes. This is especially true in the
case of work on programmed morphogenesis, where fluorescence
images are often used to image the shape of cell cultures and
distribution of cell types over time, repeated across a number of
different experimental parameters. Yet much of the analysis of
image datasets—even quite large ones—is still done qualitatively
or by hand. Such analysis is thus typically a time-consuming and
painstaking process, as well as subject to a high degree of variability
based on observer interpretation. Automation of quantitative anal-
ysis using image processing and computer vision techniques can
provide great benefits in the use of such data, as well as greatly
enhancing the repeatability of these types of experiments.

A number of different image analysis software packages that are
specialized to cell biology already exist to aid in this process, such as
CellProfiler [1], ImageJ [2, 3], and WIPP [4]. These tools are
designed to be broadly applicable to a wide variety of work flows,
but require expert crafting by the user to apply them to any partic-
ular class of experiments. This makes it difficult for these highly
general tools to be applied by researchers who do not simulta-
neously also have expertise in both software engineering and in
developing computer image processing pipelines. Complementa-
rily, a number of specialized packages exist, which are effective but
highly tailored for specific purposes, such as SuperSegger [5] (opti-
mized for rod-shaped bacterial cells), NICE [6] (colony counting),
or FogBank [7] (overlapping cell segmentation). No such tool,
however, had previously been developed for quantifying the shapes
of cell populations, as is typically needed for experiments on pro-
grammed morphogenesis.

We thusdeveloped this image analysis pipeline to support
research in programmed morphogenesis, in the form of a highly
configurable pipeline for segmentation and quantification of a
broad class of experiments regarding the organization of fluores-
cent cells in space. We now present the resulting software package,
TASBE Image Analytics, distributed under a free and open license
at https://github.com/TASBE/TASBEImageAnalytics. Our
implementation is a processing pipeline developed using the gen-
eral ImageJ framework, which segments cells and regions of cells in
fluorescence microscopy images using a thresholding process, then
tracks the evolution of those segments over time. We first describe
the architecture and operation of this processing pipeline, then
describe its validation by comparison with human annotation, and
finally provide an example of its operation in the context of shape
formation experiments with engineered CHO and HEK293 cells.
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2 Materials

The experiments performed for this work were done in Ubuntu
Linux 18.04 using Java 8 and Jython 2.7. The version of ImageJ
was 1.52p used from Fiji. The version of TrackMate used was 4.0.1.
The data used for experiments presented in this work was captured
with a Leica TCS SP5 II Confocal Laser Scanning Microscope.
Data generated by a BioTek Cytation5 was also analyzed with this
software pipeline. It is our intent that the software could be used
with any version of Java and Jython that are compatible with
ImageJ although other configurations have not been tested.

3 Methodology

Figure 1 shows the architecture of the TASBE Image Analytics
image processing pipeline (named for its relationship with prior
automation projects [8, 9]), which is implemented as a set of
Jython scripts utilizing ImageJ plugins, proceeding in five stages.
First, data and metadata are marshaled to configure the processing.
Second, cells and regions of cells are segmented in each microscopy
image based on intensity. Third, the binary segment images are
filtered to remove artifacts and clustered to identify connected
components. Fourth, per-frame statistics are computed for each
identified component. Finally, these components can also be
tracked through time from one microscopy frame to another.
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Fig. 1 The TASBE Image Analytics pipeline executes in five stages: (1) marshaling microscopy data, metadata,
and other configuration settings, (2) processing each frame into binary masks, (3) filtering and clustering to
segment the image, (4) calculation of cell cluster statistics, and (5) tracking of clusters across timesteps
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The steps outlined here represent a common approach to solv-
ing this problem. However, this work aims to create a pipeline that
is readily available and can work on a wide variety of fluorescence
microscopy datasets with a minimum amount of reconfiguration.
The nature of the design-build-test-learn cycle, combined with
high-throughput sample preparation, means that a large amount
of data can be generated in a short period of time, so facilitating
quick analysis of the microscopy experiments can allow the cycle
times to be shortened. Jython scripts (one of the standard options
for scripting ImageJ) were chosen to facilitate this, as they can be
run on a directory of microscopy images by just specifying a few
parameters in a configuration file.

3.1 Step-by-Step
Procedure

3.1.1 Input Marshaling

The first step in the processing pipeline is defining and reading in
the data, including metadata that describes information about the
input microscopy images. The TASBE Image Analytics pipeline is
also highly configurable, with a number of different parameters
(intensity threshold parameters, threshold computation algorithm,
filtering thresholds, etc.) that can be adjusted by a pipeline settings
configuration file. The scripts are also designed to handle direc-
tories of microscopy images, as high-throughput microscopes can
generally be configured to output files into a structured pattern of
directories and filenames for each well in a plate examined by the
microscope. Further information about relevant configuration
parameters can be found in Subheading 4.2. At present, two
instrument-specific classes of metadata are supported: for Leica
microscopes, the properties of XML files can be parsed to deter-
mine things like number of channels, number of time steps, and
number of Z slices, as well as the dimensions of the images in pixels
and physical units. Similarly, for BioTek Cytation microscopes, the
TIFF tags in the input images can be read to pull out available
metadata. For other microscopes, these parameters can be defined
manually in the configuration file.

3.1.2 Segmentation Once the settings and images have been marshaled for processing,
the next step is to segment out the foreground of the image from
the background. This is done by computing a threshold on the
image and only keeping the pixels that meet the threshold. Fore-
ground will be above the threshold for fluorescent images, but for
brightfield images an upper threshold is computed as well and only
pixels between the two thresholds are kept. Morphological closing
[10] is applied to the resulting binary masks, which helps to fill in
holes. ImageJ supports numerous different methods for computing
the threshold values (default, Otsu, max entropy, and many others,
as well as adaptive methods), and these different methods can be
specified in the configuration, if desired. Further information about
relevant configuration parameters can be found in Subheading 4.3.
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3.1.3 Filtering

and Clustering

Once the foreground mask is created, the resulting pixels must be
grouped together into objects. A common approach to this is
connected component analysis, which combines pixels that are
touching based on four-connectedness or eight-connectedness
[11]. An advanced version of this approach is performed with
ImageJ’s ParticleAnalyzer tool, which also allows the resulting
objects to be filtered based on several parameters, such as circular-
ity. Further information about relevant configuration parameters
can be found in Subheading 4.4.

3.1.4 Calculation

of Frame Statistics

A set of statistics is then output for each object detected in each
frame, including centroid, height, width, perimeter, area
(in pixels2), area (in microns2), and many other standard image
component statistics. Images of the segmentation masks at each
stage are also produced in order to help debug processing.

3.1.5 Tracking Once cell clusters have been identified at each timestep, their
identities need to be associated across time such that the progres-
sion of each cell is tracked. There are several tracking plugins
available for ImageJ, of which we have selected TrackMate [12], a
recent addition that offers a powerful and flexible interface. We
combine TrackMate with the previously described threshold-based
detection mechanism to implement multi-frame tracking. The
result is another set of statistics, summarizing all tracking informa-
tion for all of the components in each frame.

Once configured, the execution of the complete processing
pipeline is quite fast, even on substantial high-throughput datasets.
Because TASBE Image Analytics is built as an application of mature
image processing tools, it is able to operate quickly and efficiently.
We benchmarked performance by processing 1024 ! 1024 images
with three channels on an Intel i7 equipped laptop, finding that
each image took an average of only 2.2 s to process.

3.2 Validation We validated the performance of TASBE Image Analytics against
hand-labeled ground truth by comparison of detections for a col-
lection of 60 microscopy images. Hand-labeling was done with an
interactive labeling script created in Python using the GrabCut [13]
implementation in OpenCV [14], allowing a human to draw a
rectangle around a region of interest and then mark some back-
ground and foreground pixels to generate a segmentation mask.

Human and machine labeling are compared with a standard
widely used metric [15]: bounding boxes Bh and Bm, determined
by human and machine, respectively, are compared using intersec-
tion over union (IOU):

IOU Bh,Bmð Þ ¼ Area Bh \ Bmð Þ
Area Bh [ Bmð Þ , ð1Þ
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judging two components sufficiently equivalent when IOU is
greater than or equal to 50%. This allows performance to be judged
in terms of true positives (TP, equivalent components), false nega-
tives (FN, human segment with no machine equivalent), and false
positives (FP, machine segment with no human equivalent), from
which we compute standard [16] performance metrics precision,
recall, and F1 score:

Precision ¼ TP= TPþ FPð Þ, ð2Þ

Recall ¼ TP= TPþ FNð Þ, ð3Þ

F1 ¼ 2TP=ð2TPþ FNþ FPÞ: ð4Þ

Our evaluation used 60 images (1110 labeled components)
from a CHO and HEK293 coculture experiment, ignoring any
component with an area less than 350 microns2. Overall perfor-
mance was satisfactory, with a total recall of 82.3%, total precision
of 97.1%, and a total F1 of 89.1%. More importantly, nearly all
errors involved small components (statistics by area range are pre-
sented in Fig. 2a), which tend to have weaker fluorescent returns
and hence can sometimes dip below the automatically computed
thresholds, as well as being more sensitive to small differences in
edge location. In many cases, these issues can also be mitigated by
choosing a different threshold computation algorithm or specifying
a default threshold to fall back on if the automated threshold is
problematic. TASBE Image Analytics may thus be expected to
provide human-level performance in segmenting microscopy
images.

3.3 Example Results To illustrate the use of this method, we show an example of how the
TASBE Image Analytics pipeline has been applied experimentally to
quantification of microscopy data from shape-formation experi-
ments. These experiments considered mixtures of CHO and
HEK293 cells, genetically modified to express different fluorescent
proteins and using differential levels of cadherin expression to sort
into various spatial patterns (full details of this work may be found
in [17]). Figure 2b–d shows samples of results produced using
TASBE Image Analytics from an experiment in which mixtures of
HEK293 and CHO were imaged every 20 min over the course of
66 hours, with one 68-min gap around hour 13.

The rich collection of statistics generated from the TASBE
Image Analytics image processing pipeline can be plotted and
used in various ways to draw conclusions about the experiment.
For example, in the case of these CHO/HEK293 adhesion experi-
ments, it was predicted that low concentrations of HEK293 cells
would result in the formation of a multiple cluster pattern. By
plotting the areas of components over time at different concentra-
tions, we were able to visually validate this hypothesis (Fig. 2b), as
well as quantitatively validate the hypotheses through analysis of the
statistics produced from those images.
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Fig. 2 Validation and experimental results: (a) Processing images with TASBE Image Analytics provides results
closely equivalent to hand processing by humans, particularly for larger components. (b) Segmentation
showing formation of a “polka dot” pattern in a mixture of HEK and CHO cells over time (time progresses
left to right then top to bottom). (c) Heat maps of component size vs. time showing a transition from small fast-
moving components at 30% HEK to a single large slow-moving component at 80% HEK (warmer colors are
faster, dark blue means no components have that area at that time). (d) Tracking “phylogeny tree” showing
how smaller components combine to form larger components over time

TASBE Image Analytics: A Processing Pipeline for Quantifying Cell. . . 9



Figure 2c shows another example of a result computed from
statistics over time. Here, the color of each cell in the heat map
corresponds to the mean velocity of all components within an area
range and time period. From this plot, we can see that at 30%
HEK293, there are only small components, however around 50%
a phase transition begins, where some larger components form, and
by 80% there is a large component that forms (condensing to a
smaller area) and then grows over time. In addition, we can see that
smaller components move faster than large components in this
data. Figure 2d shows one more example of the use of tracking,
in this case a “phylogeny” tree graph that shows how smaller
components combine to form larger components over time, as
well as the area (dot size) and velocity (color) of these components.

These examples are by no means exhaustive: they merely illus-
trate a few of the many ways in which TASBE Image Analytics can
be applied to data from real programmed morphogenesis experi-
ments in order to provide insight and quantification.

4 Notes

4.1 Software Setup The code necessary to run our pipeline can be found in the TASBE
organization on GitHub: https://github.com/tasbe. There are three
related repositories: TASBEImageAnalytics, TASBEImageAnalytics-
Tutorial, and TASBEImageAnalytics-Data. The first repository houses
the source code including Jython scripts for running the processing
pipeline, Java code to create a thresholding-based detector for Track-
Mate, and C++ programs for creating point clouds from z-stacks
generated by a confocal microscope (an aspect not covered in the
main methods description above). The tutorial repository contains
some shell scripts that illustrate how to execute the image analysis
pipeline, and which can be used as a template for configuration of
the pipeline for newexperiments.Thedata repository, in turn, contains
example image data used by the tutorial repository scripts.

In order to use the pipeline, one must download the source
code and install ImageJ. For all of our processing, we used the
ImageJ distribution FIJI (https://fiji.sc/). The scripts in the tutor-
ials repository give a way to use the processing pipeline, and the
data in the data repository show a common layout for the micros-
copy experiments we have worked with.

4.2 Parameter
Configuration

Tables 1, 2, and 3 define all of the parameters recognized in the
configuration file. These parameters are split into three groups:
control of filename parsing, configuration of dataset properties,
and configuration for processing. The filename parsing is important
so that all of the files are properly marshaled. Data is grouped
together by well on the plate, and across the possible channels,
timesteps, and Z slices. Frequently, this information is encoded in

10 Nicholas Walczak et al.

https://github.com/tasbe
https://fiji.sc/


the filename, and the script is able to extract this information when
the tokens are separated by underscores (“_”). Well names generally
need to be specified, but channel, timestep, and Z slice can be
found automatically if their tokens contain “ch,” “t,” and “z”
selectively, as are often used in microscopy filenames. Most of the
dataset parameters can be found in microscope property files. For
Leica confocal microscopes, these are contained in a metadata
directory as an xml file. All of the data parsed from the properties
files can be specified manually, but utilizing the xml files cuts down
on the amount of configuration that is necessary.

4.3 Threshold
Parameters

The last set of parameters, the processing parameters, are the ones
that have the most effect on the outputs. If the computed threshold
is too low, it can lead to a lot of background noise being considered
and generally yields a poor result. To counter this, the maximum
and minimum thresholds computed by ImageJ are compared: if the
difference is too high, then the computed threshold is replaced by
the default threshold. This is controlled by the maxThreshRange
and defaultThreshold parameters. The FIJI distribution of ImageJ
contains over a dozen different methods for computing an intensity
threshold, and different algorithms can yield different results. The

Table 1
Table of configuration parameters recognized in the configuration .ini file

Filename parsing options

Parameter Name in File Description

Directory of
microscopy
images

inputDir Directory that contains all of the microscopy images to process.

Location of
results/output

outputDir Directory where all outputs will be stored.

Well Index wellIdx Index of the well name in the filename when split on “_”.
Can be a comma separated list of values. Required.

Channel Index cIdx Index of the channel specifier in the filename when split on “_”.
Can be detected if the token has “ch” in it.

Z Index zIdx Index of the Z slice specifier in the filename when split on “_”.
Can be detected if the token has “z” in it.

Time Index tIdx Index of the timestep specifier in the filename when split on
“_”. Can be detected if the token has “t” in it.

Specify wells to
process

wellNames If specified, only wells in the comma separated list will be
processed.

Specify wells to
ignore

excludeWellNames If specified, any wells in the comma separated list will be
skipped.

This section contains options that determine how the filenames are parsed
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Table 2
Table of configuration parameters recognized in the configuration .ini file

Dataset property options

Parameter Name in File Description

Number of
Channels

numChannels Specifies number of channels in input. Read from microscope
properties or set manually.

Number of Z
slices

numZ Specifies number of z slices in input. Read from microscope
properties or set manually.

Number of
timesteps

numT Specifies number of timesteps in input. Read from microscope
properties or set manually.

The first
timestep

minT Specifies the first timestep to start on. Defaults to 0.

No Z in
Filename

noZInFile Flag that indicates filenames do not contain Z slice specifiers.

No T in
Filename

noTInFile Flag that indicates filenames do not contain timestep specifiers.

Labels for
channels

chanLabel Comma separated list to label channels. Default is [Skip, Yellow,
Blue, Gray].

Channels to
skip

chansToSkip List of channel labels for channels that should be ignored/skip.
A channel labeled Skip will also be skipped.

Physical size
of pixels

pixelHeight Defines physical height of each pixel. Read from microscope
properties. If not specified then areas will be in the value of
pixels.

Physical
depth of
pixel

pixelDepth Defines physical depth of each pixel. Read from microscope
properties. If not specified then areas will be in the value of
pixels.

Physical width
of pixel

pixelWidth Defines physical width of each pixel. Read from microscope
properties. If not specified then areas will be in the value of
pixels.

Debug mode
flag

debugOutput If specified additional output will be created to help with
debugging. Optional.

Lower right
exclusion X

lowerRightExclusionX X coord for box to exclude in the lower right, where scale bars
commonly appear. Optional.

Lower right
exclusion Y

lowerRightExclusionY Y coord for box to exclude in the lower right, where scale bars
commonly appear. Optional.

Upper left
exclusion X

upperLeftExclusionX X coord for box to exclude in the upper left, where timestamps
commonly appear. Optional.

Upper left
exclusion Y

upperLeftExclusionY Y coord for box to exclude in the upper left, where timestamps
commonly appear. Optional.

This section contains options that specify properties of the dataset, most of which can be read from microscope property
files
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method that is used can be specified by the thresholdMethod
parameter, although the default value works for many cases. FIJI
has a good way to see the results of all available thresholding
algorithms on a single image by using Image>Adjust>Auto
Threshold. . . If the Try All method is used, FIJI will display the
results for each image in a single collage. Finally, the default is to
compute a threshold for each image independently of the other
images. In some cases, it can be better to compute a single thresh-
old to use on all images from the image data contained in all of the
images. This can be enabled using the thresholdFromWholeRange
option, though this option currently only works for the cellStat-
sTracking script.

4.4 Cluster
Parameters

In some cases, some of the detected cell clusters are too small to
include in data analysis. There are two parameters provided that can
help to remove some of the smaller and more transient detections.
The first one, areaAbsoluteThreshold, can be used to remove any

Table 3
Table of configuration parameters recognized in the configuration .ini file

Processing options

Parameter Name in File Description

Max threshold
range

maxThreshRange Used to define a maximum range between the
computed upper and lower thresholds. If exceeded
the image is ignored or a default threshold is used.

Default
threshold

defaultThreshold Controls what happens if maximum threshold range is
exceeded. If not set, image is ignored otherwise the
set value is used as the threshold.

Thresholding
method

thresholdMethod Defines which method will be used to compute the
image threshold.

Threshold from
whole range

thresholdFromWholeRange Only works for tracking, if true image threshold will be
computed from all images instead of each frame.

Area
threshold—%
of max

areaMaxPercentThreshold A threshold on area to remove unwanted cell clusters,
defined as a percentage of the maximum area found in
the current frame.

Area
threshold—
absolute

areaAbsoluteThreshold A threshold on area to remove unwanted cell clusters,
defined as an absolute area value.

Create
segmentation
masks

createSegMask If specified, the outputs will include segmentation mask
images where pixel values denote blob membership.
This option does increase runtime.

LUT Path lutPath Specify a file to use as the LUT for segmentation masks.
Controls the colors used for each detected cell cluster.

This section contains options that affect the output of processing
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cell cluster with an area smaller than a defined threshold. The
second parameter, areaMaxPercentThreshold, attempts to scale
the threshold parameter by thresholding on a percentage of the
largest cluster in the current frame.

4.5 Debugging
Parameters

The createSegMask parameter can be useful for debugging results,
and can also be used to apply the cell cluster segmentation in other
contexts. When true, segmentation mask images will be created
where each pixel in the output image will identify which cluster
the pixel belongs to. Each cluster will be uniquely colored, and the
color used is defined by a look-up table (LUT), which is defined by
the lutPath parameter (FIJI comes with several different LUT
options).

By adjusting these parameters, a large number of different
situations can be covered. We have demonstrated that TASBE
Image Analytics provides a high-throughput processing pipeline
to segment cells and regions of cells in microscopy images and to
track them over time. This processing pipeline has been validated
against hand-labeled data and its utility has been demonstrated in
quantifying experiments on shape formation with engineered CHO
and HEK293 cells. We have made this system available under a
permissive open-source license in the hopes that it will prove useful
for a broad range of experiments involving fluorescent cells. Future
development is anticipated to be incremental maintenance, refine-
ment, and generalization as driven by the evolving needs of addi-
tional users and applications.
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