
Protelis: Practical Aggregate Programming

Danilo Pianini, Mirko Viroli
Alma Mater Studiorum – Università di Bologna, Italy

{danilo.pianini,mirko.viroli}@unibo.it

Jacob Beal
BBN Technologies, USA
jakebeal@bbn.com

ABSTRACT
The notion of a computational field has been proposed as a
unifying abstraction for developing distributed systems, fo-
cusing on the computations and coordination of aggregates
of devices instead of individual behavior. Prior field-based
languages, however, have suffered from a number of prac-
tical limitations that have posed barriers to adoption and
use. We address these limitations by introduction of Pro-
telis, a functional language based on computational fields
and embedded in Java, thereby enabling the construction
of widely reusable components of aggregate systems. We
demonstrate the simplicity of Protelis integration and pro-
gramming through two examples: simulation of a pervasive
computing scenario in the Alchemist simulator [24], and co-
ordinated management of a network of services.

Categories and Subject Descriptors
D.3.2 [Software Engineering]: Languages—Concurrent,
distributed, and parallel languages

General Terms
LANGUAGES

Keywords
Aggregate Programming, Computational Field, Field Cal-
culus, Alchemist, Coordination

1. INTRODUCTION AND BACKGROUND
Coordinating the behavior of large numbers of compu-

tational devices or services is a problem that is continu-
ing to grow in importance. The density of embedded or
portable devices in our environment is continuing to in-
crease. Phones, watches, clothes and accessories, vehicles,
signs, buildings, displays: all these and much more are be-
coming capable of sensing, computing, and communicating.
This “pervasive continuum” [31] is studied under a number

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’15 April 13-17, 2015, Salamanca, Spain.
Copyright 2015 ACM 978-1-4503-3196-8/15/04...$15.00.
http://dx.doi.org/xx.xxxx/xxxxxxx.xxxxxxx

of names, including pervasive computing, smart cities, and
the Internet of Things. In all cases, though, it is expected
to host many computations that are (i) context-dependent
(many interactions will be opportunistic and involve de-
vices in physical proximity, so that computations involve
local data and situation); and (ii) self-adaptive and self-
organizing (due to scale, they must spontaneously recover
from faults and deal with unexpected contingencies).

At the same time, “traditional” networks are also increas-
ing in scale and importance for enterprises both large and
small. In an increasingly information-dependent and inter-
connected world, the rising cost of managing and main-
taining such systems is driving a search for solutions that
can increase the autonomy of computing systems, enabling
them to act more as collective services than individual ma-
chines [12, 14].

In both of these cases, and a number of other areas facing
similar challenges (e.g., large-scale sensor networks, multi-
UAV control), there is a growing recognition that new engi-
neering paradigms are needed, which will allow such systems
to be effectively programmed at the aggregate level. In other
words, languages and APIs that allow a distributed collec-
tion of devices to be programmed in terms of their collective
behaviors, while leaving implicit many of the details of how
such coordination is actually implemented.

A large number of aggregate programming approaches
have been proposed, including such diverse approaches
as abstract graph processing (e.g., [13]), declarative logic
(e.g., [1]), map-reduce (e.g., [10]), streaming databases
(e.g., [17]), and knowledge-based ensembles (e.g., [23])—for
a detailed review, see [5]. Most aggregate programming ap-
proaches, however, have been too specialized for particular
assumptions or applications to be able to address the com-
plex challenges of these emerging environments.

Recently, however, a unifying model based on computa-
tional fields has been identified as a generalization of a wide
range of existing approaches (e.g., [3, 19, 22, 25, 18, 21, 30,
22]). Formalized as the computational field calculus [27],
this universal language appears to provide a theoretical foun-
dation on which effective general aggregate programming
platforms can be built.

This paper takes the next step, presenting Protelis, a prac-
tical aggregate programming language and implementation
with the following features: (i) a functional paradigm with
a familiar syntax for imperative-style function body speci-
fication, (ii) full interoperability with the Java type-system
and API, (iii) complete implementation of the field calculus,
and (iv) first-order functions to enhance flexibility and ex-

Device&

Neighborhood&

Manifold&

(a) Continuous Space

Device&

Neighborhood&

Network&

(b) Discrete Network

Figure 1: Computational field models originate from
approximation of continuous space (a) with discrete
networks of devices (b).

press code mobility patterns. We demonstrate the simplicity
of Protelis integration and programming through two exam-
ples: simulation of a pervasive computing scenario in the
Alchemist simulator [24], and coordinated management of a
network of services.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews key concepts in aggregate programming and
motivates the need for the new language, Section 3 describes
the architectural choices for implementing Protelis, Section 4
introduces the Protelis language, Section 5 shows relevant
application examples, and Section 6 provides final remarks.

2. AGGREGATE PROGRAMMING
Aggregate programming is founded on the observation

that in many cases the users of a system are much less con-
cerned with individual devices than with the services pro-
vided by the collection of devices as a whole. Typical device-
centric programming languages, however, force a program-
mer to focus on individual devices and their interactions.
As a consequence, several different aspects of a distributed
system typically end up entangled together: effectiveness
and reliability of communications, coordination in face of
changes and failures, and composition of behaviors across
different devices and regions. This makes it very difficult to
effectively design, debug, maintain, and compose complex
distributed applications.

Aggregate programming generally attempts to address
this problem by providing composable abstractions sep-
arating these aspects: i) device-to-device communication
is typically made entirely implicit, with higher-level ab-
stractions for controlling efficiency/robustness trade-offs;
ii) distributed coordination methods are encapsulated as
aggregate-level operations (e.g., measuring distance from a
region, spreading a value by gossip, sampling a collection of
sensors at a certain resolution in space and time); and iii)
the overall system is specified by composing aggregate-level
operations, and this specification is then transformed into a
complete distributed implementation by a suitable mapping.

Many aggregate programming applications involve collec-
tions of spatially embedded devices [5], where geometric
operations and information flow provide a useful source of
aggregate-level abstractions. From this, a large number of
different methods have been developed (e.g., [3, 19, 22, 25,
18, 21, 30, 22]), all based on viewing the collection of devices
as an approximation of a continuous field (Figure 1).

Applica'ons+

Distributed+
Library+APIs+

Building+blocks+

Core+Calculus+
Minimal'field+based'programming''
model.'Provable'universality'and'
aggregate/local'rela:onship'

Restric:on'to'a'small'set'of'generalized'
distributed'algorithms.'Provable'

robustness,'scalability,'composability'

Interface'for'applica:on''programming:'
domain+specific'APIs,'capturing'design'
paCerns'and'uses'of'building'blocks'

Transparent'use'of'
robust'distributed'algorithms'

Figure 2: Layered approach for development of
spatially-distributed systems via aggregate pro-
gramming.

Recently, a minimal core calculus of computational
fields [27], has been derived from the commonalities of these
methods. The field calculus is based on the notion of a com-
putational field—a map from devices comprising the system
to (possibly structured) values, which is treated as unifying
first-class abstraction to model system evolution and envi-
ronment dynamics.

Critically, although originally derived from continuous-
space concepts, the calculus does not depend on them and
is applicable to any network. Field calculus is expressive
enough to be a universal computing model [7] but terse
enough to enable a provable mapping from aggregate speci-
fications to equivalent local implementations.

Such a core calculus, however, is only the first step toward
practical applications. In practice, effective aggregate pro-
gramming for real-world distributed applications is likely to
require a layered approach such as the one depicted in Fig-
ure 2. Building on the foundation of field calculus, the next
layer uses the calculus to express a collection of higher-level
“building block” algorithms, each a simple and generalized
basis element of an “algebra” of programs with desirable re-
silience properties (e.g., the operators presented in [6]). On
top of this, higher-level library APIs can be built, enabling
simple and transparent construction of robust distributed
systems.

Field calculus [27] hence provides a key theoretical and
methodological foundation for aggregate programming. Its
aim is to provide a universal model that is suitable for math-
ematical proofs of general properties about aggregate pro-
gramming and the aggregate/local relationship, just as λ-
calculus [9] provides for functional programming, π-calculus
for parallel programming [20], or Featherweight Java [15] for
Java-like object-oriented programming.

In the field calculus, everything is a field: computa-
tional fields are used to model every aspect of distributed
computation, including input from sensors, network struc-

Protelis)Parser)

Protelis)Device)

Environment)
Variables)

Protelis)
Interpreter)

Protelis)Program)

Other&
Devices&

(a) Abstract Architecture

Simulated*Device*

Protelis*Parser*

Protelis*Device*

Environment*
Variables*

Protelis*
Interpreter*

Protelis)Program)

Simulated*
Environment*

Simula8on*
Builder*

Simula/on)Script)

Alchemist*
Simulator*

Simulated*
Network*

(b) Alchemist Simulation

Daemon'Device'

Protelis'Parser'

Protelis'Device'

Environment'
Variables'

Protelis'
Interpreter'

Protelis)Program)

Service'
Manager'
Daemon'

Networked'
Service'

Start/Stop'
Signals'

Status,'
Sockets'

Other&
Services&

Other&
Managers&

Enterprise&
Server&

(c) Network Service Management

Figure 3: In the abstract Protelis architecture (a), an interpreter executes a pre-parsed Protelis program
at regular intervals, communicating with other devices and drawing contextual information from a store
of environment variables. This is instantiated by setting when executions occur, how communication is
implemented and the contents of the environment. Two such instantiations are presented in this paper: as
a simulation in the Alchemist framework (b) and as a daemon for coordinating management of networked
services (c).

ture, environment interactions, distributed computations
(e.g. progressive aggregation and spreading processes), and
output for actuators. In particular, field calculus is con-
structed using five basic constructs: (i) function definition
and evaluation, (ii) “built-in” operations for stateless local
computation, e.g., addition, reading a sensor, (iii) a time-
evolution construct which allows for stateful computation,
(iv) a neighbor-value construct that creates a field of val-
ues from a device’s neighbors, and (v) a restriction operator
to select which computations to perform in various regions
of space and time. The specifics of these functions will be
further elaborated in Section 4, when we present their im-
plementation in Protelis.

These constructs are combined together to form programs,
whose semantics is defined in terms of a sequence of syn-
chronous rounds of evaluation by a discrete network of de-
vices. In practice, however, there is no requirement for syn-
chrony, and each device can evaluate its own computational
rounds independently.

The minimal syntax of field calculus has allowed its se-
mantics, including proper coherence of device interactions,
to be proven correct and consistent [27]. Additionally, de-
spite its definition in terms of discrete semantics, field cal-
culus is also space-time universal [7], meaning that it can
approximate any field computation, either discrete or con-
tinuous, with arbitrary precision given a dense enough net-
work of devices.

This, then, is the key contribution of field calculus: any
coordination method with a coherent aggregate-level inter-
pretation is guaranteed to be expressible in field calculus.
Such a method can then be abstracted into a new aggregate-
level operation, which can be composed with any other ag-
gregate operation using the rules of built-in functions over
fields. Moreover, it can have its space-time extent mod-
ulated and controlled by restriction, all while guaranteed
that the relationship between global specification and local
implementation will always be maintained.

Like any other core calculus, however, the field calculus
is less a practical programming language than a theoretical

framework. Likewise, while some of the prior approaches on
which field calculus is based provide very similar semantics
(most notably [3]), they all suffer from some combination
of design and implementation problems that render them
impractical for widespread adoption. Some, such as [28],
have only minimal implementation, while others are more
complete. Of the set, Proto [3] is probably the closest to a
practical programming environment, but it still lacks many
features expected in a modern programming language and
has an implementation encumbered by a number of obsolete
considerations that make it difficult to maintain and extend.
Hence, we judged it best to develop a new language based on
field calculus, designed from the ground up to support the
development of complex applications as part of a modern
software development ecosystem.

3. PORTABLE ARCHITECTURE
Field calculus is a theoretical construct; any practical im-

plementation must embed a field calculus interpreter within
an architecture that handles the pragmatics of communica-
tion, execution, and interfacing with hardware, operating
system, and other software. At the same time, it is impor-
tant that this system be readily portable across both sim-
ulation environments and real networked devices. Finally,
both system development and maintainability are greatly
enhanced if the exact same code is used for execution in all
contexts.

For Protelis, we approach these problems following the
same general pattern as was used for the Proto VM [2]. Fig-
ure 3(a) shows the abstract architecture for Protelis virtual
devices. First, a parser translates a text Protelis program
into a valid representation of field calculus semantics. This is
then executed by a Protelis interpreter at regular intervals,
communicating with other devices and drawing contextual
information from environment variables implemented as a
tuple store of (token, value) pairs. This abstraction is in-
stantiated for use on particular devices or simulations by
setting when executions occur, how communication is im-

plemented and the contents of the environment.
We have chosen to implement this architecture in Java.

One key reason for this choice is that Java is highly portable
across systems and devices. Another key reason (discussed
further in the next section) is that Java’s reflection mech-
anisms make it easy to import a large variety of useful li-
braries and APIs for use in Protelis. Finally, the pragmatics
of execution on embedded devices have also changed signif-
icantly since the publication of [2]: a much wider variety of
low cost embedded devices are now capable of supporting
Java, while at the same time improvements in Java imple-
mentations have made it much more competitive in speed
and resource cost with low-level languages like C.

In particular, we have chosen to implement Protelis
and its architecture via the Xtext language generator [11]
and within the generic Alchemist framework [24]. Use-
fully, Xtext also features support for generating a language-
specific Eclipse plug-in, which provides developer assis-
tance through code highlighting, completion suggestions,
and compile-time error detection.

For an initial validation, we have exercised this archi-
tecture by construction of two instantiations: one in the
Alchemist framework for simulation of large-scale spatially-
embedded systems; the other as a daemon for coordinating
management of networked services. Figure 3(b) shows the
Alchemist instantiation: simulations are configured using a
simple scripting language, which specifies a Protelis program
as well as the collection of devices that will execute it, com-
munication between those devices, and other aspects of the
environment to be simulated. The Alchemist event-driven
simulation engine then handles execution scheduling, mes-
sage delivery, and updates to the environment tuple store.
Figure 3(c) shows the network service management instan-
tiation. Here, each Protelis device lives on a separate server
in an enterprise network, and is tethered to the networked
service it is intended to manage by a service manager dae-
mon. This daemon monitors the service, injecting infor-
mation about its status and known dependencies into the
environment and maintaining a neighborhood by opening
parallel communication links to the corresponding daemons
on any other servers that the monitored service communi-
cates with. Examples using each of these implementations
are shown in Section 5.

4. PROTELIS
We have designed the Protelis language as an implementa-

tion of the field calculus [27] closely related to Proto [3]. On
the one hand, it incorporates the main spatial computing
features of the field calculus, hence enjoying its universal-
ity, consistency, and self-stabilization properties [7, 26]. On
the other hand, it turns the field calculus into a modern
specification language, improving over Proto by providing i)
access to a richer API through Java integration, ii) support
for code mobility through first-order functions, iii) a novel
syntax inspired by the more widely adopted C-family lan-
guages. Protelis is freely available and open source, and can
be downloaded as part of the Alchemist distribution1.

4.1 Syntax
We present the Protelis language in terms of its abstract

syntax, provided in Figure 4 as a means to guide the discus-

1https://bitbucket.org/danysk/alchemist

P ::= I F s; ;; Program
I ::= import m

∣∣ import m.∗ ;; Java import
F ::= def f(x) {s;} ;; Function definition
s ::= e

∣∣ let x = e
∣∣ x = e ;; Statement

w ::= x
∣∣ l

∣∣ [w]
∣∣ f

∣∣ (x)->{s;} ;; Variable/Value
e ::= w ;; Expression∣∣ b(e)

∣∣ f(e)
∣∣ e.apply(e) ;; Fun/Op Calls∣∣ e.m(e)

∣∣ #a(e) ;; Method Calls∣∣ rep(x<-w){s;} ;; Persistent state∣∣ if(e){s;} else {s′;} ;; Exclusive branch∣∣ mux(e){s;} else {s′;} ;; Inclusive branch∣∣ nbr{s;} ;; Neighborhood values

Figure 4: Protelis abstract syntax, colored to em-
phasize definition and application (red), functions
(blue), variables (green), and special field calculus
operators (purple).

sion of the language’s features. This syntax uses similar con-
ventions to well-known core languages like FJ [15]. We let
meta-variable f range over names of user-defined functions,
x over names of variables and function arguments, l over
literal values (Booleans, numbers, strings), b over names
of built-in functions and operators (including the “hood”
functions described in Section 4.3), m over Java method
names, and #a over aliases of static Java methods. All such
meta-variables are used as non-terminal symbols in Figure 4.
Overbar notation y generally means a comma-separated list
y1, . . . , yn of elements of kind y, with the two exceptions
that in F we use no comma separator, and in s; semi-colon
is used as separator instead.

4.2 Ordinary Language Features
One of the distinctive elements of Protelis when com-

pared to other aggregate programming languages (partic-
ularly Proto), is the adoption of a familiar C- or Java-like
syntax, which can significantly reduce barriers to adoption.
Despite this syntactic similarity, Protelis is a purely func-
tional language: a program is made of a sequence of function
definitions (F1 . . . Fn), modularly specifying reusable parts
of system behavior, followed by a main block of statements.
Following the style of C-family languages, a function’s body
is a sequence of statements surrounded by curly brackets. As
in the Scala programming language2, however, statements
can also be just expressions, and a statement sequence eval-
uates to the result of the last statement. Each statement is
an expression to be evaluated (e), possibly in the context of
the creation of a new variable (let x = e) or a re-assignment
(x = e)3. As an example, consider the following function
taking four fields as parameters, after the “channel” pattern
from [8]:

def channel(distA, distB, distAB, width) {
let d = distA + distB;
d = d - distAB;
d < width

}

This function assumes that its input distA maps each device
to its distance to a region A, distB maps each device to its
2http://www.scala-lang.org.
3Technically, “re-assignment” is actually the creation of a
new variable that shadows the old.

distance to a region B, distAB is a constant field holding at
each device the minimum distance between regions A and B,
and width is a constant field holding at each device the same
positive number. The function then computes a Boolean
field, mapping each device to true only if it belongs to a
“channel” area around the shortest path connecting regions
A and B and approximately width units wide. All devices
elsewhere map to false.

Atomic expressions w can be literal values (l), vari-
ables (x), tuples ([w]), function names (f) or lambdas
((x)->{s;}). Structured expressions include three kinds of
“calls”: (i) b(e) is application to arguments e of a built-in
operation b, which could be any (infix- or prefix-style) math-
ematical, logical or purely algorithmic function4 ; (ii) f(e) is
application of a user-defined function; and (iii) e.apply(e)
is application of arguments to an expression e evaluating to
a lambda or function name. The following shows examples
of such calls:

def square(x) { x * x; }
let f = square;
let g = (x) -> {square(x) + 1};
f.apply(g.apply(2)) // gives 25 on all devices

In addition, arbitrary Java method calls can be imported
and used by Protelis: (i) e.m(e) is method call on object e

and (ii) #a(e) is invocation of a static method, via an alias
#a (always starting with ’#’) defined by an import clause.
The alias is created automatically as the bare method name
for single imports or imports of all methods in a class with
*. Protelis can thus interact with Java reflection to support
dynamic invocation of arbitrary Java code, as shown in the
following example:

import java.lang.Class.forName
let c = #forName("String");
let m = c.getMethod("length");
m.invoke("Lorem ipsum dolor sit amet")// gives 26 on all devices

4.3 Special Field Calculus Operators
The remaining constructs of Protelis are the special oper-

ations specific to field calculus, dealing with the movement
of information across space and time:

• Construct rep(x<-w){s;} defines a locally-visible vari-
able x initialized with w and updated at each compu-
tation round with the result of executing body {s;}: it
provides a means to define a field evolving over time
according to the update policy specified by {s;}.

• Construct nbr{s;} executed in a device gathers a map
(actually, a field) from all neighbors (including the de-
vice itself) to their latest value from computing s. A
special set of built-in“hood”functions can then be used
to summarize such maps back to ordinary expressions.
For example, minHood finds the minimum value in the
map.

• The branching constructs mux(e){s;} else {s′;} and
if(e){s;} else {s′;} perform two critically different
forms of branching. The mux construct is an inclu-
sive “multiplexing” branch: the two fields obtained by

4For simplicity of presentation, we omit the syntax for in-
fix operations and order of operations, which is closely pat-
terned after Java.

computing s and s′ are superimposed, using the for-
mer where e evaluates to true, and the second where
e evaluates to false. Complementarily, if performs an
exclusive branch: it partitions the network into two
regions: where e evaluates to true s is computed, and
elsewhere s′ is computed instead.

The following code shows some example uses of these con-
structs:

def count() { rep(x<-0){ x + 1} }
def maxh(field) { maxHood(nbr{field}) }
def distanceTo(source) {

rep(d <- Infinity) {
mux (source) { 0 }
else { minHood(nbr{d} + nbrRange) }

}
}
def distanceToWithObstacle(source,obstacle) {

if (obstacle) { Infinity } else { distanceTo(source) }
}

Function count yields an evolving field, counting how
many computation rounds have been executed in each de-
vice. Function maxh yields a field mapping each device the
maximum value of field across its neighborhood—note a
nbr construct should always be eventually wrapped inside a
“hood” function. Function distanceTo nests nbr inside rep

to create a chain of interactions across many hops in the
network, computing minimum distance from any device to
the nearest “source device” (i.e., where source holds true).
It does so by a field d initially Infinity everywhere, and
evolving as follows: d is set to 0 on sources by mux, and
elsewhere takes the minimum across neighbors of the val-
ues obtained by adding to d the estimated distance to the
current device—a triangle inequality relaxation computing a
distance field also often termed gradient [16, 4, 25]. Finally,
function distanceToWithObstacle shows exclusive branch
at work; distanceTo(source) is computed in the sub-region
where there is no obstacle, which causes the computation of
distances to implicitly circumvent such obstacles.

5. APPLICATION EXAMPLES
To demonstrate how these features combine to offer sim-

ple programming of complex distributed algorithms across
a potentially broad range of applications domains, we now
present two example applications. The first aims at a per-
vasive computing scenario and is executed in simulation us-
ing Alchemist [24], the second aims at enterprise network
management and is executed on a collection of EmuLab [29]
servers.

5.1 Example: Rendezvous at a Mass Event
A common problem in large public events is to rendezvous

with other companions attending the same large public
event. At mass events, access to external cloud-based ser-
vices may be difficult or impossible, and pre-arranged ren-
dezvous points may be inaccessible or inconveniently distant.
Simple peer-to-peer geometric calculations across the net-
work, however, can readily compute a route that will allow
two people to rendezvous:

// Follow the gradient of a potential field down from a source
def descend(source,potential) {

rep(path <- source) {
let nextStep = minHood(nbr([potential, self.getId()]));
if (nextStep.size() > 1) {

(a) Initial configuration (b) Path begins to form

(c) Path continues to extend (d) Path computation complete

Figure 5: Example of computing a rendezvous route for two people in a crowded urban environment.

let candidates = nbr([nextStep.get(1), path]);
source || anyHood([self.getId(), true] == candidates)

} else {
source

}
}

}
def rendezvous(person1, person2) {
descend (person1 == owner, distanceTo(person2 == owner))

}
// Example of using rendezvous
rendezvous("Alice", "Bob");

Figure 5 shows an example of running this rendezvous pro-
cess in a simulated city center. We chose London as a simula-
tion environment, using Alchemist’s capability for importing
OpenStreetMap data. We displaced 1000 devices randomly
across the city streets (represented by pale blue dots), with a
communication range of 475 meters (this range chosen to en-
sure no network segmentation). We then picked two devices
whose owners want to meet: one device on Lambeth Bridge
(lower left of the image) and one device on Tower Bridge
(upper right), each marked with a yellow square. To mark
the devices for Protelis, we injected their environments with
a property owner, assigning the strings "Alice" and "Bob"

as values for the first and the second device respectively.
Implementing this application requires only 21 lines of

code: the listing above and distanceTo in the previous sec-
tion. This implementation measures distance to one of the
participants, creating a potential field, then, starting from
the other one, builds an optimal path descending the dis-
tance potential field to return to the first participant at
distance zero. The first half of the algorithm has already
been described, and relies on distanceTo, while the second
half is implemented by the function descend. This func-

tion, given a device and a potential field, builds a path of
devices connecting the former with the source of the latter.
The strategy is to mark the device we want to connect to
the potential field’s source as part of the path, and then, in
every device, compute which of the neighbors is closest to
the destination. Given this information, a device is in the
path if one of the neighbors is in the path already and has
marked this device as the closest of its neighbors towards the
destination. Note how the whole algorithm can be elegantly
compressed into just a few lines of code, and how there is
no need to explicitly declare any communication protocol for
exchanging the required information, thanks to the repeated
use of the nbr operator.

As Figure 5 shows, once the simulation starts, a chain of
devices is rapidly identified (red dots), marking a sequence of
way-points for both device owners to walk in order to meet in
the middle. Note also that, due to the ongoing nature of the
computation, if one of the device owners moves in a different
direction instead, the path will automatically adjust so that
it continues to recommend the best path for rendezvous.

5.2 Example: Network Service Management
One of the common problems in managing complex en-

terprise services is that there are often many dependencies
between different servers and services. Frequently, some of
these services are legacy or poorly coded, such that they
do not respond gracefully to the failure of their dependen-
cies. These services may continue to attempt to operate for
some time, creating inconsistent state, or may be unable to
resume service correctly after the server they depend on is
brought back on line.

Thus, responding to a service failure often requires a coor-

External)
Portals)

Supplies)
Database)

Financial)
Database)

Logis7cs)
Server)

Backup)
Server)

B2B)Catalog)
Server)

Interac(on*
Dependency*

(a) Example Dependent Services Scenario

(b) Example of Coordinated Restart Execution

Figure 6: (a) An example scenario of an enterprise
network for a small manufacturing and supply com-
pany. (b) Example of execution on a network of 8
EmuLab [29] machines: the supplies database has
crashed (red), and so all dependent services have
shut themselves down (blue), while other services
continue to run normally (green).

dinated shutdown and restart of services in an order dictated
by service dependencies. This type of service management
can be automated by attaching a daemon that watches the
state of each service, then communicates with the daemons
of other services to coordinate shutdown and restart in ac-
cordance with their dependencies.

Figure 6(a) shows an example scenario of an enterprise
network for a small manufacturing and supply company,
with dependencies between two key databases and the inter-
nal and external servers running web applications. This sce-
nario was implemented on a network of EmuLab [29] servers.
The services were emulated as simple query-response net-
working programs in Java that entered a “hung” state either
upon being externally triggered to crash or after their queries
began to consistently fail.

Each service was wrapped with an embedded Protelis ex-
ecution engine, which was interfaced with the services by a
small piece of monitoring glue code that inserted environ-
ment variables containing an identifier for the serviceID

running on that server, a tuple of identifiers for depen-

dencies, and the current managedServiceStatus of stop,
starting, run, stopping, or hung. The glue code also pro-
vides stopService and startService methods to send sig-
nals to the service, tracks interactions between the services

in order to maintain the set of neighbors for Protelis, and
allows an external monitoring application to attach and re-
ceive status reports.

Dependency-directed coordination of service starting and
stopping was then implemented as follows:

import it.unibo.alchemist.language.protelis.datatype.Tuple.*
import com.bbn.a3.distributedrestart.DaemonNode.*

// Compare required and available services
let nbr_set = unionHood(nbr([serviceID]));
let nbr_missing = dependencies.subtract(nbr_set);
let nbr_required = #contains(dependencies,nbr(serviceID));
let nbr_down = nbr(managedServiceStatus=="hung" ||

managedServiceStatus=="stop");

// Is service currently safe to run?
let problem = anyHood(nbr_down && nbr_required) ||

!nbr_missing.isEmpty();

// Take managed service up and down accordingly
if (managedServiceStatus=="run" && problem) {

#stopProcess(managedService);
} else {

if (managedServiceStatus=="stop" && !problem) {
#startProcess(managedService);

} else {
managedServiceStatus

}
}

In this program, each device shares information about its
service ID and status with its neighbors, enabling them to
track which dependencies are currently down or missing.
When there is a problem with dependencies, the device in-
vokes stopProcess to shut its service down, when depen-
dencies are good, it brings it up again with startProcess,
and when it is hung it waits for a human to sort out the
problem.

Figure 6(b) shows a typical screenshot of the network of
services in operation on an EmuLab network of Ubuntu ma-
chines, one service per machine, as visualized by the moni-
toring application. In this screenshot, the supplies database
has crashed, causing many of the other services to gracefully
shut themselves down. As soon as the supplies database is
restarted, however, the rest of the services automatically
bring themselves up in dependency order.

6. CONCLUSIONS
This paper has presented Protelis, a new language in-

tended to provide a practical and universal platform for ag-
gregate programming. Protelis ensures universality and co-
herence between aggregate specification and local execution
by building atop the field calculus introduced in [27]. At the
same time, accessibility, portability, and ease of integration
are ensured by embedding Protelis within Java. This enables
Protelis programs to draw on the full breadth of available
Java APIs and to readily integrate with a wide range of
devices and applications, as illustrated by our examples of
pervasive computing simulation and networked service man-
agement. This implementation of Protelis thus forms an im-
portant component of the toolchain necessary for practical
application of aggregate programming principles and meth-
ods to address real-world problems. The Protelis framework
continues to be actively developed: we plan to enrich it in
the future by adding higher-level abstractions for aggregate
programming grounded on the mechanisms discussed in this
work.

7. ACKNOWLEDGMENTS
This work is partially supported by the United States Air

Force and the Defense Advanced Research Projects Agency
(DARPA) under Contract No. FA8750-10-C-0242. The
U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views, opinions, and/or
findings contained in this article/presentation are those of
the author(s)/presenter(s) and should not be interpreted as
representing the official views or policies of the Department
of Defense or the U.S. Government. Distribution Statement
“A” (Approved for Public Release, Distribution Unlimited)

8. REFERENCES
[1] M. P. Ashley-Rollman, S. C. Goldstein, P. Lee, T. C.

Mowry, and P. Pillai. Meld: A declarative approach to
programming ensembles. In IEEE Intelligent Robots
and Systems (IROS), pages 2794–2800, 2007.

[2] J. Bachrach and J. Beal. Building spatial computers.
Technical Report MIT-CSAIL-TR-2007-017, MIT,
March 2007.

[3] J. Beal and J. Bachrach. Infrastructure for engineered
emergence on sensor/actuator networks. IEEE
Intelligent Systems, 21(2):10–19, 2006.

[4] J. Beal, J. Bachrach, D. Vickery, and M. Tobenkin.
Fast self-healing gradients. In Proceedings of ACM
SAC 2008, pages 1969–1975, 2008.

[5] J. Beal, S. Dulman, K. Usbeck, M. Viroli, and
N. Correll. Organizing the aggregate: Languages for
spatial computing. In M. Mernik, editor, Formal and
Practical Aspects of Domain-Specific Languages:
Recent Developments, chapter 16, pages 436–501. IGI
Global, 2013.

[6] J. Beal and M. Viroli. Building blocks for aggregate
programming of self-organising applications. In 2nd
FoCAS Workshop on Fundamentals of Collective
Systems, pages 1–6. IEEE CS, to appear, 2014.

[7] J. Beal, M. Viroli, and F. Damiani. Towards a unified
model of spatial computing. In 7th Spatial Computing
Workshop, AAMAS 2014, Paris, France, May 2014.

[8] W. Butera. Programming a Paintable Computer. PhD
thesis, MIT, Cambridge, MA, USA, 2002.

[9] A. Church. A set of postulates for the foundation of
logic. Annals of mathematics, 33(2):346–366, 1932.

[10] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113, 2008.

[11] M. Eysholdt and H. Behrens. Xtext: implement your
language faster than the quick and dirty way. In
OOPSLA, pages 307–309. ACM, 2010.

[12] T. Eze, R. Anthony, C. Walshaw, and A. Soper.
Autonomic computing in the first decade: trends and
direction. In 8th Int’l Conf. on Autonomic and
Autonomous Systems, pages 80–85, 2012.

[13] R. Gummadi, O. Gnawali, and R. Govindan.
Macro-programming wireless sensor networks using
kairos. In DCOSS, pages 126–140, 2005.

[14] F. Hu, M. Qiu, J. Li, T. Grant, D. Taylor,
S. McCaleb, L. Butler, and R. Hamner. A review on
cloud computing: Design challenges in architecture
and security. CIT. Journal of Computing and
Information Technology, 19(1):25–55, 2011.

[15] A. Igarashi, B. C. Pierce, and P. Wadler.
Featherweight Java: A minimal core calculus for Java
and GJ. ACM Trans. Prog. Lang. Sys., 23(3), 2001.

[16] F. C. H. Lin and R. M. Keller. The gradient model
load balancing method. IEEE Trans. Softw. Eng.,
13(1):32–38, 1987.

[17] S. Madden, M. Franklin, J. Hellerstein, and W. Hong.
Tinydb: An acqusitional query processing system for
sensor networks. In ACM TODS, 2005.

[18] M. Mamei and F. Zambonelli. Self-maintained
distributed tuples for field-based coordination in
dynamic networks. Concurrency and Computation:
Practice and Experience, 18(4):427–443, 2006.

[19] M. Mamei and F. Zambonelli. Programming pervasive
and mobile computing applications: The tota
approach. ACM Trans. on Software Engineering
Methodologies, 18(4):1–56, 2009.

[20] R. Milner. Communicating and Mobile Systems: The
Pi-Calculus. Cambridge University Press, 1999.

[21] R. Nagpal. Programmable Self-Assembly: Constructing
Global Shape using Biologically-inspired Local
Interactions and Origami Mathematics. PhD thesis,
MIT, Cambridge, MA, USA, 2001.

[22] R. Newton and M. Welsh. Region streams: Functional
macroprogramming for sensor networks. In Wkshp. on
Data Mgmt. for Sensor Networks, pages 78–87, 2004.

[23] R. D. Nicola, M. Loreti, R. Pugliese, and F. Tiezzi. A
formal approach to autonomic systems programming:
The scel language. ACM Trans. Auton. Adapt. Syst.,
9(2):7:1–7:29, July 2014.

[24] D. Pianini, S. Montagna, and M. Viroli.
Chemical-oriented simulation of computational
systems with Alchemist. Journal of Simulation, 2013.

[25] M. Viroli, M. Casadei, S. Montagna, and
F. Zambonelli. Spatial coordination of pervasive
services through chemical-inspired tuple spaces. ACM
Trans. Auton. and Adap. Syst., 6(2):14:1 – 14:24, 2011.

[26] M. Viroli and F. Damiani. A calculus of self-stabilising
computational fields. In Coordination 2014, pages
163–178, June 2014.

[27] M. Viroli, F. Damiani, and J. Beal. A calculus of
computational fields. In C. Canal and M. Villari,
editors, Advances in Service-Oriented and Cloud
Computing, volume 393 of Comm. in Comp. and Info.
Sci., pages 114–128. Springer Berlin Heidelberg, 2013.

[28] M. Viroli, D. Pianini, and J. Beal. Linda in
space-time: an adaptive coordination model for mobile
ad-hoc environments. In Coordination 2012, pages
212–229, June 2012.

[29] B. White, J. Lepreau, L. Stoller, R. Ricci,
S. Guruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An integrated experimental environment
for distributed systems and networks. In OSDI, pages
255–270, Boston, MA, Dec. 2002.

[30] D. Yamins. A Theory of Local-to-Global Algorithms
for One-Dimensional Spatial Multi-Agent Systems.
PhD thesis, Harvard, December 2007.

[31] F. Zambonelli et al. Self-aware pervasive service
ecosystems. Procedia CS, 7:197–199, 2011.

