
Toward Predicting Distributed Systems Dynamics
Amy Kumar

University of Iowa
Iowa City, Iowa 52242

Email:amy-kumar@uiowa.edu

Jacob Beal
Raytheon BBN Technologies
Cambridge, MA, USA 02138

Email: jakebeal@bbn.com

Soura Dasgupta, Raghu Mudumbai
University of Iowa

Iowa City, Iowa 52242
Email:{raghuraman-mudumbai,soura-dasgupta}@uiowa.edu

Abstract—Systems of “building block” algorithms can guar-
antee that self-organizing systems eventually converge to a
predictable state [1], [2], but what of their dynamical behavior
in environments with ongoing changes? To begin to address this
challenge, we analyze a commonly used distributed distance esti-
mation algorithm from a stability theory perspective, identifying
key properties of monotonicity and dynamical behavior envelope.
This allows standard stability theory analysis to be applied to
predict the behavior of the algorithm in response to persistent
perturbation, both in isolation and as part of a composite system,
as demonstrated both analytically and in simulation.

I. INTRODUCTION

One of the key ongoing challenges in the engineering of
complex distributed systems is ensuring predictable behavior
that is resilient to the broad range of configurations and
challenges under which the system may need to operate. One
promising recent approach has been to identify collections of
“building block” algorithms with resilience properties that are
preserved through composition [1], [2]. Previously, however,
these properties have only been analytically established for
systems’ steady-state behavior, with little understanding of
their transient behavior. For large and complex distributed
systems, however, such periods of stability occur rarely (if
ever). It may also be problematic or even dangerous for a
system to experience ill-constrained dynamical behavior.

Within the nonlinear systems community, however, there
are a wide range of well-established methods for prediction
and management of dynamical behavior [3]. If these methods
could be brought to bear within a composable “building block”
framework such as those developed in [1] and [2], it might pro-
vide a good path towards making complex systems dynamics
more predictable and manageable. Here we present an initial
investigation through a case study of a single widely-used
“building block” algorithm: distributed distance estimation.
We first review a common distance estimation algorithm and
re-formulate it for nonlinear systems analysis (Section II),
then establish key properties of monotonic convergence and
use the transient behavior to predict the algorithm’s response
to ongoing perturbations (Section III). Finally, we use these
results to predict the stability of feedback systems comprising
multiple instances of distance estimation (Section IV).

A. Notation

This paper discusses algorithms using both field calculus [4]
and matrix theory. Field calculus is used to describe distributed
algorithms since it is succinct and universal [5], provides

safely scoped composition of distributed algorithms [6] and
guaranteed mapping between aggregate behavior and local
interactions producing that behavior. Field calculus has also
been used to produce “building block algebras,” of distributed
algorithms with scalability and static behavior guarantees [1],
[7], to which we aim to add dynamical guarantees. Field
calculus programs are purely functional programs expressed
using parentheses and prefix notation, e.g., (+ 2 3) means
“add two and three.” In this manuscript, we annotate additional
information with color: special field calculus constructs are
red, user-defined functions are blue, and standard built-in
functions (e.g., math functions) are green.

Field calculus is not, however, well-suited for applying the
mathematics of stability analysis. For that, we instead use
matrix algebra with the following notation: individual values
are plain type, vectors are lower case bold, matrices are upper
case bold. Indices indicate subscripts (i.e., xi is the ith entry
in vector x, xi,j is the ith row, jth column of matrix X).
Transposition is indicated with superscript T .

II. CASE STUDY: DISTRIBUTED DISTANCE ESTIMATE

For this first exploration of predicting composition of dis-
tributed systems via stability theory, we choose to focus on one
commonly used algorithm: distributed distance estimation. We
have selected self-stabilizing distributed distance estimation
algorithms as these are fairly well-studied building blocks used
in many different applications—a few of the many examples
include distance-vector routing (e.g., [8]), ad hoc networking
(e.g., [9]), data collection in sensor networks (e.g., [10],
biologically-inspired shape formation (e.g., [11], [12]), and
chemical models of computation (e.g. [13]). More recently,
it has been included in several efforts toward systematization
of the design of resilient systems [1], [14], [15]. Surprisingly,
however, even though there are known issues with convergence
speed and instability that affect such algorithms, they do
not appear to have previously been examined through the
lens of stability theory. In this section, we thus present a
simple implementation of self-stabilizing distances estimates
and re-formalize it in terms of matrix algebra to facilitate the
application of stability theory.

A. Simple Distance Estimation Algorithm

Here, we will consider one of the simplest distributed
distance estimate algorithms. This algorithm is based on
the Bellman-Ford algorithm [16], [17] in which distance is



Variable Definition
s[t] Vector indicating that i is a source at time t by a 1 at si; all

other entries are 0.
d[t] True distance of devices to nearest source at time t

d̂[t] Vector of distance estimates at time t
N[t] Distances to neighbors at time t: ∞ for self, non-neighbors
C[t] Matrix of triangle inequality constraints at time t
x[t] Vector of new constrained values at time t

∆[t] Distance estimate error: d̂[t]− d[t]

∆+[t] Greatest overestimate: max(0,maxi ∆i[t])

∆−[t] Least underestimate: −min(0,mini ∆i[t])

Fig. 1. Key mathematical variables used in this manuscript.

estimated by the relaxation of the triangle inequality. The
particular distributed algorithm variant that we consider may
be specified succinctly in field calculus [4] as:
(def simple-distance-to (source)
(rep d-hat
infinity
(mux source 0
(min-hood (+ (nbr d-hat) (nbr-range))))))

In this simple algorithm, every device maintains a periodically
updated variable d̂ (d-hat)1 containing its current estimate
of the distance to the nearest source device (designated
by a Boolean indicator function2), initialized at infinity. The
estimate is updated in one of two ways, depending on whether
the device is currently indicated as a source (via the
“multiplexing” branch mux, which shares information between
devices that choose different branch options): sources directly
set their estimate to zero, while all other devices apply
the triangle inequality, setting their value to the minimum
estimated distance through any neighboring device.3

This algorithm (and many variants) are known to be self-
stabilizing [18], [19], meaning distance estimates are guaran-
teed to converge to correct values in the absence of ongoing
perturbations to the source set, though the time required may
be quite long if devices are very close together [20]. Its
dynamical behavior, however, has not been formally analyzed.

B. Vector Mathematics Formalization
We now translate the field calculus algorithm above to

an equivalent vector mathematics formalization suitable for
stability analysis. With a network of n devices, the set of
distance estimates at time t may be viewed as an n×1 vector:

d̂[t] = [d̂1[t], d̂2[t], ..., d̂n[t]]T (1)

Denoting the true distance between neighboring devices i and
j at time t as di,j [t] (with di,j [t] =∞ if i and j are equal or
not neighbors), the matrix N[t] of all neighbor distances is:

N[t] =


∞ d1,2 . . . d1,n

d2,1 ∞ . . . d2,n

...
...

...
dn,1 dn,2 . . . ∞

 (2)

1The rep construct creates a variable named by its first argument, initial-
ized by its second argument, and periodically updated by its third argument

2The set of sources may change over time; the experiments in this paper
change source position instead, which is equivalent for the systems considered.

3nbr returns a map from each neighbor to its argument’s most recent value,
and nbr-range a map of distances to neighbors; + adds maps point-wise,
and min-hood returns the lowest value in the range of the resulting map.

The triangle inequality constraint is then formed by adding this
distance matrix with neighbors’ distance estimates. Those es-
timates are not communicated instantaneously, but after some
time lag. For simplicity, we consider only the synchronous
case, in which the time lag is always precisely one round.4

The triangle inequality constraint C is thus:

C[t] = u · d̂T [t− 1] + N[t] (3)

where u is a length n unit vector. Note that this uses distance
estimates d̂ from the prior round, not the current (which it
is computing). The vector of new values x[t] asserted by this
constraint are the minimums in each row:

xi[t] = min
j

ci,j [t] (4)

Notice that if i has no neighbors, then xi will be infinity, since
ni,j is infinity for both self and all non-neighbor devices.

Finally, let s[t] be a vector denoting sources, whose ith value
is 1 if the ith node is a source at time t, and 0 for all other
elements. The update equation for d̂ is then set to zero for
sources and by the triangle inequality otherwise:

d̂i[t] =

{
xi[t] , si[t] = 0

0 , si[t] = 1
(5)

where I is the identity matrix. In the default initial condition
for the algorithm, d̂[0] is infinity everywhere; in our analysis,
however, we will consider any vectors of non-negative values
as a possible initial state into which the system might be driven
by some arbitrary perturbation.

III. MONOTONIC CONVERGENCE

Having expressed the simple-distance-to algorithm
in system theoretic terms, we now analyze this system to
show that it has the property of monotonic convergence. This
property is important because it allows us to bound the impact
that a particular perturbation can have on the values returned,
thereby enabling analysis of system stability in terms of
response to perturbation. This is particularly important because
the time required for convergence may be extremely long,
as [20] has established that the worst time for convergence
of such simple distance estimates is inversely proportional to
the shortest distance in the network.

The distance estimates in d̂[t], however, are not monotonic,
and neither are their errors ∆[t] = d̂[t] − d[t] (where the
true distance value is d[t]). Consider, for example, the simple
example illustrated in Figure 2, of a line network that initially
contains both underestimates and overestimates. Over the
course of just a few updates, the network reaches the correct
values, but before it terminates, some devices that had initially
held correct values go up and down in value multiple times.

We may note, however, that although the pattern of “ups”
and “downs” cannot be predicted solely from local informa-
tion, it proceeds across the network in an orderly fashion,

4These results can readily be generalized to a more general partially-
synchronous time model, though the notation and analysis becomes signif-
icantly more intricate.



0"4" 3" 5" 0"
1"1" 1" 1"

0"4" 4!" 1"" 1!"
1"1" 1" 1"

0"5!" 2"" 2!" 1"
1"1" 1" 1"

0"3"" 3!" 2" 1"
1"1" 1" 1"

0"4!" 3" 2" 1"
1"1" 1" 1"

t=0"

t=1"

t=2"

t=3"

t=4"

Δ+=3"
Δ+=1"

Δ+=1"
Δ+=1"

Δ+=1"
Δ+=1"

Δ+=0"
Δ+=1"

Δ+=0"
Δ+=0"

Fig. 2. Individual distance estimates may go up and down, but the greatest
overestimate (∆+) and least underestimate (∆−) are monotonic. This ex-
ample shows a line network of five devices (circles, source red, others blue)
with unit edges (grey links); distance estimates evolve from initial t = 0 to
converge to their correct values at t = 4.

as both bad and good information is propagated from lower-
valued devices to higher-valued devices. Moreover, the incor-
rectness of the estimates is not increased by this propagation.

These observations suggest a different metric that does, in
fact, prove to be monotonic: the worst error in the network. In
particular, let us track the greatest overestimate ∆+ and the
least underestimate ∆−, which are defined:

∆+ = max(0,max
i

∆i[t]) (6)

∆− = −min(0,min
i

∆i[t]) (7)

Both of these are non-negative monotonically decreasing func-
tions. Moreover, if either is non-zero, it must undergo a strict
decrease starting no more than diameter rounds after the
initial time (i.e., long enough for an initial error near the source
to propagate out to the devices farthest from the source).

Beyond that initial time, the two metrics behave quite
differently, due to the asymmetry of the triangle inequal-
ity constraint. In particular, the greatest overestimate ∆+ is
guaranteed to be zero after at most diameter rounds: the
triangle inequality constraint can bring the value of d̂i[t] down
arbitrarily quickly once information has propagated. The least
underestimate ∆−, however, is subject to the rising value
problem identified in [20], in which transmission lag creates
loops of mutual constraint that limit the rate at which device
estimates can rise to as small as 1

2 mini,j di,j per round.
Concerns of speed aside, however, we have at least the

important property that convergence is monotonic, and thus
the degree of disruption injected by a perturbation cannot grow
over time, but can only shrink. This, in turn, will enable us
to treat uses of this algorithm as simplified modules in the
analysis of systems that use them.

A. Empirical Confirmation of Monotonicity

We confirm these properties empirically in simulation. Fig-
ure 3 shows results for simulation of 200 devices distributed
randomly in a 100x100 meter environment except for a single
source device placed at the center, communicating via a unit
disc model with radius 15 meters and executing partially

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Time

∆
+

(a) Greatest overestimate (∆+)

20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

Time

∆
−

(b) Least underestimate (∆−)

Fig. 3. Trace of greatest overestimate ∆+ (a) and least underestimate ∆−

(b) for 10 runs of 200 devices randomly distributed in a 100x100 meter
environment, communicating within 15 meters.

synchronously (same frequency, random phase), and with
initial values uniformly randomly distributed in the range of
[0, 100]. Figure 3(a) shows ∆+ traces and Figure 3(b) ∆−

traces for ten simulations executed in Proto [21], each run
asynchronously for 1000 simulated seconds with 1 second
rounds.

Note that as predicted, both ∆+ and ∆− reduce monoton-
ically to zero,5 with ∆+ decreasing much more rapidly and
predictably than ∆−, due to the rising value problem (again,
see [20]). The rising value problem is also reflected in the
two-round “stair-step” pattern and inflections visible in many
of the ∆− traces: the “stair-steps” are caused by the passing
back and forth of constraint between close pairs of devices,
while inflections occur when there are two pairs of non-
neighboring devices: one with initially worse estimates (thus
initially dominating ∆−) but the other significantly closer
together (and thus improving their estimates more slowly).

B. Response to Persistent Perturbation
From the monotonicity property and our envelope analysis,

we may then predict the response to a persistent perturbation.
The value of ∆+ drops arbitrarily fast, once information has
had time to propagate, so in the limit for a large network we
would expect ∆+ to be bounded by the time for information
to propagate times the amount of ∆+ perturbation that can be
injected each round (i.e., how incorrect a far-away device can
become before information reaches it):

∆+[t]→ d∆+[t]

dt
· diameter (8)

For example, if the perturbation is injected by a source mov-
ing with velocity v (while other devices remain stationary),

5Actually, very slightly above zero due to numerical imprecision.



0 100 200 300 400 500 600 700 800 900 1000

100

101

102

Time

∆
+

(a) Greatest overestimate (∆+)

0 100 200 300 400 500 600 700 800 900 1000

100

101

102

Time

∆
−

(b) Least underestimate (∆−)

Fig. 4. With persistent perturbation by a randomly moving source, ∆+ (a)
scales linearly with diameter and velocity until error begins to be limited by
network scale. ∆− (b) behaves similarly as long as velocity is less than rise
rate (which is constrained by the smallest link in the network); above that level,
∆− may grow unbounded until it hits the limits of network scale. Data shown
is model (dashed) and observed mean (solid) for 10-second sequences for 10
runs of 200 devices randomly distributed in a 100x100 meter environment,
communicating within 15 meters, with a single source moving at velocity
(indicated by hue) of 0.1 (orange) to 10 (red) meters per second.

then ∆+ may be expected to converge toward a bound of
v·diameter . This relationship breaks down when v is very low
or very high: at very low velocity, local topological changes
introduce a network-dependent “floor” of possible effect sizes,
since ∆+ increases instantaneously when a connection breaks,
based on the size of the new shortest path. On the high end, as
long as the network remains connected, ∆+ cannot be driven
higher than the maximum distance between devices, so it will
saturate as v rises.

We confirm these predictions empirically in simulations
with the same conditions (200 random devices in a 100x100
meter environment, 15 meter communication, random values
in [0, 100]), except the source moves to randomly chosen
locations at velocity v, choosing a new random location each
time it reaches its current target. Figure 4(a) shows mean ∆+

across 10 runs and 10-second intervals, for a source moving
at seven logarithmically distributed velocities (v = 0.1, 0.2,
0.5, 1.0, 2.0, 5.0, and 10.0 meters/second). At low velocities,
the model well predicts the approximate upper bound; at the
highest velocities ∆+ saturates as the moving source does not
go many rounds between direction changes.

The value of ∆−, on the other hand, does not drop so
quickly, but is instead limited by the rising value problem
and the shortest edge in the network. If new perturbations are

D" D">" >"

r1" r2"

output%source%
s0% s2% sout%d1% d2%

(a) Open Loop

D" D">" >"

r1" r2"

output%U"source%
s1% s2% sout%d1% d2%s0%

(b) Simple Feedback

D"

D"

D">" >"

r1" r2"

output%U" U"

<"

source%

r1"

s1% s2% sout%d1% d2%

s0%

d0% s0'%

(c) Bounded Feedback

Fig. 5. Three distance cascade architectures used to test analytical results:
open loop (a), simple feedback (b), and bounded feedback (c).

on average injected faster than ∆− can decrease, then error
may grow without bound, saturating at a value bounded by
the greatest distance in the network (though behavior may be
better in practice, depending on the particulars of geometry
and perturbation). If ∆− decreases faster on average than
perturbations are added, however, then the situation is the same
as for ∆+, with a perturbation lasting only as long as it takes
for corrective information to arrive—in other words, exactly
the same as Equation 8, only substituting ∆− for ∆+.

Figure 4(b) compares this model with the empirical values
of ∆+ recorded in the same experiment reported in Fig-
ure 4(a). For these experiments, only the lowest two velocities
(v = 0.1 and 0.2 meters/second) are predicted to be safe, and
for these the model well predicts the observed error after the
initial transient. For all higher velocities, error is predicted to
grow without bound until it saturates, and indeed for v ≥ 2.0
meters/second mean error saturates at a level consistent with
estimates being essentially unable to correct. In between, at
v = 0.5 and 1.0 meters/second, error has grown at much more
than the linear rate of Equation 8, but the worst case limit is
not yet being achieved.

As can be seen, identification of a monotonic property in
the convergence of a distributed distance estimate algorithm
allows its dynamical response to perturbation to be more
easily abstracted. This abstraction then allows prediction of the
algorithm’s dynamics in more complex circumstances, such as
a persistent perturbation due to a moving source. In the next
section, we will see how this abstraction also allows prediction
of the properties of a more complex composite system that
uses distributed distance estimation as a component.

IV. PREDICTING COMPOSITE SYSTEMS

In theory, once an algorithm has been mapped to an ap-
propriate abstraction of its dynamical behavior (as we have
done in the previous section), a wide range of mathematical
tools should be applicable in order to predict its behavior
under composition with other algorithms into more complex



Fig. 6. Distance cascade example: thresholding distance r1 from a hexagonal
set of sources (black dots) selects the second source region (blue). Thresh-
olding distance r2 from this region selects an area in the interior of the
hexagon (red cross-hatching) with boundaries determined by distance from
critical points on the second source (red circles).

systems. To illustrate and evalaute this, let us consider a
simple system of two distance estimates, arranged to compute
a geometric relationship similar to the interior of a point-
set. The basic computation is arranged following the system
diagram in Figure 5(a), and an example of its application is
shown in Figure 6. The computation begins with a set s0 of
sources—Figure 6 gives an example of six sources arranged
in a hexagon. Distance is estimated to the source set, then
compared with a threshold r1 to select the set of devices farther
than r1 from any source. This is then used as the source set
for a second distance estimate, which is compared against a
second threshold r2 to compute an output set of devices. The
result is a region mutually enclosed by the original sources,
somewhat similar to a convex hull.

In addition to this basic open-loop system, we also consider
two versions that incorporate feedback. The simple feedback
system in Figure 5(b) simply adds the output set back into
the first distance computation by means of a union operation,
while the second “bounded feedback” system in Figure 5(c)
bounds feedback growth by also incorporating intersection
with the set of devices within r1 of the original sources.
Notably, all three systems should maintain the exact same
correct behavior if a static network is initialized with the
solution and r1 ≤ r2. Their dynamical behavior, however, is
expected to be quite different, and may lead to instability and
incorrect behavior.

A. Small Gain Prediction

Having previously established in Section III that each dis-
tance estimation block is individually stable, we can predict
the stability of a composition of such blocks based on the
small gain theorem [3], [22] or sometimes the passivity
theorem [23]. The small-gain theorem says, in essence, that
a feedback composition of stable systems is stable if the
gain around the loop is less than one. The passivity theorem

likewise guarantees stability if there is no net generation of
energy from one point to the other in the closed loop.

For the open loop system, the small-gain theorem holds
trivially for all r1 and r2, since there is no feedback. As
long as perturbation rate is small enough for all ∆− to
remain stable, the system should maintain small errors per
the self-composition of Equation 8. The simple feedback
system, on the other hand, is only guaranteed to be stable
for r1 < r2. Under this condition, devices selected in the
output cannot maintain themselves through feedback, with the
selected region shrinking by r2 − r1 in each cycle. Thus the
system should ultimately converge to a pattern dictated by the
original sources. With r1 = r2, however, a device perturbation
may persist arbitrarily, and with r1 > r2 the selected region is
expected to expand by r1−r2 each cycle. Thus, this system is
predicted to be stable only for r1 < r2. The bounded feedback
system is expected to behave similarly, but is limited by the
intersection operation to converge toward an expanded region
no more than r1 + (r1 − r2) from the original set. These are
conservative estimates, and particular topologies may induce
better behavior. For example, the output will stop expanding
in an unstable regime if it encounters a gap larger than r1−r2.

B. Evaluation in Simulation

To evaluate our analytical predictions, we run a sequence
of experiments based around perturbations of a set of sources,
applying the analysis presented in the previous section to
predict the behavior of the system in each case.

For all experiments, we consider a network of 300 devices,
8 meter unit disc communication and partially synchronous
execution, all distributed randomly in a 100x100 meter en-
vironment except for six source devices that are arranged
in a hexagon circumscribed by a circle of radius 10 meters
and placed at the center of the environment. Three threshold
conditions were tested: balanced (r1 = r2 = 10), expanding
(r1 = 12, r2 = 10), and contracting (r1 = 10, r2 = 12).
All distance estimates are initialized to infinity. Perturbations
were injected by having all non-source devices moving to
successive random points in space at v = 0.1 meters/second
(sources remain stationary). Simulations were implemented
and executed using Proto [21], running 10 trials for each
condition for 1000 simulated seconds per trial with one second
rounds, recording the output every 10 simulated seconds.

In theory, such a set of sources should select an inward-
curved star-like region like that illustrated in Figure 6; in
practice, even ideal execution will produce at least some
error due to discretization (in this case, only a small amount,
per [24]). Performance was then evaluated by computing the
fraction of devices for which the output disagreed with the
theoretically correct output given the geometry of the sources
(i.e., true when it should be false or vice versa).

Figure 7 summarizes the results of these simulations, which
conform with our predictions in all cases: the open loop system
has a very low level of error for all thresholds, simple feedback
rapidly expands to many false positives for r1 > r2 and more
slowly for r1 = r2, but performs as well as open loop for



0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

Time

Fr
ac

tio
n 

Er
ro

r

(a) Open Loop

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

Time

Fr
ac

tio
n 

Er
ro

r

(b) Simple Feedback

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

Time

Fr
ac

tio
n 

Er
ro

r

(c) Bounded Feedback

Fig. 7. Comparison of stability across system architecture and relative thresholds. Line color indicates thresholds: balanced r1 = 10, r2 = 10 (black),
expanding r1 = 12, r2 = 10 (red), or contracting r1 = 10, r2 = 12 (blue). Dotted lines show ±2 standard deviations. As predicted, in this simple system,
open loop always performs well, while feedback only consistently performs well for the bounded architecture with contracting thresholds.

r1 < r2. Bounded is also unstable for r1 ≥ r2, but more
limited in the impact from this instability, and is stable and
performs as well as open loop for r1 < r2.

V. CONTRIBUTIONS

We have seen that the dynamical behavior of a common
distributed distance estimation algorithm can be analyzed and
quantitatively predicted using a nonlinear systems approach,
and further that this analysis can be combined using well-
established mathematical tools in order to predict the be-
havior of feedback systems in which such algorithms are
composed. These results are promising and encourage further
development of this approach of bringing together nonlinear
systems techniques and the “building block” approach to the
engineering of complex distributed systems. Next steps for
this research include more thorough analysis and evaluation of
the systems discussed herein, with the goal of expanding the
range of properties that can be predicted and the generality of
the results, as well as expansion of these methods to broadly
applicable collections of building block algorithms such as
those of the set proposed in [1].

ACKNOWLEDGMENT

This work has been supported by the United States Air
Force and the Defense Advanced Research Projects Agency
under Contract No. FA8750-10-C-0242. The U.S. Government
is authorized to reproduce and distribute reprints for Gov-
ernmental purposes notwithstanding any copyright notation
thereon. The views, opinions, and/or findings contained in this
article are those of the author(s) and should not be interpreted
as representing the official views or policies of the Department
of Defense or the U.S. Government. Approved for public
release; distribution is unlimited.

REFERENCES

[1] Jacob Beal and Mirko Viroli, “Building blocks for aggregate program-
ming of self-organising applications,” in Workshop on Foundations of
Complex Adaptive Systems (FOCAS), 2014.

[2] Mirko Viroli and Ferruccio Damiani, “A calculus of self-stabilising
computational fields,” in Coordination 2014, 2014, pp. 163–178.

[3] Hassan K. Khalil, Nonlinear Systems, Prentice Hall, 2002.
[4] Mirko Viroli, Ferruccio Damiani, and Jacob Beal, “A calculus of

computational fields,” in Advances in Service-Oriented and Cloud
Computing, Carlos Canal and Massimo Villari, Eds., vol. 393 of Com-
munications in Computer and Information Sci., pp. 114–128. Springer
Berlin Heidelberg, 2013.

[5] Jacob Beal, Mirko Viroli, and Ferruccio Damiani, “Towards a unified
model of spatial computing,” in 7th Spatial Computing Workshop (SCW
2014), AAMAS 2014, Paris, France, May 2014.

[6] Ferruccio Damiani, Mirko Viroli, Danilo Pianini, and Jacob Beal, “Code
mobility meets self-organisation: a higher-order calculus of compu-
tational fields,” in 35th IFIP International Conference on Formal
Techniques for Distributed Objects, Components and Systems, 2015.

[7] Jacob Beal and Mirko Viroli, “Space-time programming,” Philosophical
Trans. of the Royal Society A, vol. 373, no. 2046, pp. 20140220, 2015.

[8] Charles L Hedrick, “Routing information protocol,” Tech. Rep. RFC
1058, IETF, 1988.

[9] Charles Perkins, Elizabeth Belding-Royer, and Samir Das, “Ad hoc on-
demand distance vector (AODV) routing,” Tech. Rep. RFC 3561, IETF,
2003.

[10] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin,
“Directed diffusion: a scalable and robust communication paradigm for
sensor networks,” in 6th International Conference on Mobile Computing
and Networking. ACM, 2000, pp. 56–67.

[11] Radhika Nagpal, Programmable Self-Assembly: Constructing Global
Shape using Biologically-inspired Local Interactions and Origami Math-
ematics, Ph.D. thesis, MIT, Cambridge, MA, USA, 2001.

[12] Daniel Coore, Botanical Computing: A Developmental Approach to
Generating Inter connect Topologies on an Amorphous Computer, Ph.D.
thesis, MIT, Cambridge, MA, USA, 1999.

[13] Mirko Viroli, Matteo Casadei, Sara Montagna, and Franco Zambonelli,
“Spatial coordination of pervasive services through chemical-inspired
tuple spaces,” ACM Transactions on Autonomous and Adaptive Systems,
vol. 6, no. 2, pp. 14:1 – 14:24, June 2011.

[14] Radhika Nagpal, “A catalog of biologically-inspired primitives for
engineering self-organization,” in Engineering Self-Organising Systems,
pp. 53–62. Springer, 2004.

[15] JoseLuis Fernandez-Marquez, Giovanna Marzo Serugendo, Sara Mon-
tagna, Mirko Viroli, and JosepLluis Arcos, “Description and compo-
sition of bio-inspired design patterns: a complete overview,” Natural
Computing, vol. 12, no. 1, pp. 43–67, 2013.

[16] RE Bellman, “On a routing problem,” Quarterly of Applied Mathemat-
ics, vol. 16, pp. 87–90, 1958.

[17] Lester R. Ford Jr., “Network flow theory,” Tech. Rep. Paper P-923,
RAND Corporation, 1956.

[18] Shlomi Dolev, Self-Stabilization, MIT Press, 2000.
[19] M Schneider, “Self-stabilization,” ACM Computing Surveys, vol. 25,

pp. 45–67, 1993.
[20] Jacob Beal, Jonathan Bachrach, Dan Vickery, and Mark Tobenkin, “Fast

self-healing gradients,” in ACM Symp. on Applied Computing, 2008.
[21] Jacob Beal and Jonathan Bachrach, “Infrastructure for engineered

emergence in sensor/actuator networks,” IEEE Intelligent Systems, vol.
21, pp. 10–19, March/April 2006.

[22] Zhong-Ping Jiang, Iven M.Y. Mareels, and Yuan Wang, “A lyapunov
formulation of the nonlinear small-gain theorem for interconnected ISS
systems,” Automatica, vol. 32, pp. 1211 – 1215, 1996.

[23] Minyue Fu and Soura Dasgupta, “Parametric lyapunov functions for
uncertain systems: The multiplier approach,” Advances in linear matrix
inequality methods in control, pp. 95–108, 2000.

[24] Jonathan Bachrach, Jacob Beal, Joshua Horowitz, and Dany Qumsiyeh,
“Empirical characterization of discretization error in gradient-based
algorithms,” in IEEE SASO, 2008, pp. 203–212.


