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Abstract—Controlling and leveraging the vast and ever-

growing number of wireless devices around us has become a

serious problem. Spatial computing offers a promising approach

toward solving this problem, in the form of higher-level dis-

tributed programming abstractions. Many challenging mobile

communications problems, however, can only be investigated

using a realistic and detailed model of wireless communication.

We thus demonstrate a new research platform, integrating the

MIT Proto spatial computing suite with the OMNeT++ network

simulator framework, which will enable investigation of spatial

computing solutions to difficult mobile wireless problems.

I. MOTIVATION

We are surrounded by wireless devices, but it is difficult
to design applications to take advantage of them. Spatial com-
puting is an approach for developing higher-level abstractions
for programming such devices, by leveraging the locality of
wireless communications. The Proto [1] language offers a
general approach to spatial computing, but the communication
model that has been used by the MIT Proto [2] simulator is far
too simplistic for many mobile ad hoc networking problems.

The problem is that MIT Proto defaults to a unit disc
model of wireless communication. In this model two devices
can communicate if and only if they are less than a certain
distance apart. Real world wireless communication is a much
more complicated matter. There are effects, such as, fading, in-
terference, variable path losses, different radio output powers,
etc., that strongly affect connectivity, particularly in complex
environments such as urban areas. How well will the Proto
approach hold up when subjected to such conditions?

The first step towards answering this question is to link
MIT Proto to an accurate communication simulation. For this
we used OMNeT++, a well-established network simulator
framework. Our implementation runs Proto and OMNeT++ as
separate processes, linked by extensions that use interprocess
communication to synchronize the two simulators. We demon-
strate this integration with an urban communications scenario,
showing mobile devices using a spatial computing approach
to create a communication channel along a path with ideal
connectivity, as well as showing a tradeoff between speed and
reliability of information sharing with neighbors.

II. CONNECTING PROTO AND OMNET++

A spatial computer is any collection of devices distributed
in space, such that the difficulty of communicating between
devices is strongly dependent on their geometric distance.
Examples include robotic swarms, wireless sensor networks,

Fig. 1. Connectivity and link quality in an integrated Proto/OMNeT++
system, with reddish lines indicating poor connectivity. Lines with no nodes
indicate outdated neighbor information.

and engineered biofilms. Proto is a purely functional language
for programming such a spatial computer[1]—one of the
few general purpose spatial languages amongst many more
specialized spatial computing languages and platforms [3].

With Proto, the programmer views the system as an amor-
phous medium—a region of space consisting of a computa-
tional device at every point—rather than a collection of indi-
vidual devices. This abstraction makes it possible to program
the global behavior of the system in terms of geometry and
information flow, then generate low level code for a virtual
machine that runs on a variety of different platforms, including
in simulation. MIT Proto [2] is an implementation of Proto,
including a compiler that generates virtual machine code, and
a simulator and virtual machine for testing algorithms. As
noted, however, its simulator is using a unit disc model of
communication, which prevents applications from being tested
under realistic conditions.

OMNeT++ is a framework for building wired, wireless,
on-chip or queueing network simulators [4]. OMNeT++ has
a modular structure, which means that functionalities needed
during simulation are grouped into individual modules and
clean/standard interfaces are defined between them. Modules
can have multiple gates and two modules can be connected
via channels attached to the appropriate gates. Communication
between modules is established by sending messages or signals
through channels. This enables the reuse of available modules
and makes it easier to extend the system because the dependen-
cies between pieces of code are easily comprehensible and lim-
ited. Simulations are described by an input file, which defines
the network, initializes the module instances and defines the
connections between them. Castalia [5] is a framework based



Fig. 2. Target tracking in an urban environment. Orange/red roads have
higher path loss, therefore worse connectivity.

on OMNeT++ that is designed to simulate Wireless Sensor
Networks and Body Area Networks, by including an advanced
channel model with the capability to use user-defined path loss
maps and temporal variation of the defined path loss. Castalia
also supports mobility and models for various real world
radio channels, modulation types, carrier sensing, clock drift
and device power consumption. OMNeT++ and Castalia were
thus an excellent choice for our scenario, providing realistic
wireless models with a clean design for easy extensibility.

Both Proto and OMNeT++ are discrete event simulators.
This means that there is an event queue that is filled with
scheduled events during the simulation. In both simulators,
each event is atomic and takes zero simulation time, while time
is (generally) independent of real time. One way to connect
two discrete event simulators is a continuous communication
between the two, meaning that if an event occurs in one
simulator the other has to be notified of that event. This implies
continuous synchronization between the two simulators and a
complex implementation. When interdependent events do not
come too quickly, however, this can be loosened by letting the
first simulator run for a short and predetermined amount of
simulated time, stopping it, then sending all relevant events that
happened during this time to the other simulator. Fortunately,
Proto assumes a two-phase computation that allows us to
choose this second approach, which is both easier to implement
and has higher performance due to less synchronization.

III. THE URBAN TRACKING SIMULATION SCENARIO

To demonstrate the enhanced capabilities gained from in-
tegrating these two systems together, we have implemented an
urban target tracking scenario. A simpler version of this demo
is already present in the Proto distribution. The nodes here
are communicating using radio links, via broadcast messages.
After the simulation is started, the user selects a device to be
tracked and a base station where the position of the tracked
device should be sent. If the base station has a connection
to the target (meaning they can communicate through some
intermediate set of devices), then a vector is drawn between
the two.

We wanted to try this scenario in an urban setting as it
is a constrained environment compared to the standard Proto
simulations. To implement this, a city mobility module for
Castalia had to be designed along with a map file that de-
scribes the city layout. To model the communication conditions
accurately, we then generated a path loss map from the city

map. The general idea was that communication should be
possible along roads, but near impossible through buildings
that cover the area between roads. In the generation of the
path loss map we have also defined areas along roads where
path loss is larger (e.g., due to interfering obstructions), making
it harder or impossible for devices to communicate with each
other. Figure 2 shows tracking running in this scenario, using
the wireless communication model implemented in Castalia
to accurately simulate the effects of wireless communication.
Castalia can also allow us to investigate different settings of
the radio hardware or different path loss configurations for this
scenario.

IV. CONCLUSIONS

The urban setting and the non-uniform path loss map
transform the behavior of the target tracking scenario. The
target can still be tracked by the base station if any chain
of devices that reliably exchange information can be found
between them. Rather than following a simple shortest path,
however, the chain follows a path that takes network conditions
and device connectivity into account.

The connectivity model also provides an example of the
self-adaptation challenges that can be investigated with the
Proto/OMNeT++ system. Device connectivity can be severely
obstructed by setting the message sending frequency in Proto
either too low or too high. Slow message sending means that
there is a better chance, that a sent message will arrive (little or
no interference caused by other devices), but the information
will be out of date, which can combine with device mobility to
create an inability to form a channel between the base station
and the target. On the other hand, sending messages at a higher
frequency means that the neighbor information is now fresh,
channels can be formed quickly, but since the wireless channel
is saturated, devices experience high interference hence cannot
communicate effectively with each other. Finding the optimum
rate is an example of the self-adaptation problems that can be
investigated with this system.
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