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Abstract—Fast and precise demand shaping is critical for
the electrical power grid. With residential and small-business
customers, a distributed approach to demand shaping is desir-
able for reasons of scalability and of privacy. The ColorPower
architecture [1] provides such an approach, but the controller
previously used was badly limited. We now present an im-
proved control algorithm, ColorPower 2.0, based on stochastic
constraint satisfaction, which provides major improvements in
capability and performance over the prior algorithm. Analysis
shows that its performance is within a small constant factor
of optimal, and these results are confirmed empirically on
simulated networks of 100 to 1 million devices.

I. INTRODUCTION

Matching supply and demand on the electrical power
grid has mainly been done on the supply side, adjusting
generation to match fluctuations in consumer demand. De-
mand shaping adjusts consumption instead. This is important
for preventing blackouts and brownouts when generation or
transmission capacity is insufficient, for avoiding extreme
price spikes in periods of peak demand (e.g., hot summer
afternoons), and for coping with the variability of renewable
sources such as solar and wind. In these and other ways, fast
and precise demand shaping is key to future energy security.

A major opportunity and challenge for demand shaping
is residential and small-business customers, as overall they
consume a plurality of power [2], but typically only a
few kilowatts per customer. A number of studies (e.g.,
[3], [4]) have found much flexibility in these customers’
consumption, but prior approaches have been unable to take
advantage of this opportunity, either because they are de-
signed for large industrial or commercial systems (e.g., [5],
[6]) or only operate well with small numbers of devices
(e.g., [7], [8], [9]). The challenge is to both be acceptable
to customers and scalable to millions of customers.

We have previously begun to address this with the Col-
orPower architecture for distributed demand shaping [1],
[10], in which customers indicate flexibility by setting
participating electrical devices to one of a few “colors.” Our
initial formulation has four colors (“green” devices can be
shut off at any time, “yellow” only at peak power, “red”
in emergencies, and “black” can never be shut off), plus a
temporary customer override. A ColorPower agent for each
customer aggregates device flexibility information, which is
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Figure 1.  ColorPower devices switch states according to a modified
Markov model: between Enabled (E) and Disabled (D) probabilistically
and from Refractory (R) to Flexible (F) by a randomized timeout.

further aggregated to form a shared model of total flexibility.
Individual agents then use this model in a distributed con-
troller that adjusts aggregate demand toward the target. The
prior controller had serious drawbacks, however: parameters
had to be tuned for each network, sometimes there were
significant overshoots, and it could not handle steep ramps.

We now present an improved control algorithm, Color-
Power 2.0, based on stochastic constraint satisfaction, which
has none of the problems of the prior algorithm. Analysis
shows that its performance is within a small constant factor
of optimal, and these results are confirmed empirically on
simulated networks of 100 to 1 million devices.

II. THE COLORPOWER ARCHITECTURE

The general ColorPower architecture automatically
matches the demand shaping requests of a utility (or other
control authority) with qualitative flexibility preferences
marked by customers as “colors.” Local measurements are
then aggregated to form a shared summary model that is
used for distributed shaping of demand.

A. Device States and Transitions

Within each color, every device in the network is either
Enabled, meaning that it can draw power freely, or Dis-
abled, meaning that is has been shut off.! Devices must
not switch too rapidly between Enabled and Disabled, as
this may annoy the customer or may damage some devices,

IDevices with a “low power” mode can be split into two virtual devices.
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Figure 2. Block diagram of ColorPower control architecture: each agent
runs a controller that regulates the state transitions of the devices under its
control. Per-agent state s(¢, a) is aggregated to produce a global state esti-
mate §(t), broadcast along with goal g(t), to allow agents to independently
set control state c(t, a) to produce the desired overall shaping.

so when a device switches state it temporarily enters a
Refractory mode where it cannot switch states. When this
times out, the device is Flexible again and can switch states.
Each device thus evolves according to the modified
Markov model shown in Figure 1. Each round, devices in
state EF (Enabled and Flexible) randomly switch off with
probability p, s, transitioning to state DR (Disabled and Re-
fractory). Once in DR, a device waits for Tpr+U (0, Tpy )
rounds before transitioning to state DF, where U(0, Tpv)
is a uniform random variable used to desynchronize device
switching. The other two distributions are complementary.

B. The ColorPower Control Problem

The control problem for an entire ColorPower system is
shown by the block diagram in Figure 2: a set of n agents
controlling a set of electrical devices organized into k colors,
where lower numbered colors are shut off first.

The state s(¢,a) of an agent a at time ¢ summarizes the
power demands of the devices under its control, e.g., | EF} g
is the demand power (watts) currently Enabled and Flexible
for color number 1 at agent a. These values are aggregated
using a distributed algorithm (e.g., a spanning tree in [1])
and fed to a state estimator to get an overall estimate §(¢)
of the true state s(t) of demand in each state for each
color, e.g., |EF| is the estimate of the total Enabled and
Flexible demand for color 1. This estimate is then broadcast
to all agents (e.g., by gossip-like diffusion in [1]), along with
the goal g(t) for the next total Enabled demand (summing
across all colors). Finally, the controller at each agent a sets
the transition probabilities p,, ;.o and pog i o for each color
i. We term this set of probabilities the control state c(¢,a).

The control problem is to set each c¢(t,a) so the total
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Enabled demand in s(t) tracks g(t), subject to the con-
straints that: 1) devices with lower numbered colors should
be shut off before devices with higher numbered colors, 2)
every device in a color is equally likely to be Disabled, and
3) devices within a color trade off which are Enabled and
which are Disabled over time, such that no device is unfairly
burdened by its initial bad luck in becoming Disabled.

This paper focuses on the controller, assuming aggrega-
tion, estimation, and broadcast yield a model accurate within
a fixed estimation error €, a reasonable assumption given the
wide range of deployed networks and available algorithms.

Note devices are controlled indirectly, by setting the p,,
and p,g values that affect their evolution. This is unusual for
a control problem and rules out most common control meth-
ods. In [1], a simple PID controller regulated p,,, and p,g.
With network-tuned parameters and an 5 second rounds, the
prior controller gave response times on the order of 1000
seconds (200 rounds), even when orders of magnitude faster
responses should have been possible. In the next section,
we introduce our new constraint-based controller, which
scales without tuning to networks of arbitrary size and which
provides near-optimal convergence times.

III. COLORPOWER 2.0 CONTROLLER

To formulate an improved controller, we begin with
mathematical expression of our four control constraints:

o Goal tracking may be expressed as:

9(t) =Y _|EF,| + |ER|

7

meaning the sum of Enabled demand equals the goal.
o Color priority may be expressed as:

|EF;| + |ERi| = { 9(t) — Dit1 if Dis1 < g(t) < D;
0 otherwise

where D; is the demand for the ith color and above:

D; =) |EFj|+|ER;|+ |DF;| + |DR,|
Ji
meaning devices are Enabled from the highest color
down until the goal is reached.
o Fairness may be expressed as:

Va,arc(t,a) = c(t,a’)

meaning agents are identically controlled (agents may
actually control differently, so long as the expected

effect is identical—a key reason for distribution).
o Cycling may be expressed as:

(|EF:|>0)N(|DF;| > 0) = (Pon,a,i > 0) N (Pogr,a,i >0)

meaning as long as there are both Enabled and Dis-

abled Flexible devices, some should be changing from
Enabled to Disabled and vice versa. This is true only
for the boundary color b (where Dy11 < g(t) < Dp).



A. Controller Design

It will often be impossible to satisfy all constraints, so
we prioritize based on how problematic it is when they
are not satisfied. As customer participation is a sine qua
non, promises to customers are highest priority: fairness
and the qualitative guarantees of colors (e.g. “only during
emergencies”). Fairness can be satisfied by computing (¢, a)
symmetrically at every agent.” The qualitative priority guar-
antee (stating that the entirety of a color is Enabled) is
treated as a hard requirement that no device be switched
off in any color not ultimately required to satisfy the goal.
Second is goal tracking (the reason for demand shaping),
then soft color priority ensuring that any inversions of
customer preferences caused by goal tracking are transitory.
Least important is cycling, which operates slowly over time.

Because the controller acts on p,,, and p,, only Flexible
devices can be switched on or off. The controller this has a
“budget” of flexibility to spend, with each color ¢ offering
|EF;| watts of potential reduction in demand and |DFj]
watts of potential increase. Flexibility accumulates as Re-
fractory devices finish their timeouts and become Flexible,
and is expended as the controller causes them to switch
between Enabled and Disabled states. Our controller is thus
a cascade of “flexibility budget” allocations. Constraints are
considered in priority order, each allocating flexibility to
satisfy itself until either all are satisfied or all flexibility is
either spent or reserved against expected future needs.

1) First Allocation: Goal Tracking (constraint “g”): Goal
tracking uses a proportional controller (to avoid overshoots,
which Refractory states make problematic). Each round it
tries to correct o fraction of the current tracking error:

09 = a-(g(t) — Z |EFj| + |ER:))

(note the switch to estimated state). The desired downward
shift AY™ in Enabled demand for the ith color is thus:

0 if C9>0o0ri>b
AT — |EF;| A else if ngi |EF]| < |09|
' || _Zj<i|EF7| else if Zj<i |[EF;| < |C7]
0 otherwise

The first case says not to reduce demand if the desired
correction is positive or if this color is ineligible for reduc-
tion. The second and third cases consume flexibility from
the lowest color upward toward the boundary color in order
to move a total of |C'Y] toward the goal. The final case does
nothing if the desired correction has already been satisfied.

The desired shift upward AY * is the converse, consuming
flexibility from the highest color downward when the goal

20One might ask: why compute c(t, a) locally at all? The answer is to
allow local selection of alternate ¢(¢,a) computations for particular device
classes (e.g., compressor scheduling per [11]) with an equivalent expected
enablement ratio. Further discussion is beyond this paper’s scope.
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is above the current Enabled demand. Moving upward,
however, there is no ¢ > b constraint, since is always
permissible to stop exerting control over a device.

2) Second Allocation: Color Priority (constraint “p”):
This allocation ensures non-boundary colors are entirely
Enabled or Disabled. This draws on unallocated flexibility:

\EF| = |EF| - A and |DF| = |DF| — A

Each round the control will try to move Enabled demand
below the boundary and Disabled demand above the bound-
ary into the boundary color, prioritizing on the most extreme
colors. The desired downward shift A’ in Enabled demand
for the ¢th color (except b) is thus equal to:

o ifi > bor ngi\EiTj|'>|DFb|’
APT =¢ |EF| / else if 35, |EF;j| <|DF|'
~ A !
DR =%, L |EF)| else it ¥, |EF;| <|DF

and for color b the desired upward shift is AIZJF =
> £b AP™_ The shift of Disabled demand from colors below
b into color b is precisely the converse.

3) Final Allocation: Cycling (constraint “c”): Cycling
moves devices fairly between Enabled and Disabled in the
boundary color b while reserving flexibility for future goal
tracking. The faster that devices cycle, the less flexibility
is available in reserve, since devices switching between
Enabled and Disabled become Refractory. We thus target
a Flexible reserve fraction of at least f, meaning that:

|EFy| |DFy|
|ERy| |DRy|
Note that these constraints are only one of a number of rea-
sonable possible ways to balance cycling and goal tracking.

This allocation uses the state values expected to hold after
the first two allocations are applied, i.e.:

> f and

> f

ER| = |ERy| - A7 — AT
and similarly for each of the other states.

The desired shifts of power, A7~ and Af+, must be equal
for color b (or else goal tracking will be violated), and
zero for all colors besides b (or else color priority will be
violated). We compute these shifts using the probabilities
that will maintain a Flexible reserve fraction of f at steady
state, Pon,ss and por ss. These probabilities are inexpensive
to compute, and can be derived by solving algebraically
for equal flux between states. We then compute the power
shifts conservatively, using whichever steady state probabil-
ity leads to a smaller flux given the current states:

~ " ~ "
Ag_ = Alc)+ = min(poﬁ,ss . |EFb| s Pon,ss * ‘DFb| )
Because the inherent dynamics of the plant that we are
controlling are damped, applying the steady-state transition
dynamics is guaranteed to eventually lead to steady state.
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Simulations on 10,000 devices (1 KW/device, T« = 40 rounds, f = 1, a = 0.8) illustrating the four cases of step response. Demand is

showed as a stacked graph, with Enabled demand on the bottom in saturated colors, Disabled demand at the top in pale colors, and Refractory demand
cross-hatched. The goal is a dashed blue line and the current total Enabled demand a solid magenta line. When the step is smaller than available flexibility,
convergence to the new goal is rapid (a, b); otherwise, convergence time depends on the time for enough Refractory demand to return to Flexible (c, d).

4) From Allocation Budget to Control: For each color
and each agent a, the values of p,y ;. and p,g ;. are the
fraction of allocated versus total flexibility in that color:

AYT AP LA AT AP AT
|EF;| |DE;|

Note that the values do not depend on the identity of the
agent, ensuring that the fairness requirement is also fulfilled.

Poffi,a =

; Pon,i,a =

IV. ANALYSIS

We analyze the ColorPower 2.0 algorithm against a key
usage scenario: a sudden change in goal. This case is likely
to occur in emergencies, such as unexpected failure of a
generator or major transmission line. We find ColorPower
2.0 tracks the goal within a small constant factor of optimal
performance. Non-emergency scenarios, such as ramps, can
then be roughly approximated as a sequence of small steps.

A. Goal Tracking

To analyze step response, consider a goal g(t) equal to
some v before time 7 and v — A after. We further assume the
set of devices is large and homogeneous, such that behavior
approximates the continuum limit, and the step occurs when
the system is at steady state. We solve for a downward step
(e.g., a power transmission failure), assuming « is much
larger than zero and that Refractory times are many rounds
long. The upward step case is precisely complementary.

The step response behavior depends on the amounts of
Flexible and Refractory demand available relative to step
size. We will compute the expected behavior, neglecting the
small effect of cycling during the main response to the step.

Starting from steady state, the Flexible demand available
F is all devices in state EF from the prior boundary color b
to the new boundary color &’ and R is Refractory demand,
which is only from the prior boundary color:

b
F=>Y|EF)| and R=|ER|
i=b
since all other colors are wholly Flexible at steady state.
Figure 3 shows the four cases, based on F, R and A.
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Cases 1,2: If A < F, then convergence is rapid
because the step can be satisfied with available Flexible
demand. Each round advances an expected fraction o toward
the goal, so the rounds r. to within € of the goal is:
loge —log A

log (1 — )

When b = b’ or R = 0 (Case 1), the step is fulfilled by
shifting power from Enabled to Disabled within a color
(Figure 3(a)). When b < b and R > 0 (Case 2), then
b’ disables more demand than at steady state and is later
rebalanced by the color priority allocation (e.g., Figure 3(b)).

Optimal convergence time for this case is a single round,
corresponding to o = 1, but o should be kept smaller in
order to minimize overshoots. For values of a well above
zero, the number of rounds to get within any reasonable €
remains a small constant, and thus is near-optimal.

Cases 3,4: When A > F, convergence time is driven
by the time spent waiting for enough Refractory demand
become Flexible, since we assume « well above zero and
long Refractory time. At steady-state, the distribution of
Refractory times is piecewise: constant at m for
the fixed portion of timeout Trry and linearly decreasing
to zero across the variable range Tgy,. Integrating with
respect to time gives the cumulative Refractory devices
becoming Flexible over time: a piecewise function linear
through Trrp, then rising at a slower quadratic rate. The
Refractory demand level where this transition takes place
is Rﬁm which we will denote R’ for simplicity.

Thus, if A — F < R’, meaning demand can be satisfied
in the linear range, the expected convergence time is:

A-F

Te = —pi—

Otherwise, demand cannot be satisfied until a portion of the
slower range becomes Flexible, giving expected time:

/IAN—F — R
re =TErp + TR_R “Trvy

Since the limiting factor is the availability of Flexible
demand, no controller can improve significantly on these
times. Thus our controller is near-optimal in all cases.

e=(1—a)™- A, where r, =

“Terp



B. Quiescence Time

The “quiescence time” for the system to return to ap-
proximate steady-state gives a conservative bound on how
frequently large steps can safely occur. The non-linearities
of our controller make closed-form computation difficult, so
we analyze it approximately using piecewise estimates.

The number of rounds for quiescence 7, can be conser-
vatively estimated as the sum of the convergence time r.
(calculated in the prior section), the time to satisfy the color
priority constraint r,,, and the time for cycling to converge.

Satisfying color priority requires time only if b < & and
R > 0. In this case, “extra” flexible demand is drawn from
b’ to make up for the Refractory demand not yet available
to disable in b. This will be rebalanced by the color priority
allocation after Refractory periods elapse in both colors:

rp =max(Tpry + Tovey, Ters + Tevs)

To estimate cycling convergence time, consider the ex-
treme case: all demand was previously in state EF, and goal
tracking gives rapid convergence (Case 1) to demand being
split between EF and a “pulse” entering DR. Still assuming
many Refractory rounds, we can coarsely approximate the
evolution of this state with the following piecewise elements.

o For the first Tpr s rounds, no demand shifts state, as
the pulse in DR progress through Refractory time.

e By Tpry + Tpy, rounds all of the original pulse
has become flexible, overshooting the desired reserve f.
Thus, at some point in the last T'py, rounds, the rate of
demand exchanged between Enabled and Disabled has
crossed the steady-state rate. From this point onward,
the rate of cycling is relatively close to steady-state.

« After another T p iy + Ty, /2 rounds, cycling results
in near-steady-state allocations in all the ER states.

We may thus conservatively estimate that two full cycles
of expected Refractory periods should suffice to bring the
system close to steady state. The length of these cycles
depends on the position of the goal within the boundary
color and the size of the flexible reserve. All told, therefore,
quiescence time following a step is expected to be less than:

rg=7c+1p +2(Tpry +Tovy /2 +Tery + Tevey /2)

Assuming similar timeouts for b and ', this is once again
within a small constant factor of optimal, since it is impos-
sible for any controller to reach quiescence faster than one
full set of expected Refractory timeouts, as no shorter time
can distribute devices through state ER.

V. EMPIRICAL RESULTS

We validated our analytic results in simulation, also show-
ing scalability and resilience to goal change and inaccuracy.
Our simulations were implemented in MATLAB, using the
assumptions stated in Section II-B. Except where noted
otherwise, all simulations are executed with the following
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Figure 4. Following a step in goal, measured convergence time closely
matches predictions; quiescence is much better than the conservative bound.

parameters (which are the same as for Figure 3): 10 trials
per condition for 10,000 controllable devices, each device
consumes 1 KW of power (for a total of 10 MW demand),
devices are 20% green, 50% yellow and 30% red, mea-
surement error is € = 0.1% (0.001), rounds are 10 seconds
long, all Refractory time variables are T, = 40 rounds, the
flexible reserve ratio is f = 1, and the proportional control
constant is o = 0.8. Error is measured by taking the ratio of
the difference of a state from optimal versus the total power.

To validate our convergence and quiescence time predic-
tions, we consider steps where the goal before and after
the step ranges from O to 10 MW in increments of 0.1
MW, executing one trial per condition. Simulation begins
in steady state and proceeds for 3600 seconds following
the step. We consider the controller to have converged to
the goal when the Enabled demand never again departs by
more than 1% (0.1 MW) average over a minute, and to have
reached quiescence when it never departs from the steady
state distribution of demand into states by more than 2%
(0.2 MW). Figure 3 shows examples of these simulations.

Figure 4(a) shows the measured convergence time, show-
ing a tight conformance with predictions: fast convergence
except when waiting for Refractory power, which happens
only when closely approaching the boundary of a color
without crossing into the next color. Quiescence time (Fig-
ure 4(b)) also matches predctions, and is much faster than
the conservative estimates derived in Section IV-B—likely
due to the r, estimate being overly conservative.

The stochastic nature of the controller makes it highly
scalable, and the law of large numbers means control should
improve as the number of devices increases. Figure 5(a)
compares convergence and quiescence error for systems of
100 to 1,000,000 devices, simulated for the four step cases
shown in Figure 3 with the error averaged over the last 10
simulated minutes (60 rounds). Goal tracking is extremely
accurate, down to a limit imposed by the accuracy of the
estimator (€), and degrading gracefully for fewer devices as
predicted by binomial variance. There is greater difference
between the steady state predictions and the observed Flex-
ible versus Refractory distribution, since error integrates
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tracking when the slope is lower and the ramp does not come close to fully enabling or disabling a color. Increasing heterogeneity in the amount of demand
per device (c) or increasing error in demand estimates (d) leads to a slow graceful degradation of controller performance. Dotted lines show +2 std. dev.

over the Refractory period. (The exception is in case 4 of
Figure 3 where steady state after the step has no Refractory
power.) The error is still sufficiently small, however, and
follows the same trends as for goal tracking.

We evaluate ramp response by considering saw-toothed
waves of goals, with means at various locations in the yellow
demand range, an amplitude of £0.5 MW, and a ramp
duration of 60 to 7200 seconds. The controller is run for
6 simulated hours and the results are drawn from the last 4
hours. Figure 5(b) shows the maximum error at any point
during the simulation, as a function of both the mean goal
and the ramp rate. The error is symmetric and bimodal: when
the ramp duration approaches the expected Refractory time
and the goal is not near the limits of the color, flexible power
can be restored as quickly as ramping consumes it and the
error is low. When the ramp is fast or closely approaches
the limits of the color, however, device cycling cannot keep
up with the changing goal, and error increases.

The stochastic nature of the controller means it should
degrade gracefully in the face of inaccuracies such as het-
erogeneity or measurement error. To test heterogeneity, we
break devices into two populations with a demand ratio from
1 to 100 and the same 1KW mean demand, with either equal
numbers or equal ratios above and below 1KW. Figure 5(c)
shows results for simulation of the four step cases of
Figure 3, reporting error as for the step case. To measure
impact of estimation error, we range e logarithmically from
1073 to 10~!. Figure 5(d) shows results for the four step
cases of Figure 3, reporting error as before. In all cases,
error increases gradually with inaccuracy, showing graceful
degradation and good behavior even with high inaccuracy.

VI. CONTRIBUTIONS

We have presented the ColorPower 2.0 algorithm for fast,
precise distributed shaping of demand. The algorithm is
near-optimal in its convergence and quiescence time, and
its stochastic basis means that the larger the network the
better the expected performance. Simulations confirm this
analysis, showing fast, effective control for networks with
around 1000 devices or more, and a high degree of tolerance
for shifting demand, device heterogeneity, and measurement
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error. Future work includes tightening of the controller
performance and analytic bounds thereon, e.g., through
inclusion of future predictions rather than just instanta-
neous goals. More importantly, however, through industry
partnership we expect to soon begin pilot deployments of
ColorPower, and expect to focus on pragmatics required for
those deployments.
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