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Abstract—A common swarm task is to disperse evenly through
an environment from an initial tightly packed formation. Due
to communication and sensing limitations, it is often necessary
to execute this task with little or no communication between
swarm members. Prior approaches based on repulsive forces or
uniform random walks motion, unfortunately, converge slowly
or pass through bad transient states before converging. A simple
integrate-and-fire mechanism, however, can generate modified
Levy flights, thereby producing a near-optimal rapid and mono-
tonic dispersion with no communication. This mechanism also
produces rapid mixing of swarms and is a plausibly evolvable
generator for the Levy flight behaviors observed in biological
organisms.

Index Terms—spatial computing; swarm; dispersion; deploy-
ment; coverage; mixing; Levy flight; Levy walk; anomalous
diffusion

I. INTRODUCTION

Dispersion is one of the basic maneuvers needed for a
wide variety of swarm applications: beginning from an initially
tightly packed formation, the individuals comprising a swarm
spread out evenly through their environment. Moreover, due to
communication and sensing limitations, it is often necessary
to execute this task with little or no communication between
swarm members.

To be effective in many applications, swarm dispersion
must balance between two contradictory goals: on the one
hand, swarm individuals need to spread outward quickly in
order to disperse well. At the same time, however, it is often
the case that the swarm needs to at the same time maintain
a continuous coverage over its initial deployment area. For
example, if the swarm is being used for information gathering
or for communication then deploying the swarm should not
leave any large transient gaps in covering the immediate area
around the people deploying it.

Prior methods of low-communication dispersion have gen-
erally been based on simple physics models, such as re-
pulsive forces or diffusion through uniform random walks.
These methods, however, are unable to spread quickly unless
carefully tuned for the expected scale of the swarm and its
environment.

Another physical model, however, offers a possible solution
to this problem: anomalous diffusion, such as is observed
in certain forms of plasmas and turbulent flows (e.g., [1],
[2]), operates much more quickly than ordinary diffusion. In
fact, particles in certain conditions move according to random

processes with heavy-tailed probability distributions, such that
they are guaranteed to cover space quickly, yet still have
a high probability of remaining close to their origin. These
processes—Levy flights and Levy walks—have previously
been applied to balancing explore/exploit trade-offs in search,
both for design of engineered systems (e.g., [3], [4]) and for
modeling the behavior of biological organisms (e.g., [5], [6]).

This paper develops a new process variant, reactive Levy
walks, and apply this method to the problems of swarm
dispersion and mixing. Reactive Levy walks are asymptotically
faster than prior approaches and provide both speed and
continuous central coverage, while requiring minimal sensing
and no communication between swarm individuals. We will
also see that this process can be realized as a parallel integrate-
and-fire mechanism, which is suitable for simple electronic or
biological implementations and is incrementally evolvable.

A. Related Work

Levy flights and Levy walks are scale-free particle motion
processes originally formulated as models in the study of
chaotic physical phenomena [7] (precise definitions will be
given in the next section). Although these two random pro-
cesses are distinct, they are often frequently used and referred
to interchangeably in the literature (this sort of imprecise
thinking can lead to significant problems, as in the recent
challenges to some analyses of Levy motions by animals [8],
[9], [10]).

Levy motions have since been applied to modeling a number
of physical processes, including diffusion under turbulence [2],
the passage of photons through hot gases [11], and plasma
physics [1]. More recently, it has been proposed that animals
use Levy walks in their foraging patterns [5], [6], and evi-
dence of such behavior has been reported for an extremely
wide range of organisms, from amoebas [6], to bumblebees,
deer, and albatross [5], from predatory fish, turtles, and pen-
guins [12], [13], to spider monkeys [14]. Even humans appear
to evidence Levy statistics in our movements [15], [16].

Turning from modeling to motion planning, Levy motions
have been used for generating search patterns for robots or
other agents a number of times [3], [4], [17], as well as for
routing [18]. These systems have all considered small numbers
of agents in sparse environments, a problem with significantly
different constraints and requirements than dispersion.



With regards to swarm dispersion (or coverage, which
is closely related), much of the prior work has considered
systems out of scope of our current investigation due to
reliance on high levels of communication, centralized planning
or ability to leave markers such as pheromones in their shared
(real or virtual) environment. More local and self-organizing
approaches typically fall into two categories of nature-inspired
models. One set are primarily based on uniform random walks,
either unbiased or biased (e.g., [19], [20], [21]). The other,
more common strategy uses repulsive forces in a variety
of combinations and models such as flocking (e.g., [22]),
potential fields (e.g., [23]), and gradient descent (e.g., [24]).
There are also a number of modified or hybrid strategies, such
as combining biased random walks and diffusion-limited ag-
gregation [25] or springs and random walks [26]. Asymptotic
analyses, however, reveal that both uniform random walks [27]
and force-driven dispersion (seen as a distributed consensus
process [28]), will generally perform poorly for large swarms.

II. REACTIVE LEVY WALKS

A Levy flight [7] is a random movement process similar
to a random walk: a particle makes a sequence of moves,
where each move is in a random direction. Unlike a random
walk, however, where the lengths of the moves are identical,
Levy flight moves have a random length generated from a
heavy-tailed probability distribution, such that the probability
of moving a distance of d is:

p(d ≥ l) ∝ l−1 (1)

Each move of a Levy flight thus moves an unbounded ex-
pected distance, modeling a scale-free superdiffusive motion
of particles—that is, where particles have an expected dis-
placement over time much further than predicted by uniform
random-walk models of diffusion.

Levy walks are Levy flights where the particle moves at
a constant velocity. This maintains the scale-free property
of distribution while restricting to more physically realiz-
able motions. This model (and its generalization to coupled
continuous-time random walks [29], [30], which encompasses
both Levy walks and uniform random walks, as well as a
spectrum of other related processes) is used to model a number
of natural phenomena, as described in the previous section.

To apply this to the problem of swarm dispersion, let us
introduce a new process, which modifies Levy walks with
the inclusion of reactivity to the environment. Members of
a dispersing swarm operate (at least initially) in a highly
constrained environment, where each member’s movements
are obstructed by the other nearby members of the swarm.
Thus, individuals moving in accordance with a pure Levy walk
may enter a mutually blocking configuration for unboundedly
long periods of time. The same problem occurs when an
individual encounters an obstacle in the environment. This
problem can be alleviated by assuming that each individual
has a proximity sensor that can detect the close presence of
swarm members or other obstacles (e.g., in robots, this could
be bump sensors, sonar ranging, LIDAR, etc.). A reactive Levy
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Fig. 1. Reactive Levy walk implemented as a parallel circuit that can be
easily implemented as an electronic, neural, or biochemical network.

walk is then identical to an ordinary Levy walk, except that
the current move is aborted and a new random move started
whenever the proximity sensor is triggered.

Algorithm 1: Reactive Levy Walk

repeat
// Choose a Random Motion
î := random-direction()
α := U [0, 1] // Unit uniform random number
accumulator := 0
// Move until threshold is reached
repeat every ∆t seconds

move(vî)
accumulator := accumulator + α ·∆t

until accumulator ≥ T or proximity-sensor()

Pseudocode for a reactive Levy walk is given in Al-
gorithm 1. In addition to adding the reactivity term, this
formulation also specifies the scale-free distribution using a
variable-rate accumulator rather than the standard probability
computation given in Equation 1. A particle executing a
reactive Levy walk begins by selecting a random direction
î, a random rate of accumulation α uniformly between 0 and
1, and setting its accumulator to zero. While the accumulator
value rises at a rate of α per second (quantized in steps of
∆t in this implementation), the particle moves in direction î
at velocity v. The particle resets its accumulator and selects a
new direction and rate whenever either its accumulator reaches
T (taking α−1 seconds) or its proximity sensor is triggered.
Note that, as for standard Levy walks, changing the parameters
of a reactive Levy walk affects its behavior by only a constant
factor and preserve the scale-free property so long as v > 0
and T > 0.

Neglecting the reactivity term, this inverted formulation of
Levy walking has equivalent statistics to a standard Levy walk,
but can be implemented with a simple parallel circuit, as
shown in Figure 1, that can be easily realized using either dig-
ital or analog electronics or a neural or biochemical network.
We will discuss the implications of this circuit implementation
further in Section VI.

When executed by the members of a tightly packed swarm,
we may predict that a reactive Levy walk will produce different
behaviors on the edges and in the interior. On the edges,



individuals are not significantly constrained by proximity,
and are able to move superdiffusively, rapidly dispersing the
swarm. In the interior, where individuals are constantly in
close proximity to one another, the reactive Levy walk reduces
to a constrained random walk. Individuals in this region move
at best diffusively, effectively marking time while they wait
to the dispersion of the edges to allow them to move more
freely.

Similarly, reactive Levy walks allow a dispersing swarm to
cope more gracefully with obstacles and boundaries. Without
reactivity, individuals encountering an obstacle or boundary
can become stuck indefinitely before choosing a new direction;
with reactivity they change direction as soon as a limit of
motion is detected.

III. ASYMPTOTIC LEVY WALK DISPERSION

In comparing reactive Levy walks against prior methods
of dispersion, let us begin by considering the asymptotic
case, where the swarm is dispersing through a very large
environment with little constraint. In this case, the reactivity
term plays little role, and we can approximate behavior with
a pure Levy walk.

A. One-Dimensional Levy Walks

Let us begin by considering the evolution of a swarm’s
distribution with a one-dimensional Levy walk. We determine
this empirically with 100 trials simulating the evolution of a
swarm with 1,000 individuals for 10,000 seconds, moving with
a speed of v = 1 meter per second, a threshold of T = 1, and
time quantization ∆t = 1 second with random initial phase.
Each swarm is initially uniformly randomly distributed over
a 10 meter interval, and the positions of the swarm members
recorded every 100 simulated seconds.

Figure 2 shows the evolution of the swarm’s distribution
over time. While the density of the swarm remains highest at
the center, it spreads rapidly outward over time: Figure 2(a)
shows the evolving density of individuals per meter over time,
with colors indicating time ranging linearly from t = 1, 000
(orange) to t = 10, 000 seconds (red). If we consider the
absolute displacement of individuals from the initial mean,
another way to measure the spread of a swarm over time is
by tracking the displacement of the nth percentile distance.
Figure 2(b) shows that the swarm disperses at a linear rate. The
central portions of the distribution disperse more slowly than
the edges, but all are k-competitive with an optimal dispersion
in which the swarm spreads perfectly evenly outward through
space at rate v, with its distribution forming a perfect disc.

From the behavior of a swarm dispersion via Levy walks
in one dimension, we can predict swarm dispersion in two or
more dimensions. With an isotropic random choice of direction
and a constant velocity, the distribution of a dispersing swarm
must be symmetric and should follow the same overall form,
but with rate of dispersion in along any given axis decreased
by a constant factor depending on the number of dimensions.
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Fig. 2. A swarm dispersing in one dimension via Levy walks spreads rapidly
through space (a), dispersing at a linear rate as indicated by tracking the
magnitude of the nth percentile displacement from the initial mean (b). Colors
in (a) indicate time, ranging linearly from t = 1, 000 (orange) to t = 10, 000
seconds (red).

B. Two-Dimensional Dispersion

We will compare reactice Levy walks against two represen-
tative prior methods of dispersion—random walk and repulsive
forces—and a simple reactive strategy of turning upon contact.
In particular, we implement these as follows:
• Random walk moves at v meters per second in a random

direction, selecting a new random direction every ∆t
seconds.

• Repulsive forces applies a force inversely proportional
to the distance dij from each particle i to its neighbors
j ∈ nbrs(i), where the neighbors are the set of individuals
up to r meters away:

v(i) = k
∑

j∈nbrs(i)

d−1
ij (2)

Note that although the combination of forces and ex-
ponents on various repulsive force approaches in the
literature varies, the asymptotic behavior will be similar.

• Turn-on-contact is the simplest possible reactive strategy:
it selects a random direction and moves at v meters



(a) Random Walk (b) Repulsive Forces (c) Turn on Contact (d) Levy Walk

Fig. 3. Snapshots of swarms of 1000 individuals after t = 200 seconds of dispersion from the center of a 500x500 meter region via random walk (a),
repulsive forces (b), turn-on-contact (c), and Levy walk (d).

per second in that direction until its proximity sensor is
triggered, at which point it selects a new random direction
of travel.

To compare these four methods, we consider the trajectories
of swarms of 1000 individuals dispersing in two dimensions.
Figure 3 shows examples of these four methods operating with
v = 1, ∆t = 1, and repulsive force k = 0.05 and r = 10, after
dispersing for t = 100 seconds from an initial uniform random
distribution across a 10-meter square. Even after such a short
period of time, the contrast between the various approaches
is stark: random walk has barely begun to disperse, while
turn-on-contact has moved outward the maximum distance
possible, leaving the center entirely empty. Only repulsive
forces comes close to matching the even dispersion of Levy
walk, and that method is already rapidly decelerating its
dispersion as repulsive forces decrease on the individuals at
the edge of the swarm.

For a more systematic comparison, we consider the tra-
jectories of 100 trials of each method on a swarm of 1000
individuals dispersing for 10,000 seconds with the same
parameters and initial distribution, with the positions of the
swarm members recorded every 100 simulated seconds. Fig-
ure 4 compares the behavior of the four methods, as well as the
optimal dispersion of a perfectly even swarm density spreading
outward in a disc at rate v. The trends are the same as in the
examples in Figure 3: only Levy walks provide a rapid and
even dispersion over space. Random walk disperses slowly,
at a rate proportional to

√
t, and repulsive forces follow the

same pattern before stopping altogether as the individuals of
the swarm reach distance r from one another and lose contact
with their neighbors. Turn-on-contact suffers from the opposite
problem, moving away from the center too rapidly and leaving
it empty (and thus actually displacing its 90th percentile “faster
than optimal”) until individuals’ paths can be randomized by
contact with obstacles or the boundary of the space.

Thus, we see that for dispersion in large open regions, a
(reactive) Levy walk spreads a swarm evenly through space
at a near-optimal rate. By contrast, the other methods produce
either much slower or highly uneven dispersion.
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Fig. 4. The 90th percentile of individual x-coordinate displacement disperses
at a near-optimal linear rate for Levy flights and for turn-on-contact (whose
“faster-than-optimal” line is due to the empty center of the distribution).
Repulsive forces begin quickly, but rapidly slow to a stop as neighbor forces
decrease; random walk continually expands, but much more slowly than Levy
flights. The 10th percentile lines follow a similar trend, except that of turn-on-
contact, which is not visible because it precisely overlaps its 90th percentile
line, indicating the empty center of the distribution.



(a) Random Walk (b) Repulsive Forces (c) Turn on Contact (d) Reactive Levy Walk

Fig. 5. Snapshots of swarms of 100 individuals after t = 2000 seconds of dispersion from the center of a 100x100 meter “maze” of barriers via random
walk (a), repulsive forces (b), turn-on-contact (c), and Levy walk (d).
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(d) Reactive Levy Walk

Fig. 6. Mean density of individuals per square meter from t = 5, 000 to t = 10, 000 seconds of dispersion of a swarm of 100 individuals from the center of
a 100x100 meter “maze” of barriers via random walk (a), repulsive forces (b), turn-on-contact (c), and Levy walk (d). Warmer colors indicate logarithmically
greater density.

IV. REACTIVITY AND CONSTRAINED DISPERSION

In a highly constrained space, an individual moving as
directed by a pure Levy walk will often become stuck for long
periods. Adding reactivity simply means that an individual
begins a new walk step whenever it encounters an obstacle.

We evaluate the performance of reactive Levy walks in
a constrained environment by simulating a swarm of 100
individuals dispersing through a 100-by-100 meter maze-
like environment with a large central “room” and narrow
“corridors” leading outward and around it (Figure 5). Each
individual in the swarm is a 1-meter cube, and the movements
and physical interactions of individuals with one another and
the maze are simulated in Proto [31], [32] using the ODE [33]
Newtonian physics engine. The swarm begins packed as tightly
as possible, in physical contact in a 10 meter square. Disper-
sion is then run for 10,000 seconds using the same methods
and parameters as before, 10 trials per method, with the
positions of the swarm members recorded every 10 simulated
seconds.

The results of this simulation are presented in Figure 5,
which shows example snapshots of swarms after t = 2000
seconds of dispersion, and Figure 6, which shows the mean
density of individuals per square meter over the second half
of the simulation, from t = 5, 000 to t = 10, 000. As in

the asymptotic case, random walk performs poorly, spreading
slowly enough that it never actually reaches all parts of the
maze. Repulsive forces perform even worse, quickly reaching
a stable equilibrium where individuals on the edges no longer
move outward, even though many others in the swarm are
under significant stress. Both reactive Levy walks and turn-
on-contact effectively disperse individuals through the entire
maze, with turn-on-contact slightly outperforming reactive
Levy walks. Note that in this highly constrained environment,
turn-on-contact is much more even in its distribution, since
the movements of swarm members are rapidly decorrelated
by their frequent encounters with walls.

We thus see that, alone of the four methods we consider,
reactive Levy walks produce fast and smooth dispersion in
both highly constrained and unconstrained environments.

V. SWARM MIXING

Mixing of a swarm is a similar maneuver to dispersion,
but starting with the swarm already distributed over space
rather than tightly packed. Uses include data ferrying, blending
of mission and maintenance tasks, and enhancing robustness
through diversity. Dispersion algorithms should generally work
well for mixing also, since both dispersion and mixing require
individuals to move relatively long distances with low correla-



0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.2

0

0.2

0.4

0.6

0.8

1

Seconds

Fr
ac

tio
n 

of
 R

eg
io

n 
W

id
th

Distance vs. Time

 

 
Reactive Levy walk
Random Walk
Turn on Bounce
Repulsive Forces
± 2 std.dev.

(a) Distance Displaced

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Seconds

Fr
ac

tio
n 

of
 S

w
ar

m
 E

nc
ou

nt
er

ed

Visits vs. Time

 

 
Reactive Levy walk
Random Walk
Turn on Bounce
Repulsive Forces
± 2 std.dev.

(b) Swarm Visited

Fig. 7. Both reactive Levy walk and turn-on-contact effectively mix a swarm,
as shown by measurements of distance displaced (a) and fraction of swarm
visited (b) in a swarm of 300 sparsely distributed individuals.

tion in their movements. Based on the results in prior sections,
we should thus expect the efficacy of mixing to be good for the
reactive Levy walk and turn-on-contact methods, but poor for
random walk (where individuals traverse space more slowly)
and for repulsive forces (where there is high correlation in
movement).

For an empirical test, we consider the same algorithms
and parameters as before, but now consider a swarm of 300
individuals beginning distributed uniformly randomly through
a 1000-by-1000 meter space with no internal obstacles. Disper-
sion is then run for 5,000 seconds using the same methods and
parameters as before, 10 trials per method, with the positions
of the swarm members recorded every 10 simulated seconds.

To evaluate the mixing efficacy of the four methods under
consideration, we will use two measures: the displacement of
an individual from its initial position, and the number of other
individuals that an individual “visits” over time, i.e., that it
comes within some threshold d meters of. Figure 7 shows the
evolution of the displacement and visit metrics over time for
the four methods, using a threshold of d = 10 meters for
visit proximity. As expected, reactive Levy walk and turn-on-
contact both perform well, while random walk and dispersion
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Fig. 8. A circuit implementing a reactive Levy Walk is evolvable through
the incremental accumulation of common biological control motifs, each of
which is expected to increase the efficacy of the original search or dispersion
behavior.

do not.

VI. EVOLVABILITY OF REACTIVE LEVY WALKERS

It has previously been observed that a number of animals
move in Levy flight or Levy walk patterns, particularly when
hunting or foraging [5]. Examples cross many diverse clades,
including amoebas [6], bees [5], penguins [12], sharks [13],
and spider monkeys [14]. Several possible biological imple-
mentations for generating Levy patterns have previously been
proposed: critical connectivity in neural connections [34],
positive feedback loops in memory [35], and filtration of
fractal noise [36]. All of these prior proposals are rather
complex, however, and none has a clear path for evolvability.

When considered as an abstract mathematical process of
heavy-tailed number generation, as in the usual formulation,
there is indeed no obvious means of biological implementa-
tion, let alone evolvability. The implementation of a reactive
Levy walk as an adjustable integrate-and-fire circuit, however,
as shown in Figure 1, can easily be mapped to a biological
implementation as either a neural circuit or a biochemical
network (e.g., a genetic regulatory network or protein cascade)
by modulating basic mobility capabilities using a collection of
standard motifs. Moreover, the inclusion of reactivity increases
the evolvability of this system, developing a behavior switch
that can later be modulated to create long-range movement.

Figure 8 reproduces the parallel circuit diagram from Fig-
ure 1, now decomposed into five common biological motifs
and ordered in a possible sequence of assembly by an evolu-
tionary process. Let us consider these in sequence:

1) Mobility: We begin with an assumption of two basal
motions: forward movement and random change of
direction. At a base level, these operate independently
and in parallel, producing a random walk. The scale of
this random walk is determined by the speed of forward
motion and the frequency of direction change.

2) Reactivity: The basic motions may become connected
by a reactive switch that selects between them, fre-
quently instantiated in biological systems by a biased
mutual inhibition motif. In this case, either direction of
inhibition may be advantageous and develop first: it is
usually better not to waste energy moving when stuck
against an obstacle and also often better not to turn when
moving is is uninhibited. At this stage, the system moves



over long ranges, but more regularly, implementing the
turn-on-contact strategy.

3) Persistence: Accumulate-and-fire networks are another
common biological motif, often implemented as a link-
age between self-activating and self-inhibiting feedback
loops. Once reactivity establishes a switch between
the two motions, an accumulate-and-fire network can
expand the range of exploration by modulating the same
signals to produce a controlled mixture of persistent
motion and random turning that can be tuned to an
optimal ratio by selection.

4) Adaptivity: Rate modulation, yet another common mo-
tif, adjusts the mixture of motion versus turning by the
value of a persistent latch. At this stage, the evolution
of the system might be scaffolded by the latch using the
value of the accumulator as its input (orange arrow in
Figure 8). This results in shorter movements when the
proximity sensor is triggered more often, adapting for
better exploration of confined spaces.

5) Scale-Freeness: Finally, the input for the adaptive latch
may be replaced by a random noise source. Noise is
an inherent property of biological systems, and cells
have previously been shown to exploit this noise [37],
[38], [39]. This final stage is advantageous because it at
last produces scale-free movement, allowing search or
dispersion over arbitrarily large or small areas.

Thus, we see that there is a path by which a reactive Levy
walk could evolve by four incrementally adaptive steps, each
implemented by a common biological network motif.

This is, of course, only a possible hypothesis for how
biological Levy motions may be implemented and have arisen.
This hypothesis has two significant arguments in its favor,
however: the simplicity of the mechanism and the existence
of an incremental path for evolving the full mechanism from
a base mobility capability. Furthermore, the relatively simple
incremental path for evolvability of this system suggests that
if it occurs in nature at all, it is likely to have evolved inde-
pendently multiple times. Ultimately, however, confirmation
or refutation of this hypothesis will require physiological or
genetic studies.

VII. CONTRIBUTIONS

Reactive Levy walks are an effective method for dispersion
and mixing of swarms. This method is much faster than
prior approaches and provides both speed and continuous
central coverage, while requiring minimal sensing and no
communication between swarm individuals. We have also seen
that if continuous central coverage is not required, a simple
reactive turn-on-contact strategy also provides fast dispersion
and mixing. Furthermore, when formulated as an integrate-
and-fire mechanism, reactive Levy walks can be implemented
with a simple parallel circuit that is both biologically plausible
and evolvable.

One key direction for future investigation is tuning of
the Levy walk distribution: modification of the exponent or
scaling constants will produce a heavy-tailed distribution with

different weighting of the mixture of short-range and long-
range movements. Another important investigation will be
to determine how much various existing applications can be
improved by replacing the use of prior less effective dispersion
methods. Finally, it remains to be proved whether the integrate-
and-fire mechanism and evolvability are borne out in actual
natural biological organisms.
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