
JID:SCICO AID:1962 /FLA [m3G; v1.169; Prn:1/12/2015; 16:57] P.1 (1-28)

Science of Computer Programming ••• (••••) •••–•••
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

A type-sound calculus of computational fields ✩

Ferruccio Damiani a,∗, Mirko Viroli b, Jacob Beal c

a University of Torino, Italy
b University of Bologna, Italy
c Raytheon BBN Technologies, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 February 2014
Received in revised form 31 October 2015
Accepted 9 November 2015
Available online xxxx

Keywords:
Computational field
Core calculus
Operational semantics
Spatial computing
Type soundness

A number of recent works have investigated the notion of “computational fields” as a
means of coordinating systems in distributed, dense and dynamic environments such as
pervasive computing, sensor networks, and robot swarms. We introduce a minimal core
calculus meant to capture the key ingredients of languages that make use of computational
fields: functional composition of fields, functions over fields, evolution of fields over time,
construction of fields of values from neighbours, and restriction of a field computation to
a sub-region of the network. We formalise a notion of type soundness for the calculus
that encompasses the concept of domain alignment, and present a sound static type
inference system. This calculus and its type inference system can act as a core for
actual implementation of coordination languages and models, as well as to pave the
way towards formal analysis of properties concerning expressiveness, self-stabilisation,
topology independence, and relationships with the continuous space–time semantics of
spatial computations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In a world ever more densely saturated with computing devices, it is increasingly important to have effective tools for
developing coordination strategies that can govern collections of these devices [8]. The goals of such systems are typically
best expressed in terms of operations and behaviours over aggregates of devices, e.g., “send a tornado warning to all phones
in the forecast area,” or “activate all displays guiding me along a route towards the nearest group of my friends.” The
available models and programming languages for constructing distributed systems, however, have generally operated at the
level of individual devices and their interactions, thereby obfuscating the design process. Effective models and programming
languages are needed to allow the construction of distributed systems at the natural level of aggregates of devices. These

✩ This work has been partially supported by project HyVar (www.hyvar-project.eu, this project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No. 644298—Damiani), by EU FP7 project SAPERE (www.sapere-project.eu, under contract
No. 256873—Viroli), by ICT COST Action IC1402 ARVI (www.cost-arvi.eu—Damiani), by ICT COST Action IC1201 BETTY (www.behavioural-types.eu—Damiani),
by the Italian MIUR PRIN 2010/2011 2010LHT4KM project CINA (sysma.imtlucca.it/cina—Damiani & Viroli), by Ateneo/CSP project RunVar (Damiani), and
by the United States Air Force and the Defense Advanced Research Projects Agency under Contract No. FA8750-10-C-0242 (Beal). The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views, opinions, and/or
findings contained in this article are those of the author(s)/presenter(s) and should not be interpreted as representing the official views or policies of the
Department of Defense or the U.S. Government. Approved for public release; distribution is unlimited.

* Corresponding author.
E-mail addresses: ferruccio.damiani@unito.it (F. Damiani), mirko.viroli@unibo.it (M. Viroli), jakebeal@bbn.com (J. Beal).
http://dx.doi.org/10.1016/j.scico.2015.11.005
0167-6423/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2015.11.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
http://www.hyvar-project.eu
http://www.sapere-project.eu
http://www.cost-arvi.eu
http://www.behavioural-types.eu
http://www.sysma.imtlucca.it/cina
mailto:ferruccio.damiani@unito.it
mailto:mirko.viroli@unibo.it
mailto:jakebeal@bbn.com
http://dx.doi.org/10.1016/j.scico.2015.11.005

JID:SCICO AID:1962 /FLA [m3G; v1.169; Prn:1/12/2015; 16:57] P.2 (1-28)

2 F. Damiani et al. / Science of Computer Programming ••• (••••) •••–•••
must also be associated with a global-to-local mapping that links the aggregate-level specification to the operations and
interactions of individual devices that are necessary to implement it.

Recently, approaches based on models of computation over continuous space and time have been introduced, which
promise to deliver aggregate programming capabilities for the broad class of spatial computers [10]: networks of devices
embedded in space, such that the difficulty of moving information between devices is strongly correlated with the physical
distance between devices. Examples of spatial computers include sensor networks, robot swarms, mobile ad-hoc networks,
reconfigurable computing, emerging pervasive computing scenarios, and colonies of engineered biological cells.

A large number of formal models, programming languages, and infrastructures have been created with the aim of sup-
porting computation over space–time, surveyed in [7]. Several of these are directly related to the field of coordination
models and languages, such as the pioneer model of TOTA [29], the (bio)chemical tuple-space model [47], the στ -Linda
model [50], and the pervasive ecosystems model in [52]. Their recurrent core idea is that through a process of diffu-
sion, recombination, and composition, information injected in one device (or a few devices) can produce global, dynamically
evolving computational fields—functions mapping each device to a structured value. Such fields are aggregate-level distributed
data structures which, due to the ongoing feedback loops that produce and maintain them, are generally robust to changes
in the underlying topology (e.g., due to faults, mobility, or openness) and to unexpected interactions with the external envi-
ronment. They are thus useful for implementing and composing self-organising coordination patterns to adaptively regulate
the behaviour of complex distributed systems [29,47,48].

A sound engineering methodology for space–time coordination systems will require more than just specification, but also
the ability to predict to a good extent the behaviour of computational fields from the underlying local interaction rules—
a problem currently solved only for a few particular cases (e.g., [6,3]). This paper contributes to that goal by:

1. Introducing the computation field calculus (CFC), a minimal core calculus meant to precisely capture a set of key in-
gredients of programming languages supporting the creation of computational fields: composition of fields, functions
over fields, evolution of fields over time, construction of fields of values from neighbours, and restriction of a field
computation to a sub-region of the network.

2. Formalising a notion of type soundness for CFC that encompasses the concept of domain alignment (i.e., proper sharing
of information between devices), and presenting a sound static type inference system supporting polymorphism à la
ML [17]. The main challenges in the design of the type system are to ensure domain alignment (which is complicated
by the fact that the same expression may be evaluated many times, even recursively) and to support polymorphism à
la ML without breaking domain alignment.

CFC is largely inspired by Proto [5,33], the archetypal spatial computing language (and is in fact a much simpler frag-
ment of it). As with Proto, it is based on the idea of expressing aggregate system behaviour by a functional composition of
operators that manipulate (evolve, combine, restrict) continuous fields. Critically, these specifications can be also interpreted
as local rules on individual devices, which are iteratively executed in asynchronous “computation rounds”, comprising re-
ception of all messages from neighbours, computing the local value of fields, and spreading messages to neighbours. The
operational semantics of the proposed calculus precisely models single device computation, which is ultimately responsible
for all execution in the network. The distinguished interaction model of this approach, which is formalised into a calculus
in this paper, is based on representing state and message content in an unified way as an annotated evaluation tree. Field
construction, propagation, and restriction are then supported by local evaluation “against” the evaluation trees received from
neighbours. Not only is field calculus much simpler than Proto (and thus a tractable target for analysis), but the proposed
formalisation also goes beyond Proto (which is a dynamically typed language) by introducing a static type inference system
and a type soundness property that encompasses the notion of domain alignment, thereby enabling static analysis of the
soundness and resilience properties of field computations.

The work thus developed formalises key constructs of existing coordination languages or models targeting spatial com-
puting. As such, we believe that the calculus and its type inference system pave the way towards formal analysis of key
properties applicable to various coordination systems, concerning expressiveness, self-stabilisation, topology independence,
and relationships with the continuous space–time semantics of spatial computations.

The remainder of the paper is organised as follows: Section 2 describes the linguistic constructs of CFC and their ap-
plication to system coordination. Section 3 illustrates how single devices interpret the CFC constructs locally. Section 4
illustrates some examples of programs to show the expressiveness of CFC. Section 5 formalises the operational semantics
of CFC. Section 6 illustrates some examples of ill-formed programs to motivate the design of the type system. Section 7
presents the type inference system and its key properties (domain alignment and type soundness). Section 8 briefly surveys
the main elements of a toolchain that is under development and grounds on CFC. Finally, Section 9 discusses related work
and Section 10 concludes by outlining possible directions for future work. The appendix contains the proofs of the main
results.

JID:SCICO AID:1962 /FLA [m3G; v1.169; Prn:1/12/2015; 16:57] P.3 (1-28)

F. Damiani et al. / Science of Computer Programming ••• (••••) •••–••• 3
e ::= x
∣
∣ l

∣
∣ (o e)

∣
∣ (d e)

∣
∣ (rep x w e)

∣
∣ (nbr e)

∣
∣ (if e e e) expression

l ::= n
∣
∣ b

∣
∣ 〈l,l〉 local value

w ::= x
∣
∣ l variable or local value

D ::= (def d(x) e) user-defined function declaration
P ::= D e program

Fig. 1. CFC surface syntax.

This manuscript is an extended version of the prior [49] with more thorough discussions throughout, a detailed descrip-
tion of examples, a sound type inference system, the formal presentation and the proofs of the main results, and discussion
of their application in tool construction.1

2. Computational field mechanisms

Generalising the common notions of scalar and vector field in physics, a computational field is a map from every com-
putational device in a space to an arbitrary computational object. Examples of fields used in distributed situated systems
include temperature in a building as perceived by a sensor network (a scalar field), the best routes to get to a location
(a vector field), the area near an object of interest (a Boolean indicator field), or the people allowed access to computational
resources in particular areas (a set-valued field). With careful choice of operators for manipulating fields, the aggregate
and local views of a program can be kept coherent and each element of the aggregate-level program can be implemented
by simple, automatically generated local interaction rules [4]. Following this idea, in this section we present a language
to express such programs, identified based on the strengths and commonalities across many different approaches to spa-
tial computing reviewed in [7] (though we do not rule out the possibility that others may be identified), and drawing
particularly on the Proto [5,33] implementations of these mechanisms.

We describe the selected mechanisms directly using the surface syntax of CFC, reported in Fig. 1.2 We take the global,
aggregate-level viewpoint, considering the main syntactic element e as being a field expression, or simply a field. Concep-
tually, evaluation of a field expression has hence to be seen as executed by the whole “computing machine” formed by the
entire set of networked devices. Practically, each device will work in asynchronous rounds, each time properly interpreting
the whole field expression as will be detailed in the operational semantics given in following sections. As a standard syntac-
tic notation in calculi for object-oriented and functional languages [26], we use the overbar notation to denote metavariables
over lists, e.g., we let e range over lists of expressions, written e1 e2 . . . en .

A basic expression can be a literal value l (also called local value), such as a floating point number, a Boolean, or a
pair—note most of the ideas of computational fields are agnostic to the structure of such values. According to the global
viewpoint, a literal field expression l actually represents the constant function mapping l to all nodes. A basic expression
can also be a variable x, which can be the formal parameter of a function or a store of information to support stateful
computations (see rep construct below).

Such basic expressions (values and variables) can be composed by the following five constructs. The first one is functional
composition, a natural means of manipulating fields as they are functions themselves: (o e1 e2 . . . en) is the field obtained
by composing together all the fields e1, e2, . . . , en by a built-in operator o (simply called operator). Operators include
standard mathematical ones (e.g. addition, sine), as well as sensors, actuators, and others described below. Such operators
are applied in a pointwise manner to all devices. For instance, if et is a field of Fahrenheit temperatures, then the corre-
sponding field of Celsius temperatures is naturally written (* (/ 5 9) (- et 32)). Execution of built-in operators is
context-dependent, i.e., it can be affected by the current state of the external world. For example, the 0-ary operator uid
gives a field that maps each device to its unique device identifier, dt maps each device to the time elapsed since its previ-
ous computation round, and nbr-range produces a “field of fields” that maps each device to a table associating estimated
distances to each neighbour (such a table being a field itself).

The second construct is function (definition and) call, which we use as abstraction tool and to support recursion:
(d e1 e2 . . . en) is the field obtained as result of applying user-defined function d to the fields e1, e2, . . . en . Such functions
are declared with syntax (def d(x) e). For instance, given definition (def convert (x) (* (/ 5 9) (- x 32))),
expression (convert et) denotes the same field of Celsius temperatures as above. Note that function definitions, along
with the top-level expression, form a program P.

The third construct is time evolution, used to keep track of a changing state over time: (rep x w e) is initially the field
w (a local value or a variable) that is stored in the new variable x, and at each step in time is updated to a new field
as computed by e, based on the prior value of x. For instance, (rep x 0 (+ x 1)) is the (evolving) field counting in

1 In particular, Sections 4, 7, 8 and Appendix are new, and the rest of the text is expanded and updated as needed.
2 The syntax in Fig. 1 is indeed a subset of the syntax of the Proto language. Therefore, each CFC program is literally an executable Proto program.

Furthermore, no expressiveness is lost: field calculus only omits syntactic sugar and relegates a large collection of assumed API, measurement, and summary
functions to the semantically simple class of “built-in” operators. Any minor differences are due choices in which built-in operators to implement and how
they are implemented in the Proto instantiation at hand.

JID:SCICO AID:1962 /FLA [m3G; v1.169; Prn:1/12/2015; 16:57] P.4 (1-28)

4 F. Damiani et al. / Science of Computer Programming ••• (••••) •••–•••
each device how many rounds that device has computed. Similarly, (rep x 0 (+ x (dt))) is the field of time passing,
updated in each node as each new round is computed there.

The fourth construct is neighbourhood field construction, the mechanism by which information moves between devices:
(nbr e) observes the value of e across neighbours, producing a “field of fields” like for the result of nbr-range described
above. In particular, each device is mapped to a table associating each of its neighbours to that neighbour’s value of e. As an
example, consider three devices δ1, δ2, δ3, on which field e holds values 4, 5 and 6 respectively, and that the neighbourhood
relation is the least symmetric and reflexive relation in which δ1, δ2 and δ2, δ3 are neighbours. In this case (nbr e) is a
field mapping δ1 to (δ1 �→ 4, δ2 �→ 5), δ2 to (δ1 �→ 4, δ2 �→ 5, δ3 �→ 6) and δ3 to (δ2 �→ 5, δ3 �→ 6). So, letting min-hood
be the built-in operator that takes a neighbourhood field and returns its minimum value, then (min-hood (nbr e))
is the field mapping each device to the minimum value perceived in its neighbourhood, which would in this case be
(δ1 �→ 4, δ2 �→ 4, δ3 �→ 5).

The last construct is domain restriction, a sort of distributed branch: (if e0 e1 e2) is the field obtained by superimposing
field e1 computed everywhere e0 is true and e2 everywhere e0 is false. As an example (if efah et (convert et))
is the field of temperatures provided in Fahrenheit where the field efah is true (i.e., in the subdomain in which it maps
to true) and in Celsius everywhere else. Restriction is the most subtle of the five mechanisms, because it has the effect of
preventing the unexpected spreading of computation to devices outside of the domain to which a computation has been
restricted, even within arbitrarily nested function calls, as will be clarified in the following examples.

The CFC calculus is equipped with a type inference system which builds on the Hindley–Milner type system [17] for
ML-like functional languages. The rules of the type system (presented in Section 7) specify a type inference algorithm
(which is variant of the Hindley–Milner type inference algorithm [17]) that, given a function either fails (if the function
cannon be typed) or returns its principal type, i.e., a type such that all the types that can be assigned to the function by the
type inference rules can be obtained from the principal type by substituting:

• local type variables (ranged over by β) with local types (like the type of Booleans bool, the type of numbers num, and
the types for pair values 〈bool, num〉, 〈〈num, num〉, bool〉,...); and

• type variables (ranged over by α) with types (i.e., either local types or field types of the form field(L) where L is a local
type).

We now present some examples for the sake of illustrating how these five key mechanisms can be combined to imple-
ment useful spatial patterns. In the code of the examples presented through the paper, we use syntax colouring to increase
readability3: grey for comments, red for field calculus keywords, blue for user-defined functions, and green for built-in oper-
ators. The principal type of each function presented of the examples (as it would be inferred by the type inference algorithm
specified in Section 7) is given in the comment inserted after the list of the formal parameters. We also use the following
naming conventions for built-in operators: functions *-hood yield a local value l obtained by aggregating over the field
value φ in input (e.g., min-hood of principal type (field(β)) → β returns the minimum among all values in each neigh-
bourhood); and functions pair (of principal type (β1, β2) → 〈β1, β2〉), fst (of principal type (〈β1, β2〉) → β1), and snd
(of principal type (〈β1, β2〉) → β2) respectively create a pair of local values and access a pair’s first and second component.
Additionally, given a built-in operator o that takes n ≥ 1 locals an returns a local, the built-in operators o[*,...,*] are
variants of o where one or more inputs are fields (as indicated in the bracket, l for local or f for field), and the return value
is a field, obtained by applying operator o in a point-wise manner. For instance, as = (of principal type (β, β) → bool) com-
pares two locals returning a Boolean, =[f,f] (of principal type (field(β), field(β)) → field(bool)) is the operator
taking two field inputs and returns a Boolean field where each element is the comparison of the corresponding elements in
the inputs, and similarly =[f,l] (of principal type (field(β), β) → field(bool)) takes a field and a local and returns
a Boolean field where each element is the comparison of the corresponding element of the field in input with the local.

(def gossip-min (source) ;; has type: (β) → β

(rep d source (min-hood (nbr d))))

(def distance-to (source) ;; has type: (bool) → num
(rep d infinity (mux source 0 (min-hood (+[f,f] (nbr d) (nbr-range))))))

(def distance-obs-to (source obstacle) ;; has type: (bool,bool) → num
(if (not obstacle) (distance-to source) infinity))

We first exemplify how constructs rep and nbr can be nested to create a long-distance computation, to achieve network-
wide propagation processes. Function gossip-min takes a source field (the formal parameter source has type β) and

3 For interpretation of the references to colour please refer to the web version of this article.

JID:SCICO AID:1962 /FLA [m3G; v1.169; Prn:1/12/2015; 16:57] P.5 (1-28)

F. Damiani et al. / Science of Computer Programming ••• (••••) •••–••• 5
produces a new field mapping each device to the minimum value that source initially takes. The rep construct initially
sets the output variable d (of type β) at source (of type β), and then iteratively updates the value at each device with the
minimum d available at any neighbour. Hence, gossip-min describes a process of gossiping values until the minimum
one converges throughout the network.

Similarly, function distance-to takes as its input a source field holding Boolean values (the formal parameter
source has type bool), and returns a new numerical field that maps each device to the estimated distance to the nearest
source node (function distance-to has return type num), i.e., to the nearest device where source is true. This works
as follows:

• d (of type num) is initially set to infinity in each node;
• operator mux (of principal type (bool, β, β) → β) is a purely functional multiplexer (it computes all three inputs, then

uses the first input to choose whether to return the second or third);
• sources are set to distance 0;
• other devices use the triangle inequality: we retrieve the sum (by the operator +[f,f] of principal type (field(num),

field(num)) → field(num)) of neighbour’s distance value (nbr d) (of type field(num)) and the corresponding
neighbour’s estimated distance (by the operator nbr-range of principal type () → field(num)), and then take the
minimum (by the operator min-hood) of the resulting values.

The field returned by distance-to is often also referred to as a gradient [29,6,47], and is a key building block for many
computations in mobile ad-hoc networks, such as finding routes to points of interest. There are many similar variants with
different purposes, most of which automatically repair themselves when either the sources or network structure change.

The last definition exemplifies the use of construct if. It creates two different spatial domains: one where the obstacles
are located (field obstacle holds positive Boolean value) and one where they are not. In the former a constant field with
value infinity is computed; in the latter we compute the distance-to field. Since distance-to is being computed in a
restricted spatial domain, information cannot be spread via nbr through areas where there are obstacles (semantics detailing
the interaction of nbr and if are provided in Section 5). Hence, even though distance-to is implemented without any
awareness of obstacles, the computation is prevented from spreading through areas where it should not, and the distance
estimation as provided by distance-to is modulated in order to take into account the need of circumventing obstacle
areas.

Note that if works like a mux executed in a network where neighbouring relations between nodes that took different
branches are disabled—in the example above, it would be like separating the obstacle region from the rest of the network.

A number of coordination mechanisms can be constructed on the basis of the above examples, like the gradient-based
patterns discussed in [47,52,50], which find applications in many areas, including crowd steering in pervasive computing.
Examples of implementation of several of these coordination mechanisms are illustrated in Section 4.

3. From global to local viewpoint

The description of field constructs so far has focused on what we can call the global viewpoint, in which the computation
is considered as occurring on the overall computational fields distributed in the network. For the calculus to be actually
executed, however, each device has to perform a specific set of actions at particular times, including interaction with neigh-
bours and local computations. The result of these local actions then produces the overall evolution of computational fields.
We call this description of the language in term of individual devices the local viewpoint, and it is this view that we shall
use for the operational semantics. Let us now begin with an informal presentation of the peculiar aspects of that operational
semantics, to aid in understanding the full formalisation presented in Section 5.

Following the approach considered in Proto [33] and many other distributed programming languages, devices undergo
computation in rounds. In each round, a device sleeps for some limited time, wakes up, gathers information about messages
received while sleeping, performs its actual field evaluation, and finally emits a message to all neighbours with information
about the outcome of computation, before going back to sleep.

Taking the local viewpoint, we may model a field computation by modelling the evaluation of a single device at a
single round, assuming the scheduling of such rounds across the network to be fair and non-synchronous—either fully
asynchronous or partially synchronous, meaning that devices cannot execute infinitely quickly. Assuming that the main bot-
tleneck in the system is communication rather than computation (which is frequently the case in wireless communication
networks), this model can be readily achieved by any collection of devices with internal clocks that schedule execution of
rounds at regular intervals. So long as the relative drift between clocks is bounded, execution on such a system will be fair
and partially synchronous.

To support the combination of field constructs, we design our operational semantics as follows. First, our functional
style of composition, definition, and calls fits well with a small-step evaluation semantics, in which we start from the initial
expression to evaluate and reduce it to a normal form representing the outcome of computation, including the local value of
the resulting field and the information to be spread to neighbours. In order to keep track of the state of variables introduced
by rep constructs, and values at nbr constructs to be exchanged with neighbours, we take our computational state to be
a dynamically produced evaluation tree. During a round of computation, such a tree is incrementally decorated with partial

JID:SCICO AID:1962 /FLA [m3G; v1.169; Prn:1/12/2015; 16:57] P.6 (1-28)

6 F. Damiani et al. / Science of Computer Programming ••• (••••) •••–•••
results expressed as annotations of the form “·v” or superscripts “s”. These decorations track the local outcome of evaluation
and determine which subexpression will be next evaluated.

To illustrate our management of evaluation order and computational rounds, as well as the rep construct, let us begin
by considering expression (rep x 0 (+ x 1)) of type num (cf. Section 2). As this tree is evaluated according to the
operational semantics, it goes through a sequence of four top-level steps—a top level step corresponds to a rule applied to
the whole tree. A top-level step may involve nested steps—a nested step corresponds to a rule applied to a subtree. We
show these top-level steps informally by underlining in each top-level step the next portion of the tree to be rewritten, by
colouring the changes introduced by each rewrite in red,4 and by labelling each top-level step with the names of rules of
the operational semantics causing the top-level step and its nested steps. The rules may be ignored at a first reading, and
be considered later to understand the formal calculus in Section 5. The first computation round goes as follows:

(rep x 0 (+ x 1))
[REP,CONG,VAR]−−−−−−−−−→ (rep x 0 (+ x·0 1))

[REP,CONG,VAL]−−−−−−−−→
(rep x 0 (+ x·0 1·1)) [REP,CONG,OP]−−−−−−−−→
(rep x 0 (+ x·0 1·1)·1) [REP]−−−→ (rep1 x 0 (+ x·0 1·1)·1)·1

Annotations are computed depth-first in the expression tree until eventually reaching the outer expression: we first an-
notate variable x with its current (initial) value 0, then simply identically annotate value 1, then perform built-in operation
+ causing annotation of its sub-tree with 1, and finally execute the rep construct, which records the result value as a
superscript to rep and as an annotation of the whole expression.

Once the evaluation is complete, with the result value in the outer-most annotation, the whole evaluation tree will be
shipped as a message to neighbours, in order to support the semantics of nbr statements, which locally gather values stored
as annotations in neighbour’s evaluation trees. Pragmatically, of course, any implementation might massively compress the
tree, sending only enough information to support the semantics of nbr statements.

The subsequent round begins after an initialization that erases all non-superscript decorations. This second round leads
to evaluation tree (rep2 x 0 (+ x·1 1·1)·2)·2, the third one to (rep3 x 0 (+ x·2 1·1)·3)·3, and so on.

The main purpose of managing evaluation trees in this way is to support information exchange through the nbr con-
struct. Consider the expression (min-hood (nbr (t))) of type num (cf. Section 2), where t of principal type () → num
is a 0-ary built-in operator that returns the temperature perceived in each device. If a device δ perceives a temperature of
7 degrees Celsius, and executes its first computation round before its neighbours, then the result of computation should
clearly be 7. This is implemented by the following sequence of transitions:

(min-hood (nbr (t)))
[CONG,CONG,OP]−−−−−−−−−→ (min-hood (nbr (t)·7)) [CONG,NBR]−−−−−−→

(min-hood (nbr (t)·7)·(δ �→ 7))
[OP]−−→ (min-hood (nbr (t)·7)·(δ �→ 7))·7

We first enter the subexpression with the 0-ary operator t which yields 7. We then evaluate nbr to the field of neighbour
values, associating only δ to 7, written (δ �→ 7). Finally, we evaluate unary operator min-hood, which extracts the smallest
element of the input field, which in this case is 7.

Construct nbr retrieves values from neighbours using the tree environment of the device δ, which models its store
of recent messages received from neighbours. The tree environment is a mapping � = (δ1 �→ e1, . . . , δn �→ en) created at
each round, from neighbours (δi) to their last-received evaluation tree (ei), which we call the neighbour tree of δi . The
evaluation of (nbr e), where e is evaluated to local value l, takes values from the tree environment to produce a field
(δ �→ l, δ1 �→ l1, . . . , δn �→ ln), mapping δ to l and each neighbour δi to the corresponding local value li from δi .

In the example above we assumed that none of the neighbours of δ had already completed a round of computation, and
that therefore � was empty and accordingly (nbr (t)) gave simply (δ �→ 7). If we instead assume that the first round of
computation on the device δ takes place when the neighbours δ1 and δ2 have completed exactly one round of computation,
perceiving temperatures of 4 and 9 degrees respectively, then the tree environment of δ would be (δ1 �→ e1, δ2 �→ e2), where
e1 = (min-hood (nbr (t) · 4) · (δ �→ 4)) · 4 and e2 = (min-hood (nbr (t) · 9) · (δ �→ 9)) · 9. The computation goes
similarly, the only difference is that the evaluation of (nbr (t)·7) now produces the field φ = (δ �→ 7, δ1 �→ 4, δ2 �→ 9)

and the final outcome of the computation round on δ is the tree (min-hood (nbr (t)·7)·φ)·4.
More specifically, the extraction of values from neighbours is achieved by computing the local evaluation tree “against”

the set of its neighbour trees: when evaluation enters a subtree, in the tree environment � we correspondingly enter the
corresponding subtree (when it matches) on all of its neighbour trees. Although each node executes the same program, the
trees of two different nodes may not match. For instance, it may happen that on a node the left branch of an if expressions
is evaluated, while on another node the right branch is evaluated (an example illustrating this situation is given in the last
paragraph of this section). This process on neighbour trees is called alignment. So, in the example above, sub-tree (nbr
(t)·7) is recursively evaluated against the neighbour sub-trees

4 They will appear grey in a non-colour print of the paper.

JID:SCICO AID:1962 /FLA [m3G; v1.169; Prn:1/12/2015; 16:57] P.7 (1-28)

F. Damiani et al. / Science of Computer Programming ••• (••••) •••–••• 7
(δ1 �→ (nbr (t)·4) · (δ1 �→ 4), δ2 �→ (nbr (t)·9) · (δ2 �→ 9))

in which the neighbour values are immediately available as the outermost annotation of the argument of nbr. So, the effect
of an instance of nbr in a given position of the tree, is simply understood as gathering the annotations existing in the same
position of all neighbours’ evaluation trees—neighbours that actually have a value there are precisely called the aligned
neighbours.

One reason for using this structural alignment mechanism is to seamlessly handle the cases where nbr subtrees could be
nested at a deep level of the evaluation tree because of (possibly recursive) function calls. Assume the user-defined function
definition (def f (x) (min-hood (nbr x))) of principal type (β) → β , and the main expression (f (t)) of type
num (recall that the built-in operator t has principal type () → num) whose expected behaviour is then equivalent to our
prior example (min-hood (nbr (t))). This expression would be handled by the following sequence of transitions:

(f (t))
[CONG,OP]−−−−−−→ (f (t)·7) [FUN,CONG,CONG,VAR]−−−−−−−−−−−−→ (f(min-hood (nbr x·7)) (t)·7) [FUN,CONG,NBR]−−−−−−−−−→

(f(min-hood (nbr x·7)·φ) (t)·7) [FUN,OP]−−−−−→ (f(min-hood (nbr x·7)·φ) (t)·7)·4
After the function arguments are all evaluated, the second transition creates a superscript to function f, holding the eval-
uation tree corresponding to its body. This gets evaluated as usual, and its resulting annotation 4 is transferred to become
the annotation of the function call. So, note that the evaluation tree is a dynamically expanding data structure because of
such function superscripts being generated and navigated at each call, with alignment automatically handling nbr construct,
even for arbitrary recursive function call structures. Note that this mechanism also prevents recursive calls from implying
infinite evaluation trees, since only those calls that are actually made are annotated.

This management of memory trees also easily accommodates the semantics of restriction. An if subexpression is eval-
uated by first evaluating its condition, then evaluating the selected branch, and finally erasing all decorations on the
non-taken branch, including superscripts. In this way, neighbour trees corresponding to devices that took a different branch
will be automatically discarded at alignment time, since entering the same subexpression is impossible because of a bad
match. For example, consider expression (if (c) (f (t)) 0), where operator c of type () → bool returns a Boolean
field that is true at δ and δ2, and false at δ1. Assuming again that first round of δ happens after first round of δ1 and δ2, we
have:

(if (c) (f (t)) 0)
[CONG,OP]−−−−−−→ (if (c)·true (f (t)) 0)→∗

(if (c)·true (f(min-hood (nbr x·7)·(δ �→ 7, δ2 �→ 9)) (t)·7)·7 0)
[THEN]−−−−→

(if (c)·true (f(min-hood (nbr x·7)·(δ �→ 7, δ2 �→ 9)) (t)·7)·7 |0|)·7
The reason why the rep subexpression now yields field (δ �→ 7, δ2 �→ 9) is that the neighbour tree of δ1 cannot be aligned,
for it has (c) annotated with false, which does not match. Hence, nbr will retrieve values only from the aligned nodes
that followed the same branch, avoiding interference from nodes residing in different regions of the partition made by
restriction. The erasure of the non-taken branch by operator |.| (0 trivially erases to 0 in this case) is used to completely
reinitialise computation there, since the node no longer belongs to the domain in which the non-taken branch should be
evaluated.

4. Application to self-organisation

A notable application of spatial computing languages, and of CFC, is to implement self-organising systems. In this sec-
tion we discuss various features of CFC with the goal of presenting its expressiveness, especially related to self-organizing
systems. Such self-organising systems have the property that they create coherent system-level patterns out of the local
interaction between individual system components. Often inspired by natural mechanisms and metaphors [28,59], self-
organisation provides a means to create systems which spontaneously manifest properties of adaptivity and robustness to
environment changes of various kinds.

The CFC provides a terse means of expressing both individual self-organisation mechanisms and their composition to cre-
ate robust and adaptive systems. Being able to express such mechanisms and systems using a well-suited minimal calculus
will render them more amenable to mathematical investigation. Critically, we expect that this will enable the investigation
of basis sets of self-organisation primitives, extending the approach in [23], and will enable investigation of how adaptivity
and robustness are affected when self-organisation mechanisms interact.

We illustrate the efficacy of field-calculus for expressing self-organising systems with three examples of increasing com-
plexity: Laplacian approximate consensus, adaptive distributed Voronoi partitioning, and a “channel” pattern for distributed
route computation.

Example 4.1 (Laplacian approximate consensus). Many distributed applications use approximate consensus as a building block
for self-organising behaviour, with examples spanning robot formation control [19], flocking and swarming [35], sensor
fusion [56], modular robotics [57] and synchronisation [42]. Laplacian-based approaches are a common mechanism for

JID:SCICO AID:1962 /FLA [m3G; v1.169; Prn:1/12/2015; 16:57] P.8 (1-28)

8 F. Damiani et al. / Science of Computer Programming ••• (••••) •••–•••
Fig. 2. Laplacian consensus in a partially converged state, showing value on a colour scale from 0 (blue) to 1 (red), deployed in a low-density network
with initially random values and topology (green) in evidence (left), and from initially all 0 on the left half and all 1 on the right half in a high-density
environment of 10,000 nodes (right). Simulation executed in MIT Proto [5,33] on devices randomly distributed in 132 × 100 unit area with communication
radius 15, run to quiescence. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

distributed approximate consensus, in which each device finds a weighted local average of its own current value with the
values held by its neighbours. It can be implemented in CFC as:

(def Laplacian-consensus (init epsilon) ;; has type: (num,num) → num
(rep val init

(+ val
(* epsilon

(sum-hood (-[f,l] (nbr val) val))))))

Each device tracks an estimated consensus value val, beginning with its own value init. At each round, this value is
incrementally averaged with the current values held by neighbours, using sum-hood (of type (field(num)) → num) to
sum the differences and multiplying by a small increment epsilon.

Fig. 2 shows examples of Laplacian approximate consensus being computed. On the left, we show a low-density view
over a mesh network with initially random values: in this case, the consensus mechanism converges very quickly. On
the right, we apply the same field to a high-density network that more closely approximates continuous space, on which
convergence is much slower, per [20].

Example 4.2 (Voronoi partitioning). Computing a Voronoi partition is an operation that is frequently useful in distributed
systems. Given an initial set of “seed” devices, a Voronoi partition assigns each device to the partition of the nearest
seed (by some not necessarily Euclidean metric), effectively breaking the network up into “zones of influence” around key
elements. For example, in a mesh network with a few devices that serve as gateways to the more general external network,
a distributed Voronoi partition can be used to identify which gateway each device should use for external communication.
It can be realised in CFC as follows:

(def voronoi (seed id) ;; has type: (bool,num) → num
(snd

(rep partition
(pair infinity 0)
(mux seed

(pair 0 id)
(min-hood (nbr (pair (distance-to seed) (snd partition))))))))

The Voronoi partition provides a simple example of creating a self-organising system by modulating (i.e., functionally com-
bining) other self-organisation mechanisms, in this case the adaptive distance computation of the distance-to function.

JID:SCICO AID:1962 /FLA [m3G; v1.169; Prn:1/12/2015; 16:57] P.9 (1-28)

F. Damiani et al. / Science of Computer Programming ••• (••••) •••–••• 9
Fig. 3. Voronoi partition from seeds (large orange circles), indicating partition by colour, deployed in a low-density network with topology (green) in
evidence (left), and in a high-density environment of 10,000 nodes (right). Simulation executed in MIT Proto [5,33] on devices randomly distributed in
132 × 100 unit area with communication radius 15, run to quiescence. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

The pattern begins with the seed input, a Boolean-valued field that is true for those devices that are seeds of the
partition and false for all other devices (the formal parameter seed has type bool), and an id field associating each
device with a unique identifier (the formal parameter id has type num). The partition variable (of type 〈num, num〉)
then tracks a field of pairs (constructed by operator pair taking two numbers) containing the distance and identity for the
nearest identifier. Seeds provide a base case, being distance zero from themselves. The rest of the partition is computed by
lexicographic minimisation over the distance and identity pairs of each neighbour. Because this is based in a feed-forward
manner on the self-stabilising distance-to function, this pattern too is self-stabilising, and will rapidly adapt to changes
in the set of seeds or the structure of the network. Note operator snd extracts the second element of a pair, which is used
at the top level to extract the id of the nearest seed.

Fig. 3 shows examples of a Voronoi partition being computed. On the left, we show a low-density view over a mesh
network, where it is essentially computing hop-count distances and produces a standard graph partition. On the right, we
apply the same field to a high-density network that more closely approximates continuous space. Here the borders between
regions in the network closely approximate the mathematical ideal of geometric shortest paths. This comparison is also an
illustration of how field calculus can serve as a bridge between continuous aggregate semantics and discrete implementation.

Example 4.3 (The “channel” pattern). Finally, to show a more complex example of self-organising mechanism composition, we
show a realisation of the so-called “channel” pattern (from [13]), which dynamically computes distributed routes between
regions of a network, and dynamically adapts to shape and changes of the network topology. Examples of its use include
long-range reliable communications, or advanced crowd steering applications in pervasive computing [58,51].

The “channel” is a Boolean field that is true for devices near the shortest route from a given (distributed) source to a
(distributed) destination. It can be realised as follows:

(def shortest-path (source destination) ;; has type: (bool,bool) → num
(rep path false (mux source true (any-hood (and[f,f]

(nbr path)
(=[l,f] (distance-to destination)

(nbr (min-hood (nbr (distance-to destination))))))))))

(def channel (source destination width) ;; has type: (bool,bool,num) → bool
(< (distance-to (shortest-path source destination)) width))

(def channel-avoiding-obstacles (obstacle source destination width)
;; has type: (bool,bool,bool,num) → bool

(if obstacle false (channel source destination width)))

The shortest-path function yields a field that is true only on devices in the shortest path between source and desti-
nation. It is true initially on source and false everywhere else, and a device δ becomes part of the path (i.e., it is mapped

JID:SCICO AID:1962 /FLA [m3G; v1.169; Prn:1/12/2015; 16:57] P.10 (1-28)

10 F. Damiani et al. / Science of Computer Programming ••• (••••) •••–•••
Fig. 4. Channels (blue) route between source (orange) and destination (purple) around obstacles (pink), deployed in a low-density network with topology
(green) in evidence (left), and in a high-density environment of 10,000 nodes (right). Simulation executed in MIT Proto [5,33] on devices randomly dis-
tributed in 132 × 100 unit area with communication radius 15, run to quiescence. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

to true) if any of its neighbours (any-hood + nbr) is already in the path, and (by the built-in operator and[f,f] of
principal type (field(bool), field(bool)) → field(bool)) its neighbour with minimum distance to destination is as
distant as δ—built-in operator any-hood (of principal type (field(bool)) → bool) yields true only if at least one of the
elements of the field is true.

The channel function adds redundancy to a shortest-path route by using distance-to to select every device
within the desired channel width. The channel-avoiding-obstacles function then modulates the whole complex
of channel, shortest-path, and distance-to functions by using if to restrict the region where they are computed
to that portion of the space without obstacles.

Fig. 4 shows obstacle-avoiding channels being computed. On the left, we show a low-density view over a mesh network,
in which the channel simply represents a point-to-point routing path. On the right, we apply the same field to a high-density
network that more closely approximates continuous space: by applying the channel field to a distributed source, destination
and obstacle we illustrate the way in which field computations can act as a bridge between continuous aggregate semantics
and discrete implementation through local interaction rules. An example application of this structure is in the context of
pervasive computing, to develop a steering service from people moving in an articulated environment [47,29]. The channel
field can be used to enable all the devices (digital signs, peoples’ smartphones, obstacle sensors, crowd detection sensors,
etc.) that aid in guiding people moving from a source to a destination.

5. The computational field calculus

The surface syntax (Fig. 1) and the mechanisms of CFC have been introduced and motivated in the previous sections. This
section presents a formalisation of the CFC operational semantics. The various aspects of the formalisation are set forth in
Fig. 5, described here in turn after few preliminaries. We let δ range over device unique identifiers and φ over field values
(mapping set of devices to local values). Given any meta-variable y we let ẙ range over an element y or the null decoration
(which in the calculus is ◦ when it has to be expressed, and blank otherwise). The calculus is agnostic to the syntax of local
values: we only assume they include at least device identifiers δ and Boolean values—denoted by f (for false) and t (for
true).

5.1. Runtime expression syntax

A runtime expression is the evaluation tree created out of a surface expression. It is similar to expressions in the surface
syntax (cf. Fig. 1) with the following differences (see Fig. 5):

(i) a (runtime) value v is either a local value l or a field value φ;
(ii) a run-time expression e can be coupled (at any level of depth) with optional annotation v̊ representing the transient

side-effect of a computation;
(iii) constructs rep and function calls can have a superscript (s) representing the durable side-effect of a computation.

JID:SCICO AID:1962 /FLA [m3G; v1.169; Prn:1/12/2015; 16:57] P.11 (1-28)

F. Damiani et al. / Science of Computer Programming ••• (••••) •••–••• 11
Runtime expression syntax:
e ::= a·v̊ runtime expression (rte)
a ::= x

∣
∣ l

∣
∣ (nbr e)

∣
∣ (if e e e)

∣
∣ (reps xw e)

∣
∣ (ds e)

∣
∣ (o e) auxiliary rte

v ::= l
∣
∣ φ runtime value

s ::= å superscript
w ::= x

∣
∣ l variable or local value

φ ::= δ �→ l field value
� ::= δ �→ e tree environment
	 ::= x := v variable environment

Congruence contexts:
C ::= (nbr []) ∣

∣ (ds e [] e)
∣
∣ (o e [] e)

∣
∣ (if [] e e)

∣
∣ (if a·t [] e)

∣
∣ (if a·f e [])

Alignment contexts:
A ::= C

∣
∣ (reps x w []) ∣

∣ (d[] a·v)

Auxiliary functions:

πA(�,�′) = πA(�),πA(�′)
πA(δ �→ (A′[e])·v) = δ �→ e if A′ ::A

πA(δ �→ e) = • otherwise

s� a = a
s� ◦ = s

(nbr []) :: (nbr [])
(ds

′
e′

1...e′
i−1 [] e′

i+1...e′
n) :: (ds e1...ei−1 [] ei+1...en)

(o e′
1...e′

i−1 [] e′
i+1...e′

n) :: (o e1...ei−1 [] ei+1...en)

(if [] e′
1 e′

2)) :: (if [] e1 e2))

(if a′·t [] e′) :: (if a·t [] e)
(if a′·f e′ []) :: (if a·f e [])

(reps
′
x w []) :: (reps x w [])

(d[] e′
1...e′

n) :: (d[] e1...en)

Reduction rules: [THEN]

δ;�;	
 (if a·t a′·l e) → (if a·t a′·l |e|)·l

[CONG] δ;πC(�);	
 a → e

δ;�;	
C[a] →C[e]
[ELSE]

δ;�;	
 (if a·f e a′·l) → (if a·f |e| a′ ·l)·l

[LOCAL]

δ;�;	
 l→ l·l
[NBR] π(nbr [])(�) = (δ �→ a·l) φ = (δ �→ l, ε(uid) �→ l)

δ;�;	
 (nbr a·l) → (nbr a·l)·φ

[VAR]

δ;�;	
 x→ x·	(x)|dom(�),ε(uid)

[REP] δ;π
(rep ˚l1 x w [])(�);	, (x := ((w) � l̊1))
 a → a′·l̊2

δ;�;	
 (repl̊1 x w a) → (repl̊1�l̊2 x w a′·l̊2)·l̊2

[OP]

δ;�;	
 (o a·v) → (o a·v)·ε(o,v)

[FUN] δ;π(d[] a · v)(�); (args(d) := v)
 (body(d) � s) → a·v̊
δ;�;	
 (ds a·v) → (da a·v)·v̊

Fig. 5. CFC operational semantics.

Note that, syntactically, surface syntax expressions can (and will) be used to denote runtime expressions with null decora-
tions in all annotations and superscripts. Conversely, the erasure operator | · | is used to turn a runtime expression e (or an
auxiliary rte a) to the surface expression |e| (resp. |a|) obtained by dropping all annotations and superscripts.

A field value φ can either be written as δ1 �→ l1, . . . , δn �→ ln or be shortened by notation δ �→ l. Note that fields are
actually mappings, for which we introduce some syntactic conventions and operators. The domain of φ, which is the set
{δ1, . . . , δn}, is denoted by dom(φ). The value li associated to a given device δi by field φ is retrieved by notation φ(δi).
Since a field can be seen as a list, we use the notation • for the empty field, and comma as list concatenation operator: e.g.
φ, φ′ is the field having both the mappings of φ and φ′ . We shall sometimes restrict the domain of a field φ to a given set
of devices δ, which we denote as φ|δ . When restriction is applied to local values it works as the identity function. A tree
environment, �, maps devices to runtime expressions (namely, it keeps neighbour trees); a variable environment, 	, maps
variables to runtime values. Since tree environments and variable environments are also mappings, all the above conventions
and operators will be used for them as well.

5.2. Congruence contexts and alignment contexts

The operational semantics uses congruence contexts, ranged over by C, to impose an order of evaluation of subexpressions
in an orthogonal way with respect to the actual semantic rules; and it uses alignment contexts, ranged over by A, to properly
navigate into evaluation trees. In particular, note that C is a subcase of A (see Fig. 5).

A context A is an auxiliary runtime expression with a hole []. As usual, we write A[e] to denote the runtime expression
obtained by filling the hole of A with the runtime expression e. If a given runtime expression e matches C[e′], then e′

JID:SCICO AID:1962 /FLA [m3G; v1.169; Prn:1/12/2015; 16:57] P.12 (1-28)

12 F. Damiani et al. / Science of Computer Programming ••• (••••) •••–•••
is the next subexpression of e where evaluation will occur, positioned in e as [] is positioned in C. The way the syntax
of congruence contexts C is structured constrains the operational semantics to evaluate the first argument of if and
then, depending on its outcome, the second or third, and to non-deterministically evaluate arguments in function and
operation calls. For instance, the runtime expression (* 1·1 (+ 2·2 3)) matches C′[e′] only by C′ = (* 1·1 []) and
e′ = (+ 2·2 3): this means that e′ contains the next subexpression to evaluate. The expression e′ , in turn, matches C′′[e′′]
only by C′′ = (+ 2·2 []) and e′′ = 3. Therefore 3 is the next subexpression to evaluate (becoming 3 · 3).

5.3. Auxiliary functions

The projection operator π implements the mechanism for synchronising navigation of an evaluation tree with those of
neighbour trees. Namely, πA(�) takes a tree environment � and extracts a new tree environment obtained by discarding the
trees that do not match the alignment context A (according to the alignment context matching relation “::”) and extracting the
corresponding subtree matching the hole in the remaining ones. As an example, given �0 = (δ1 �→ (if a·t e1 e2)·v1, δ2 �→
(if a′·f e3 e4)·v2) and A = (if a′·t [] e′

2), we have πA(�0) = (δ1 �→ e1). In fact, the evaluation tree for δ2 is discarded since
it does not match A due to the label of first argument being f , while the evaluation tree for δ1 matches and extracts e1.

The replacement operator � retains the right-hand side if this is not empty, otherwise it takes the left-hand side. It is
useful to handily update null decorations.

To take into account special constants, mathematical operations, usual abstract data types operations, and context-
dependent operators, we introduce a special auxiliary function ε, whose actual definition is abstracted away. This is such
that ε(o, v) computes the result of applying built-in operator o to values v in the current environment of the device. In
particular, we assume constant self gets evaluated to the current device identifier. The ε function also encapsulates mea-
surement variables such as nbr-range and dt and interactions with the external world via sensors and actuators. In
order not to escape the domain restricted by operator if, as discussed in Sections 2 and 3, for each built-in operator o we
assume that:

(i) ε(o, v1, · · · , vn) is defined (i.e., its evaluation does not get stuck) only if all the field values in v1, . . . , vn have the same
domain; and

(ii) if ε(o, v1, · · · , vn) returns a field value φ and there is at least one field value vi in v1, . . . , vn , then dom(φ) = dom(vi).

5.4. Reduction rules

Following [26], we formulate the reduction relation by means of reduction rules (which may be applied at any
point in an expression) and congruence rules (which express the fact that if e → e′ then (o e1 . . . ei−1 e ei+1 . . . en) →
(o e1 . . . ei−1 e′ ei+1 . . . en), and so on). The reduction relation is of the form δ;�;	
e→e’ , to be read “expression e reduces
to expression e′ in one and 	 is the current store of variables (which is built incrementally in each reduction step by the
congruence rules [REP] and [FUN] when evaluation enters the third argument of a rep-expressions or the body of a function,
respectively).

The reduction relation models the execution of a single computation round, computed as δ; �; •
 a →∗ a′·v where: δ
is the local device; � is the set of evaluation trees produced by neighbours at their prior computation round; the variable
environment is empty (the main expression must not contain free variables); and a is the runtime expression resulting from
the computation of previous round with all the annotations (not superscripts) erased—at the very first round a is simply the
top-level surface expression. During computation steps the run-time expression will be decorated with annotations, until
one appears at the top level in the final runtime expression a′·v, where v represents the local value of the computational
field currently being computed. Some superscripts will be present at the end of the round, for they represent the side-effect
of computation on the evaluation tree that should be transferred to next round. In particular, as already mentioned:

(i) the final runtime expression a′·v will be shipped to neighbours, replacing there the one previously sent;
(ii) the runtime expression obtained from a′·v by dropping all annotations (not superscripts), denoted by init(a′·v), will be

used as starting point for the next round computation.

We now describe each reduction rule in turn. Computation rules have a common pattern: they compute a result value v,
which appears as top-level annotation—in the following we shall say that v is the “local result”. Rule [LOCAL] simply identi-
cally annotates a local value. Rule [VAR] looks at the value 	(x) associated to x by the variable environment, and (in case
it is a field) restricts it to the set of currently aligned neighbours δ (plus the local device ε(uid) = δ). Rule [NBR] is the one
actually gathering values from �: let l be the value locally computed, we extract the corresponding values l from aligned
neighbours δ, and use as local result the corresponding field δ �→ l (adding the local slot δ �→ l). Rule [OP] computes the re-
sult of applying operator o to values v (done by function ε, which gives semantics to operators), to be used as a local result.
Rules [THEN] and [ELSE] handle condition branching: rule [THEN] (resp. [ELSE]) uses the label of second (resp. third) argument
as local result in case of positive (resp. negative) condition, and erases the other branch (which may contain superscripts
generated in the previous round).

JID:SCICO AID:1962 /FLA [m3G; v1.169; Prn:1/12/2015; 16:57] P.13 (1-28)

F. Damiani et al. / Science of Computer Programming ••• (••••) •••–••• 13
Rule [CONG] can be understood as a compact representation for six different congruence rules, corresponding to the
6 cases for the context C. While navigating the evaluation tree inside context C to identify the next evaluation site a
(which should be non-annotated), this rule contemporarily enters the same context into all slots of the tree environment �,
guaranteeing that the expression to evaluate is kept synchronised with the corresponding trees in �. Note that rule [CONG]
does not describe the congruence rules for rep-expressions and function applications. In fact, the metavariable C does not
range over contexts of the form (repl̊ x w []) and (d[] a · v). The rationale for this choice is that the corresponding rules,
[REP] and [FUN], need to update the variable environment 	 by adding to 	 the rep-bound variable x or by completely
replacing 	 with the environment for the function formal parameters args(d), respectively. Moreover, [REP] and [FUN] are not
pure congruence rules: each of them encodes a congruence rule possibly followed by a computation rule.5 Note that this
encoding exploits the notation ẙ and the auxiliary function � defined above.

Rule [REP] handles evolution of a field. When the superscript l̊1 is null, the evaluation of the body of a rep-expression
is carried on in an environment that assigns to the rep-bound variable x the value of the variable or local value w—with
abuse of notation we indicate it as 	(w): when w is a local value l we assume 	(l) = l. When the superscript l̊1 is a
local value l1, the evaluation of the body of rep-expression is carried on in an environment that assigns to the rep-bound
variable x the value l1. If the reduction step performed (in the premise of the rule) on the body of the rep-expression
produces an evaluated runtime expression (i.e., if the annotation l̊2 is not null), then the local result is propagated to the
rep-expression (which becomes evaluated).

When the actual parameters of a function call are evaluated, rule [FUN] performs a reduction step on the function body in
an environment consisting of the proper association of formal parameters args(d) to values v: the (possibly null) resulting
annotation v̊ is transferred as local result. If the superscript s is null, replacement operator � guarantees the function body
is used instead.

6. Well-formedness

This section introduces the problem of well-formed specifications, and the need for a sound type system as developed
in Section 7. A field expression is considered ill-formed if its evaluation (according to the operational semantics) can at
some point get stuck: a situation that in an actual execution would result in a run-time error. Correspondingly, a function
is ill-formed if its application to some argument forms a ill-formed expression, and a whole program is ill-formed if its
functions or main expression are ill-formed. The following examples clarify the key notion of ill-formed functions.

Example 6.1. Function

(def wrong-channel-avoiding-obstacles (x src dst width) ;; cannot be typed
(channel-avoiding-obstacles (nbr x) src dst width))

using the function channel-avoiding-obstacles, is ill-formed. This is due to the fact that the field value φ, which is
produced by (nbr x) and passed into channel-avoiding-obstacles, conflicts with its use as the first input to if,
which requires a Boolean value. Rules [THEN] and [ELSE] thus cannot be applied, and the evaluation cannot be completed.

Example 6.2. The function

(def wrong-f-two (x) ;; cannot be typed
(min-hood (min-hood (nbr (nbr x)))))

which tries to find the minimum value of x within two hops, is ill-formed. When the function is applied to a local value,
the body fails to evaluate because Rule [NBR] requires its input to be a local value, and thus cannot be applied to the outer
nbr. This prevents the need to communicate a field value whose size scales linearly with the number of neighbours, which
might be extremely burdensome. A well-formed alternative that produces the same computational result as wrong-f-two
is intended to is

(def right-f-two (x) ;; has type: (β) → β

(min-hood (nbr (min-hood (nbr x)))))

5 When the annotation l̊2 in rule [REP] is not null, and when the annotation v̊ in rule [FUN] is not null.

JID:SCICO AID:1962 /FLA [m3G; v1.169; Prn:1/12/2015; 16:57] P.14 (1-28)

14 F. Damiani et al. / Science of Computer Programming ••• (••••) •••–•••
This takes advantage of the commutative property of minimisation to break the minimisation into two stages, thus avoiding
the communication explosion of the ill-formed formulation.

Example 6.3. The function

(def wrong-nbr-if (x y z) ;; cannot be typed
(min-hood (-[f,f] (if (sense 1) (nbr x) (nbr y)) (nbr z))))

is ill-formed. Its body will fail to evaluate on Rules [THEN] and [ELSE], since they require local values for the test and returned
values. This prevents conflicts between field domains, as in this case, where the field produced by (nbr z) would contain
all neighbours, while the field produced by the if expression would contain only a subset, leaving the fields mismatched in
domain at the subtraction. A correct alternative is

(def right-nbr-if (x y z) ;; has type: (num,num,num) → num
(min-hood (-[f,f] (nbr (if (sense 1) x y)) (nbr z))))

which conducts the test locally, ensuring that the domains of the two fields match.

7. Typing and properties

This section presents a type inference system, used to intercept ill-formed programs, as those shown in Section 6. Tech-
nically, this type system is designed to guarantee the following two properties:

Domain alignment The domain of every field value arising during the reduction of a well-typed expression consists of the
identifiers of the aligned neighbours and of the identifier of the uid device.

Type soundness The reduction of a well-typed expression does not get stuck.

Note that domain alignment guarantees a proper handling of restriction which, in turn, is needed for type soundness. Note
as well that the type system does not guarantee that evaluation will complete: for example, an expression such as (def
nohalt (x) (nohalt (+ x 1))), which infinitely recurses, is well-typed with type (num) → num.

7.1. Typing rules for surface programs

The type system builds on the Hindley–Milner type system [17] for ML-like functional languages. Since the type inference
rules are syntax-directed, they straightforwardly specify a variant of the Hindley–Milner type inference algorithm [17]. I.e.,
they specify an algorithm (not present here) that, given an expression e and type assumptions for its free variables, either
fails (if the expression cannon be typed under the given type assumptions) or returns its principal type, i.e., a type such that
all the types that can be assigned to e by the type inference rules can be obtained from the principal type by substituting
type variables with types.

Types are partitioned in two kinds: expression types (for expressions) and function types (for built-in operators and user-
defined functions). The former are further partitioned in two kinds: local types (for fields of local values, e.g., that produced
by if) and field types (for fields of field values, e.g., that produced by nbr). Moreover, in order to support polymorphic use
of built-in operators and user-defined functions, we consider also function type schemes.

The syntax of expression types, local types, field types, function types and function type schemes is given in Fig. 6 (top).
An expression type E is either a type variable α, or a local type, or a field type. A local type L is either a local type variable β ,
or the type of Booleans bool, or the type of numbers num, or the type of a pair value 〈L, L〉. A field type � is the type
field(L) of a field whose domain contains values of local type L.

A function type F is the type (E) → E of a (possibly zero-arity) built-in operator or user-defined function. We write
FTV(F) to denote free type variables and the free local variables occurring in F . E.g., FTV((α, field(β)) → 〈α, β〉) = α, β .
Function type schemes, ranged over by FS, support typing polymorphic uses of built-in operators and user defined-functions.
Namely, each built-in operator or user-defined function f has a function type scheme ∀αβ.F , where α and β are all the type
variables and local type variables occurring in the type F , respectively. Each use of f can be typed with any type obtained
from ∀αβ.F by replacing the type variables α with types and the local type variables β with local types.

Expression type environments, ranged over by X and written x : E , are used to collect type assumptions for program
variables (i.e., the formal parameters of the functions and the variables introduced by the rep-construct). Type-scheme
environments, ranged over by D and written d : FS, are used to collect the function-type schemes inferred for the user-
defined functions. The distinguished built-in type-scheme environment O associates a function-type scheme to each built-in

JID:SCICO AID:1962 /FLA [m3G; v1.169; Prn:1/12/2015; 16:57] P.15 (1-28)

F. Damiani et al. / Science of Computer Programming ••• (••••) •••–••• 15
Expression types:
E ::= α

∣
∣ L

∣
∣ � expression type

L ::= β
∣
∣ bool

∣
∣ num

∣
∣ 〈L, L〉 local type

� ::= field(L) field type
Function types and function type schemes:

F ::= (E) → E function type
FS ::= ∀αβ.F function type scheme

Auxiliary function for typing values:
typeof (b) = bool
typeof (n) = num
typeof (〈l1,l2〉) = 〈typeof (l1), typeof (l2)〉

Surface expression typing: D;X
 e : E

[ST-VAR]

D;X ,x : E
 x : E

[ST-LOCAL] L = typeof (l)

D;X
 l : L

[ST-OP] O(o) = ∀αβ.F (E) → E = F[α := E][β := L] D;X
 e : E

D;X
 (o e) : E

[ST-FUN] D(d) = ∀αβ.F (E) → E = F[α := E][β := L] D;X
 e : E

D;X
 (d e) : E

[ST-REP] D;X
 w : L D;X ,x : L
 e : L

D;X
 (rep x w e) : L

[ST-NBR] D;X
 e : L

D;X
 (nbr e) : field(L)

[ST-IF] D;X
 e0 : bool D;X
 e1 : L D;X
 e2 : L

D;X
 (if e0 e1 e2) : L

Function typing: D
 D : FS

[ST-FUNCTION] D, d : ∀ • .E → E;x : E
 e : E αβ = FTV((E) → E)

D
 (def d(x) e) : ∀αβ.(E) → E

Program typing:
 P : L

[ST-PROGRAM]
D0 = •
Di = (def di(_) _) Di−1
 Di : FSi Di = Di−1, di : FSi (i ∈ 1..n)

Dn; ∅
 e : L

 D1 · · ·Dn e : L

Fig. 6. CFC: expression types, function types and function schemes; auxiliary function for typing values; and type inference rules for surface expressions,
function declarations, and programs.

function o—Fig. 7 shows the local type schemes for the built-in functions used in the examples presented through the
paper.

The type inference rules are given in Fig. 6 (bottom). The typing judgement for expressions is of the form “D; X
 e :
E”, to be read: “e has type E under the (implicit) type scheme assumption O (for built-in operators), the type-scheme
assumptions D (for user-defined functions), and the expression type assumptions X (for the program variables occurring
in e), respectively”. As a standard syntax in type systems [26], given E = E1, . . . , En and e = e1, . . . , en (n ≥ 0), we write
D; X
 e : E as short for D; X
 e1 : E1 · · ·D; X
 en : En .

Rule [ST-VAR] (for variables) lookups the type assumptions for x in X .
Rule [ST-LOCAL] (for local values) exploits the auxiliary function typeof , defined in Fig. 6 (middle).
Rule [ST-OP] (for built-in function application) and Rule [ST-FUN] (for user-defined function application) are standard. They

ensure that the function-type scheme ∀αβ.F associated to the built-in function or user-defined function name being applied
is instantiated by substituting the local type variables β with local types L and the type variables α with (possibly non-local)
types E .

Rule [ST-REP] (for rep-expressions) ensures that both the variable x, its initial value w and the body e have (the same)
local type. This prevents a device δ to store in x a field value φ (whose domain is by construction equal to the subset of

JID:SCICO AID:1962 /FLA [m3G; v1.169; Prn:1/12/2015; 16:57] P.16 (1-28)

16 F. Damiani et al. / Science of Computer Programming ••• (••••) •••–•••
Pure built-in function (independent from the current device and value-tree environment):
O(and[f,f]) = (field(bool),field(bool)) → field(bool)

O(any-hood) = (field(bool)) → bool
O(min-hood) = ∀β.(field(β)) → β

O(mux) = ∀β.(bool, β,β) → β

O(pair) = ∀β1β2.(β1, β2) → 〈β1, β2〉
O(snd) = ∀β1β2.(〈β1, β2〉) → β2

O(sense) = (num) → bool
O(sum-hood) = (field(num)) → num
O(+) = (num,num) → num
O(+[f,l]) = (field(num),num) → field(num)

O(-) = (num,num) → num
O(-[f,f]) = (field(num),field(num)) → field(num)

O(*) = (num,num) → num
O(/) = (num,num) → num
O(=[l,f]) = ∀β.(β,field(β)) → field(β)

Non-pure built-in function (depend from the current device and value-tree environment):
O(dt) = () → num
O(nbr-range) = () → field(num)

O(uid) = () → num

Fig. 7. CFC: function type schemes for the built-in functions used in the examples through the paper.

the neighbours of δ that are aligned—i.e., that have evaluated this rep-expression in their last evaluation round) that may
be reused in the next computation round of δ, when the set of aligned neighbours may be different from the domain of φ
(this would cause a domain alignment error).

Rule [ST-NBR] (for nbr-expressions) ensures that the body e of the expression has a local type. This prevents the attempt
to create a “field of fields” (i.e., a field that maps device identifies to fields values)—that would be ill-formed.

Rule [ST-IF] (for if-expressions) ensures that the condition e0 has type bool and the branches e1 and e2 have (the
same) local type. This prevents the if-expression to evaluate to a field value whose domain is different from the subset of
the neighbours of δ that are aligned—i.e., that have evaluated this if-expression in their last evaluation round. For instance,
the expression

(min-hood (+[f,f] (if (o1) (nbr (o2)) (nbr (o3))) (nbr (o4))))

(where o1 has type ()→ bool, and o2, o3, o4 have type ()→ num) is ill-typed. Its body will fail to type-check because
of type rule [ST-IF], and would cause a run time error, since evaluation rules [THEN] and [ELSE] require local values to be pro-
duced by the evaluation of the branches of an if-expression. This prevents conflicts between field domains, as in this case,
where the field produced by (nbr (o4)) would contain all neighbours, while the field produced by the if-expression
would contain only a subset, leaving the fields mismatched in domain at the sum. A correct alternative is

(min-hood (+[f,f] (nbr (if (o1) (o2) (o3))) (nbr (o4))))

which conducts the test locally, ensuring that the domains of the two fields match.
Function declaration typing (represented by judgement “D
 D : FS”) and program typing (represented by judgement

“
 P : L”) are almost standard.6 We say that a program P is well-typed to mean that
 P : L holds for some local type L.

Example 7.1. The CFC calculus captures all the examples presented through the paper. In particular, the type system it able
to type the examples of well-formed programs illustrated in Sections 2, 4 and 6, and it rejects the examples of ill-formed
programs illustrated in Section 6.

7.2. Domain alignment and type soundness

The state of the computation for a program P = De in a device δ is represented by a configuration, which is a 3-tuple
〈δ, �, e〉 where δ /∈ dom(�), |e| = e and, for all δ′ ∈ dom(�), |�(δ′)| = e.

6 To simplify he presentation, we have not considered the issue of typing mutually recursive user-defined functions. To extend the type system in order
to type mutually recursive user-defined function can be straightforwardly accomplished by exploiting standard techniques (see, e.g., [32]).

JID:SCICO AID:1962 /FLA [m3G; v1.169; Prn:1/12/2015; 16:57] P.17 (1-28)

F. Damiani et al. / Science of Computer Programming ••• (••••) •••–••• 17
A configuration 〈δ, �, e〉

• is in normal form if δ; �; •
 e �→; and
• is final if e = a·v.

Note that if a configuration is final then it is in normal form. A final configuration represents the state of a device when a
round of computation has been successfully completed. A configuration that is in normal form and is not final represents a
computation that is stuck, i.e., it represents a runtime error.

The set of reachable tree environments and the set of reachable configurations for the program P = De in a device δ

(denoted by RTE(δ, P) and RC(δ, P), respectively) are the set of tree environments and the set of configurations inductively
defined by the following clauses, taking into account the iterative nature of computation rounds:

• (δ1 �→ e1, . . . , δn �→ en) ∈ RTE(δ, P) (n ≥ 0) if δ /∈ {δ1, . . . , δn} and for all i ∈ 1..n there exists 〈δi, �i, ei〉 ∈ RC(δi, P) (for
some �i) such that 〈δi, �i, ei〉 is final.

• 〈δ, �, e〉 ∈ RC(δ, P) if � ∈ RTE(δ, P) and
◦ either 〈δ, �, e〉 is a configuration and δ; �; •
 e→∗ e;
◦ or there exists 〈δ, �′, e′〉 ∈ RC(δ, P) (for some �′) such that 〈δ, �′, e′〉 is final and δ; �; •
 init(e′) →∗ e.

Reachable configurations like 〈δ, �, e〉 and 〈δ, �, init(e′)〉 are called initial configurations. In particular, configurations like
〈δ, �, e〉 are called bootstrap configurations. An initial configuration represents the state of a device that is ready for starting
a round of computation, and a bootstrap configuration may represent the state of a device that is ready for starting its first
round of computation (note that, if the main expression e does not contain rep-expressions, if-expression and function
calls, then any initial configuration is a bootstrap configuration). Therefore, reachable configurations are the configurations
that a device can assume when it starts from a bootstrap configuration and interacts only with devices that have started
from a bootstrap configuration. I.e., reachable configurations are the possible states of the devices in a network initially
empty and such that whenever a new device appears it has a bootstrap configuration.

We are now able to formally state the domain alignment and type soundness properties (cf. the explanation at the
beginning of Section 7).

Theorem 7.2 (Domain alignment). For every well-typed program P and every device δ, if 〈δ, �, e〉 ∈ RC(δ, P) and δ; �; •
 e → e′
(for some e′) then every subreduction δ; �0; 	
 e1 → e2 in the reduction δ; �; •
 e → e′ is such that if e2 = a·φ then dom(φ) =
dom(�0) ∪ {δ}.

Theorem 7.3 (Type soundness). For every well-typed program P and every device δ, if 〈δ, �, e〉 ∈ RC(δ, P) and δ; �; •
 e �→, then
〈δ, �, e〉 is final.

The proofs of Theorems 7.2 and 7.3 are given in Appendix A. The proofs are done by introducing a suitable notion of
typing for runtime expressions and configurations and showing that:

(i) the initial configuration of a well-typed program at the first round of computation is well typed (Lemmas A.2 and A.4);
(ii) the initial configuration of a well-typed program in all the subsequent rounds of computation is well typed (Lemmas A.3

and A.4);
(iii) the domain of every field value occurring in a well-typed configuration consists of the identifiers of the aligned neigh-

bours and of the identifier of the uid device (Lemma A.5);
(iv) reducing a well-typed configuration produces a well-typed configuration (Theorem A.6—subject reduction); and
(v) if a non-evaluated configuration is well typed then some reduction rule is always applicable (Lemma A.7 and Theo-

rem A.8—progress).

8. Toolchain

The computational field calculus presented in this paper is the foundation of a toolchain under development for spatial
computers, encompassing (i) the Protelis Java-like language, (ii) various incarnations of the Protelis architecture, including
in the Alchemist simulator and as a management toolkit for distributed servers, and (iii) self-stabilising “building block”
libraries and higher-level programming APIs. This section presents a brief survey of these components (summarising relevant
results from [39,45,40]), with the goal of illustrating how the theory of computational field calculus translates into practical
impact for distributed applications.

8.1. Protelis language

We have designed the Protelis language [39] as an implementation of the field calculus that is well-integrated with Java
and the JVM framework. On the one hand, it is consistent with the specification of the field calculus, and its interpreter is

JID:SCICO AID:1962 /FLA [m3G; v1.169; Prn:1/12/2015; 16:57] P.18 (1-28)

18 F. Damiani et al. / Science of Computer Programming ••• (••••) •••–•••
based on the operational semantics described in this paper. On the other hand, it turns the field calculus into a fully blown
programming language, by providing access to the rich Java API (semantically, a collection of built-in operators) as well as
supporting mechanisms for first-class functions. In implementing Protelis, we have used the Xtext language development
framework [22], which also supports a language-specific Eclipse IDE plugin that eases adoption and code writing by means
of code highlighting, completion suggestions and compile-time error detection. Our complete Protelis implementation is free
and open source, available at http :/ /protelis .github .io/.

Syntactically, Protelis adopts a set of modern Java conventions, including using functional notation f (e1, . . . , en) for func-
tion calls, infix notation for binary arithmetic and comparison operators, definition of local variables (using a let construct),
anonymous functions of the form (x1, . . . , xn)->{b} applied to arguments by an apply construct, and import of static
methods from Java APIs to be used as built-in operators. As an example, a Laplacian consensus function similar to that in
Example 4.1, in which the epsilon value is selected randomly within a given range, could be implemented as a function
randomized-laplacian-consensus as follows:

import java.lang.Math.random; ;; importing ’random’ from Java

def consensus (init, f) { ;; finding a consensus for init, using correction function f
rep (val <- init) {

val + f.apply(sumHood(nbr{val} - val))
}

}

def randomized-Laplacian-consensus (init, min, max) {
let epsilon = min + (max - min) * random(); ;; computing epsilon
consensus(init, (x) -> {epsilon * x}) ;; calling the general consensus function

}

8.2. Portable architecture

In addition to a language, the Protelis implementation also supplies a virtual machine architecture that links field calculus
with the pragmatics of communication, execution, and interfacing with hardware, operating system, and other software [39].
This architecture is designed to make field calculus programs readily portable across simulation environments and also
various classes of real networked devices (following the same general pattern as was used for the Proto VM [2]), since
development and maintainability are greatly enhanced if the exact same code can be used for execution at different stages
of development, testing, and deployment.

Under this architecture, Protelis programs are first mapped into a valid representation of field calculus semantics. This is
then executed by the Protelis interpreter at regular intervals, using abstract interfaces to communicate with other devices
and to interact with the contextual environment (e.g., accessing sensors and position information, signalling actions by
other programs). These abstract interfaces may then be instantiated for particular device platforms or simulations by setting
when executions occur, how communication is implemented, and the methods used for accessing the environment. This
architecture is implemented in Java, both to make it highly portable across JVM-based systems and devices (including the
increasing number of low cost embedded devices that support Java), and also to exploit Java’s reflection mechanisms in
order to allow transparent use of a large variety of useful libraries and APIs.

To date, we have exercised this architecture through construction of two instantiations: one in the Alchemist frame-
work [38] for simulation of large-scale spatially-embedded networks such as sensor networks, swarm robots, and pervasive
computing scenarios; the other a daemon for coordinating management of networked services [16]. In the Alchemist in-
stantiation, simulations are configured using a simple scripting language, which specifies a Protelis program as well as the
collection of devices that will execute it, communication between those devices, and other aspects of the environment to be
simulated. The Alchemist event-driven simulation engine then handles execution scheduling, message delivery, and updates
to the environment tuple store. One of the key advantages in using Alchemist is its support for simulation of various real-
istic scenarios. For example, for indoor simulated environments, Alchemist can load images of building plans to be used as
the simulated environment, and embeds various realistic movement models for people moving in those environments [25].
Complementarily, for outdoor simulated environments, it can load OpenStreetMap [24] data to be used as environment, GPS
traces to place and move wearable devices associated with pedestrians, and GraphHopper7 to support simulated movement
of pedestrians. For instance, in [40] these features have been used to study how crowd steering algorithms could work in
a simulation driven by GPS trace data collected at the 2013 Vienna City Marathon. The other instantiation applies Protelis
to network service management. Here, each Protelis device lives on a server in an enterprise network, and is tethered to
the networked service it is intended to manage by a service manager daemon. This daemon monitors the service, injecting
information about its status and known dependencies into the environment and maintaining a neighbourhood by opening

7 http :/ /graphhopper.com/.

http://protelis.github.io/
http://graphhopper.com/

JID:SCICO AID:1962 /FLA [m3G; v1.169; Prn:1/12/2015; 16:57] P.19 (1-28)

F. Damiani et al. / Science of Computer Programming ••• (••••) •••–••• 19
parallel communication links to its corresponding daemons on any other servers that the monitored service communicates
with. This can then be used for implementing service management applications, such as dependency-aware distributed
recovery from faults [16].

8.3. Self-stabilising building blocks and APIs

Being functional in nature, both field calculus and its Protelis implementation promote a compositional and incremental
approach to the construction of complex systems. As is typical software engineering practice, this can be approached by
creating layers of APIs (libraries of function definitions) that progressively hide low-level details and provide programmers
with powerful abstractions for structuring spatial computing systems, each uniformly seen as a reusable collective behaviour
working on computational fields. Here, the key value of field calculus is its coherent semantics for the scoping and compo-
sition of distributed systems, which greatly simplifies the analysis of such APIs. This approach, as discussed in [45,9], can
support construction of distributed “building blocks” with formally proven resilience properties (which get transferred to
the APIs and systems built on top) as well as creation of substitutable components (with the same function but trading off
performance in different ways).

As a first layer, one can define combinators that capture “safe” patterns in the interplay of field calculus constructs,
e.g., various ways in which nbr and rep combine to manage information across many hops in a network. Three useful
such “building blocks” have been identified that can be used to completely hide nbr and rep, called G, C and T [9]. G
is a “spreading” operation generalising broadcast: it executes the two tasks of computing shortest-path distances from a
source and according to a given metric, and propagating values along the gradient of the distance using a suitable context-
dependent accumulation function. Conversely, C is an “aggregation” operation: it accumulates information coming from
an input field by progressively combining values that flow “downhill” on a potential field, using a suitable accumulation
function. Finally, T is a “flexible timer” operator, making a pointwise value progressively decrease until reaching a “floor”
value.

These three “building blocks,” along with if and built-in operators, form a “sub-language” of self-stabilising systems,
such that any system implemented using them is guaranteed to recover from any transitory change occurring in sensors
and network topology [45]. On top of this, one can create various general-purpose or application-specific APIs, e.g., for
collective spreading (broadcast to advertise events, pathForecast to forecast obstacles along a given direction, dis-
tanceBetween to compute and spread minimum distance between regions, partition to segregate space), for collective
aggregation (summarise to sum all values of a field in a region, average to compute mean values), for time management
(limitedMemory to hold a value until a deadline expires, lowPassFilter to smooth a rapidly changing field) and so
on. Based on such APIs, as shown in [9], simple composition can allow an engineer to create complex applications, like
e.g. for crowd management, in which spatial computing performed by smart devices in large events can be used to detect
crowded areas, and to provide directions for dispersal or for steering to desired destinations by circumventing dynamically
forming crowds.

9. Related work

A large number of prior works present notions of computational fields; a thorough review may be found in [7]. Regard-
ing the most similar: the Hood sensor network abstraction [54] and Butera’s “paintable computing” hardware model [13]
implement computational fields using only the local view, and thus do not ensure well-formed domains. Similar local views
appear in a number of other approaches to computing with computational fields, such as TOTA [29], the chemical models
in [47], and Meld [1]. A number of region-based approaches to sensor network programming provide an explicit model of
fields, but either do not ensure well-formed domains (e.g., Abstract Regions [53]) or do provide well-formed domains (e.g.,
Regiment [34]) but not general computation. A number of parallel computing models also explicitly consider computational
fields, most notably StarLisp [27] and systolic computing (e.g., [21,41]). Both of these use a model of communication via
parallel shifting of data on a structured network, which could be implemented by chained neighbourhood operations in field
calculus. The στ -Linda model [50] proposes an extension of Linda with a few constructs for spreading tuples to form fields,
and adopting a notion of computation rounds very similar to the one we formalised. Similarly, the tiny calculus for fields in
[43] has an analogous function style (which is in fact inspired by Proto again), but aims at defining behaviourally tractable
fields, and hence it has much reduced expressiveness. More generally, while all of the key ingredients for programming
computational fields are supported in a number of different languages (see [7]), at present only Proto supports all five that
we found critical to include in the calculus. Critically, however, field calculus has been proven to be space–time univer-
sal [11], meaning that it is guaranteed to be able to express anything that can be expressed by these other computational
field approaches. In some cases, this is straightforward (e.g., the στ -Linda model can be implemented quite directly) while
in others the relationship is more complex (e.g., the shift operators in StarLisp, which assume a perfectly crystalline spatial
structure, coherent orientation relations, and tight time synchronization).

A number of other formal calculi have also been developed for parallel computations in structured environments, like
3π -calculus [14], Ambient calculus [15], and P-systems [37]: they all describe parallel computation over variously abstracted
notions of space. As a key example, Milner’s Bigraphs [31] have been proposed as a formal model to ground pervasive com-
puting applications, focusing on handling a dynamic notion of topology and locality of interactions. Most specifically, works

JID:SCICO AID:1962 /FLA [m3G; v1.169; Prn:1/12/2015; 16:57] P.20 (1-28)

20 F. Damiani et al. / Science of Computer Programming ••• (••••) •••–•••
such as [12,30] take bigraphs a step further easing the encoding of context-aware systems and deriving agent programs
from BRS modelling. Although theoretically the Bigraphs model has sufficient expressiveness to capture any computational
behaviour occurring on a dynamically evolving networked system, it does not capture the right abstractions to properly
deal with computational fields—hence, expressing the examples we provided in this paper would be cumbersome. More
generally, Bigraphs, and also the other calculi mentioned above, hardly express the functional nature of field computations,
and do not provide means to reason in terms of aggregate-level descriptions of distributed behaviour. Correspondingly, they
also lack the toolchain necessary to actually turn high-level system specifications into concrete systems.

A core operational semantics for discrete execution of Proto programs was developed in [44]. Although closely related
to the present one, it was a preliminary attempt extremely limited in the types of computations it could represent, since it
did not tackle the fully general problem of combining restriction, evolution, and recursive function calls (i.e. dynamically ex-
panding evaluation trees), which we have addressed through the idea of aligning annotated evaluation trees. Based on [44],
in [46] a full formalisation of discrete Proto was provided. This resulted in a rather large semantics aimed at a faithful
representation of every construct in Proto and of their execution by the platform—e.g., including an intricate technique for
optimising message size. The resulting model is then too complicated to readily use in proving language properties. In con-
trast, the operational semantics of CFC is general enough to cover all of Proto and many other spatial languages [7], and is
compact enough to be a suitable basis for tackling interesting properties.

The syntax of CFC is a subset of the syntax of Proto (which, being based on the syntax of the programming language Lisp,
is dynamically typed). We have defined a type inference system for CFC by building on the Hindley–Milner type inference
system [17] for ML-like functional languages. The difference w.r.t. standard Hindley–Milner type inference is the distinction
between local types and field types, which is crucial in order to guarantee domain alignment. Since we aimed to define a
minimal core calculus we have considered a minimal set of primitive types and type constructors (i.e., the types for booleans
and numerical values, and pairs)—other primitive types and type constructors can be straightforwardly added. Note that the
CFC calculus captures all the examples presented through the paper.

The type-soundness theorem (Theorem 7.3) is proved by using the standard technique of subject reduction and
progress [55]. However, the nature the operational semantics (which models the computation performed by a single device
at a single round of computation, which depends from the computation previously performed by the device’s neighbours)
introduced some challenging non-standard elements. For instance: the formalisation of the notion of well-formed tree en-
vironment (cf. Section A.1) for dealing with the fact that each round of computation depends on the neighbour’s evaluation
trees; the formalisation of the domain alignment property (Theorem 7.2) which is also needed to prove type soundness (the
proof of Theorem 7.3 uses the Lemma A.5); and the fact that the proof of the progress theorem (Theorem A.8) relies on the
subject-reduction theorem (namely the proof of Lemma A.7 uses Theorem A.6)—this is due to fact that both the operational
semantics rules [REP] and [FUN] encode a congruence rule possibly followed by a computation rule (cf. the discussion at the
end of Section 5.4).

10. Conclusion and future work

This paper presents for the first time a minimal calculus with a sound type system for spatial computing models. We
believe that our notion of static type system guaranteeing domain alignment and type soundness bootstraps investigations
on other important properties.

• A first line of research concerns studying behavioural properties, identifying fragments of the calculus guaranteed to
generate field computations with given properties. An initial work in this direction, as mentioned also in Section 8,
has been developed in [45], which identifies a fragment of CFC enjoying self-stabilisation, and paving the way towards
lightweight engineering of complex field computations. This work can be extended to provide a larger fragment guar-
anteeing self-stabilisation, as well as addressing new properties, e.g., addressing scale-independency of computations
(programs that have a predictable conformation of aggregate-level behaviour independent on the topology/density/tim-
ing of devices), and addressing dynamic aspects that pertain how quickly field computations repair to changes.

• A second line of research addresses the problem of universality and expressiveness. In [11] we proved CFC to be space–
time universal, i.e., that it can approximate any physically realizable program over continuous or discrete space and
time. This work can be extended in many ways to address important technical problems. First, there is a need for
deeper understanding of the relationship between continuous specifications and discrete realizations. Second, it may be
interesting to compare expressiveness of different fragments of the calculus, also against similar formalisms adopting
different primitives. In [18] we introduced an higher-order extension of CFC. Higher-order supports code mobility and
provides more expressiveness, however it opens new issues related to type-soundness and domain alignment. In future
work we would like to prove type-soundness and domain alignment for higher-order CFC.

• A third line of investigation is more practical and addresses development of the toolchain discussed in Section 8. As the
Protelis language and a basic supporting platform have been bootstrapped, next steps include adding a type inference
system to Protelis along the lines of the contribution of the present paper, as well as extending to automatically checking
self-stabilisation and other properties, improve platform support to address scalability and cloud-based techniques, and
finally to build rich APIs for rapid and effective engineering of spatial computing systems.

JID:SCICO AID:1962 /FLA [m3G; v1.169; Prn:1/12/2015; 16:57] P.21 (1-28)

F. Damiani et al. / Science of Computer Programming ••• (••••) •••–••• 21
In the long term, we believe CFC will serve as an important step toward identifying an engineering methodology for
developing spatial computing and coordination systems able to make use of complex yet predictably well-behaved self-
organising mechanisms [36], both in today’s and in emergent distributed computing scenarios.

Acknowledgements

We thank the anonymous FOCLASA and SCP referees for many useful comments and suggestions for improving the
presentation.

Appendix A. Proofs of Theorems 7.2 and 7.3

We say that: an expression type is closed to mean that it does not contain type variables and local type variables; and
a typing judgement D; X
 e : E is closed to mean that E is closed and all the expression types in the range of X are
closed.

In the following we consider a well-typed program P = Demain. The main expression emain of P is closed expression
and has a closed local type. Therefore, its typing derivation contains only closed typing judgements. In the following: we
write X
 e : E as short for the closed typing judgement D; X
 e : E , where the type-scheme environment D (which
is univocally determined by D) is left implicit; and always consider closed expression types and closed expression-type
environments. Moreover, given closed function type F′ , built in operator o,and a user-defined function d we write F′ ∈ F (o)

and F′ ∈ F (d) as short for

D(o) = ∀αβ.F and F′ = F[α := E][β := L] for some closed expression types E and closed local types L

and

D(d) = ∀αβ.F and F′ = F[α := E][β := L] for some closed expression types E and closed local types L,

respectively.

A.1. Typing runtime expressions and configurations

The following clause extends to the auxiliary function typeof , defined in Fig. 6 (middle), to field values:

typeof ({δ1 �→ l1}, . . . , {δn �→ ln}) = field(L) if n ≥ 1 and L = typeof (l1) = · · · = typeof (ln).

The predicate valueHasType(δ, �, v, E) checks whether the runtime value v is of type E w.r.t. the tree environment � on
device δ. It is defined by the following clauses:

valueHasType(δ,�,l, L) = true, if typeof (l) = L
valueHasType(δ,�,φ,�) = true, if dom(φ) = dom(�), δ and typeof (φ) = �

valueHasType(δ,�,v, E) = false, otherwise

Given a variable environment 	 and a type environment X we write valueHasType(δ, �, 	, X) to mean that

dom() = dom(X) and (for all x ∈ dom()) valueHasType(δ,�,	(x),X (x)).

We introduce three type systems for runtime expressions, for typing: initial configurations, final configurations, and
(possibly non-initial and non-final) configurations, respectively (cf. Section 7.2).8

• The typing rules for final runtime expressions (judgement δuid; �; X
f a·v : E) are reported in Fig. 8.

• The typing rules for initial runtime expressions (judgement δuid; �; X
i a·◦ : E) are reported in Fig. 9.

• The typing rules for runtime expressions (judgement δuid; �; X
r e : E) are reported in Fig. 10. Note that rules
[R-FINAL] and [R-FUN-BODY] use the typing judgment for final runtime expressions in the premises, while rules [R-COND],
[R-THEN], [R-ELSE], [R-FUN-ARG] use the typing judgment for initial runtime expressions in the premises.

Given a subexpression e of emain such that X
 e : E , the set of well-formed tree environments for e in a device δ, denoted
by WFTE(δ, e), is inductively defined as follows:

(δ1 �→ e1, . . . , δn �→ en) ∈ WFTE(δ,e) (n ≥ 0) if δ /∈ {δ1, . . . , δn} and for all i ∈ 1..n

8 Introducing specialized type systems for initial and final configurations simplifies the formulation of the type system for (possibly non-initial and
non-final) configuration.

JID:SCICO AID:1962 /FLA [m3G; v1.169; Prn:1/12/2015; 16:57] P.22 (1-28)

22 F. Damiani et al. / Science of Computer Programming ••• (••••) •••–•••
Final runtime-expression typing: δuid; �; X
f a·v : E

[F-VAR]
valueHasType(δ,�,v, E)

δ; �; (X ,x : E)
f x·v : E

[F-LOCAL]
valueHasType(δ,�,l, L)

δ; �; X
f l·l : L

[F-NBR]
δ; π(nbr [])(�); X
f e : L valueHasType(δ,�,φ,�)

δ; �; X
f (nbr e)·φ : �
[F-THEN]
δ; π(if [] e1 e)(�); X
f a·t : bool
δ; π(if a·t [] e)(�); X
f e1 : L X
 e : L

δ; �; X
f (if a·t e1 e)·l : L
[F-ELSE]
δ; π(if [] e e2)(�); X
f a·f : bool
X
 e : L δ; π(if a·f e [])(�); X
f e2 : L

δ; �; X
f (if a·f e e2)·l : L
[F-REP]
X (w) = L δ; π(repl x w [])(�); X [x : L]
f e : L

δ; �; X
f (repl x w e)·l : L
[F-OP]
E1 · · · En → E ∈ F (o)

for all i ∈ 1..n : δ; π(o e1 ...ei−1 [] ei+1 ...en)(�); X
f ei : Ei valueHasType(δ,�,v, E)

δ; �; X
f (o e1 · · · en)·v : E
[F-FUN]
(def d(x1 · · ·xn) e) E1 · · · En → E ∈ F (d)

(for all i ∈ 1..n) δ; π(da e1 ...ei−1 [] ei+1 ...en)(�); X
f ei : Ei

δ; π(d[] e1 ···en)(�); X [x1 : E1, . . .xn : En]
f a·v : E valueHasType(δ,�,v, E)

δ; �; X
f (da e1 · · · en)·v : E

Fig. 8. Typing rules for final runtime expressions.

– |ei | = e, and
– there exists �i ∈ WFTE(δi, e) such that δi; �i; X
f ei : E;

We say that a configuration 〈δ, �, e〉 such that |e| = emain and � ∈ WFTE(δ, emain) is

• a well-typed final configuration if δ; �; •
f e : L;
• a well-typed initial configuration if δ; �; •
i e : L; and
• a well-typed configuration if δ; �; •
r e : L.

A.2. Auxiliary properties and proofs

The following lemma guarantees that the projection operator π (cf. Section 5.3) preserves well-formedness of tree envi-
ronments.

Lemma A.1 (Projection π preserves well-formedness of tree environments). Let e be a subexpression of emain. If � ∈ WFTE(δ, e),
|e| = e and e = (A[e′])·v̊ then πA(�) ∈ WFTE(δ, |e′|).

Proof. By induction on well-formed tree environments. The tree environment � must be of the form (δ1 �→ e1, . . . , δn �→ en)

(n ≥ 0) with (for all i ∈ 1..n) δ �= δi , |ei | = e and (for some �i ∈ WFTE(δi, e)) δi; �i; X
f ei : E .

Case n = 0. Immediate.
Case n ≥ 1. Straightforward by induction, with a case analysis of the last rule used the derivations δi ; �i; X
f ei : E . �

The following lemma guarantees that the initial configuration of a well-typed program (according to system
 in Fig. 6)
at the first round of computation is a well-typed initial configuration (according to system
i).

Lemma A.2 (From surface to initial-runtime typing). Let e be a subexpression of emain. If X
 e : E and � ∈ WFTE(δ, e), then
δ; �; X
i e : E.

JID:SCICO AID:1962 /FLA [m3G; v1.169; Prn:1/12/2015; 16:57] P.23 (1-28)

F. Damiani et al. / Science of Computer Programming ••• (••••) •••–••• 23
Initial runtime expression typing: δuid; �; X
i a·◦ : E

[I-VAR]

δ; �; (X ,x : E)
i x·◦ : E

[I-LOCAL]
valueHasType(δ,�,l, L)

δ; �; X
i l·◦ : L

[I-NBR]
δ; π(nbr [])(�); X
i a·◦ : L

δ; �; X
i (nbr a·◦)·◦ : �
[I-THEN]
δ; π(if [] a1 ·◦ e)(�); X
i a·◦ : bool
δ; π(if a·t [] e)(�); X
i a1·◦ : L X
 e : L

δ; �; X
i (if a·◦ a1·◦ e)·◦ : L
[I-ELSE]
δ; π(if [] e a2 ·◦)(�); X
i a·◦ : bool
X
 e : L δ; π(if a·f e [])(�); X
i a2·◦ : L

δ; �; X
i (if a·◦ e a2·◦)·◦ : L
[I-REP]
X (w) = L δ; π

(repl̊ x w [])(�); X [x : L]
i a·◦ : L

δ; �; X
i (repl̊ x w a·◦)·◦ : L
[I-OP]
E1 · · · En → E ∈ F (o)

for all i ∈ 1..n : δ; π(o e1 ...ei−1 [] ei+1 ...en)(�); X
i ei : Ei

δ; �; X
i (o e1 · · · en)·◦ : E
[I-FUN-NULL]
(def d(x1 · · ·xn) e) E1 · · · En → E ∈ F (d)

(for all i ∈ 1..n) δ; π(d◦ e1 ...ei−1 [] ei+1 ...en)(�); X
i ei : Ei

δ; �; X
i (d◦ e1 · · · en)·◦ : E
[I-FUN]
(def d(x1 · · ·xn) e) E1 · · · En → E ∈ F (d)

(for all i ∈ 1..n) δ; π(da e1 ...ei−1 [] ei+1 ...en)(�); X
i ei : Ei

δ; π(d[] e1 ···en)(�); X [x1 : E1, . . .xn : En]
i a·◦ : E

δ; �; X
i (da e1 · · · en)·◦ : E

Fig. 9. Typing rules for initial runtime expressions.

Proof. By induction on a derivation of X
 e : E .

Cases [ST-VAR] and [ST-LOCAL]. Immediate by rules [I-VAR] and [I-LOCAL], respectively.
Case [ST-IF]. Straightforward by induction, using any of rules [I-THEN] and [I-ELSE].
Cases [ST-NBR], [ST-REP], [ST-OP] and [ST-FUN]. Straightforward by induction, using rules [I-NBR], [I-REP], [I-OP] and [I-FUN-NULL], respec-

tively. �
The following lemma guarantees that the initial configuration of a well-typed program in all the subsequent rounds of

computation is a well-typed initial configuration (according to system
i).

Lemma A.3 (From final- to initial-runtime typing). Let e be a subexpression of emain. If �, �′ ∈ WFTE(δ, e), |e| = e and
δ; �; X
f e : E then δ; �′; X
i init(e) : E.

Proof. By induction on a derivation of δ; �; X
f e : E (using Lemma A.1). First observe that the expression e must be of
the form a·v (for some auxiliary rte a and value v) and recall that init(a·v) is the runtime expression obtained from a·v by
dropping all annotations (not superscripts).

Cases [F-VAR] and [F-LOCAL]. Immediate by rules [I-VAR] and [I-LOCAL], respectively.
Cases [F-NBR], [F-THEN], [F-ELSE], [F-REP], [F-OP] and [F-FUN]. Straightforward by induction, using rules [I-NBR], [I-THEN], [I-ELSE], [I-REP],

[I-OP] and [I-FUN], respectively. �
The following lemma guarantees that a well-typed initial configuration (according to system
i) is a well-typed configu-

ration (according to system
r).

JID:SCICO AID:1962 /FLA [m3G; v1.169; Prn:1/12/2015; 16:57] P.24 (1-28)

24 F. Damiani et al. / Science of Computer Programming ••• (••••) •••–•••
Runtime expression typing: δuid; �; X
r e : E

[R-FINAL]
δ; �; X
f a·v : E

δ; �; X
r a·v : E

[R-VAR]

δ; �; (X ,x : E)
r x·◦ : E

[R-LOCAL]
valueHasType(δ,�,l, L)

δ; �; X
r l·◦ : L
[R-NBR]
δ; π(nbr [])(�); X
r e : L

δ; �; X
r (nbr e)·◦ : �
[R-COND]
δ; π(if [] e1 e2)(�); X
r a·l̊ : bool
δ; π(if a·t [] e2)(�); X
i e1 : L δ; π(if a·f e1 [])(�); X
i e2 : L

δ; �; X
r (if a·l̊ e1 e2)·◦ : L
[R-THEN]
δ; π(if [] e1 e2)(�); X
r a·t : bool
δ; π(if a·t [] e2)(�); X
r e1 : L δ; π(if a·f e1 [])(�); X
i e2 : L

δ; �; X
r (if a·t e1 e2)·◦ : L
[R-ELSE]
δ; π(if [] e1 e2)(�); X
r a·f : bool
δ; π(if a·t [] e2)(�); X
i e1 : L δ; π(if a·f e1 [])(�); X
r e2 : L

δ; �; X
r (if a·f e1 e2)·◦ : L
[R-REP]
X (w) = L δ; π

(repl̊ x w [])(�); X [x : L]
r a·◦ : L

δ; �; X
r (repl̊ x w a·◦)·◦ : L
[R-OP]
E1 · · · En → E ∈ F (o)

for all i ∈ 1..n : δ; π(o e1 ...ei−1 [] ei+1 ...en)(�); X
r ei : Ei

δ; �; X
r (o e1 · · · en)·◦ : E
[R-FUN-NULL]
(def d(x1 · · ·xn) e) E1 · · · En → E ∈ F (d)

(for all i ∈ 1..n) δ; π(d◦ e1 ...ei−1 [] ei+1 ...en)(�); X
r ei : Ei

δ; �; X
r (d◦ e1 · · · en)·◦ : E
[R-FUN-ARG]
(def d(x1 · · ·xn) e) E1 · · · En → E ∈ F (d)

(for all i ∈ 1..n) δ; π(da e1 ...ei−1 [] ei+1 ...en)(�); X
r ei : Ei

δ; π(d[] e1 ···en)(�); X [x1 : E1, . . .xn : En]
i a·◦ : E

δ; �; X
r (da e1 · · · en)·◦ : E
[R-FUN-BODY]
(def d(x1 · · ·xn) e) E1 · · · En → E ∈ F (d)

(for all i ∈ 1..n) δ; π(da e1 ...ei−1 [] ei+1 ...en)(�); X
f ei : Ei

δ; π(d[] e1 ···en)(�); X [x1 : E1, . . .xn : En]
r a·◦ : E

δ; �; X
r (da e1 · · · en)·◦ : E

Fig. 10. Typing rules for runtime expressions.

Lemma A.4 (From initial-runtime to runtime typing). Let e be a subexpression of emain. If � ∈ WFTE(δ, e), |e| = e and
δ; �; X
i e : E then δ; �; X
r e : E.

Proof. By induction on a derivation of δ; �; X
i e : E (using Lemma A.1).

Cases [I-VAR] and [I-LOCAL]. Immediate by rules [R-VAR] and [R-LOCAL], respectively.
Cases [I-NBR], [I-THEN], [I-ELSE], [I-REP], [TI-OP], [I-FUN-NULL] and [I-FUN]. Straightforward by induction, using rules [R-NBR], [R-THEN], [R-

ELSE], [R-REP], [R-OP], [R-FUN-NULL] and [R-FUN-ARG], respectively. �
The following lemma guarantees that the domain of every field value occurring in a well-typed configuration consists of

the identifiers of the aligned neighbours and of the identifier of the uid device.

Lemma A.5 (Domain alignment). Let e be a subexpression of emain. Suppose � ∈ WFTE(δ, e), |e| = e and δ; �; X
f e : E. If e = a·φ
then dom(φ) = dom(�) ∪ {δ}.

Proof. By induction on a derivation of δ; �; X
f e : E (using Lemma A.1).

JID:SCICO AID:1962 /FLA [m3G; v1.169; Prn:1/12/2015; 16:57] P.25 (1-28)

F. Damiani et al. / Science of Computer Programming ••• (••••) •••–••• 25
Cases [F-VAR] and [F-LOCAL]. Immediate.
Cases [F-NBR], [F-THEN], [F-ELSE], [F-REP], [F-OP] and [F-FUN]. Straightforward by induction. �

The subject reduction theorem guarantees that reducing a well-typed configuration produces a well-typed configuration.

Theorem A.6 (Subject reduction). Let e be a subexpression of emain. If � ∈ WFTE(δ, e), |e| = e, δ; �; X
r e : E, valueHasType(δ,
�, 	, X) and δ;�;	
 e → e′ , then |e′| = |e| and δ; �; X
r e′ : E.

Proof. By induction on a derivation of δ;�;	
 e → e′ with a case analysis of the reduction rule used.

Case [VAL]. e = l·◦, e′ = l·l and (by rule [R-LOCAL]) δ; �; X
r l·◦ : L. Then by rules [F-LOCAL] and [R-FINAL] we have
δ; �; X
r l·l : L.

Case [VAR]. e = x·◦, e′ = x·v (with v = 	(x)|dom(�),δ) and (by rule [R-VAR]) δ; �; X
r x·◦ : E . Then by rules [F-VAR] and
[R-FINAL] we have δ; �; X
r x·v : E .

Case [NBR]. e = (nbr a·l)·◦, e′ = (nbr a·l)·φ (with φ = (π(nbr [])(�), δ �→ l)) and (by rule [R-NBR]) δ; �; X
r e : �. We
have δ; �; X
f a·l : L (which is the premise of rule [R-NBR]). Then by rules [F-NBR] and [R-FINAL] we have
δ; �; X
r e′ : �.

Case [OP]. e = (o a·v)·◦, e′ = (o a·v)·v (with v = ε(o, v)) and (by rule [R-OP]) δ; �; X
r e : E . We have
O(d) = E1 · · · En → E , and
for all i ∈ 1..n : δ; π(o e1...ei−1 [] ei+1...en)(�); X
f ei : Ei and ei = ai ·vi
(which are the premise of rule [R-OP]). Then by rules [F-OP] and [R-FINAL] we have δ; �; X
r e′ : E .

Case [THEN]. e = (if a·t a′·l e2)·◦, e′ = (if a·t a′·l |e2|)·l and (by rule [R-THEN]) δ; �; X
r e : L. We have
δ; π(if [] a′·l e2)(�); X
f a·t : bool,
δ; π(if a·t [] e2)(�); X
f a′·l : L, and
δ; π(if a·f a′·l [])(�); X
i e2 : L
(which are the premise of rule [R-THEN]). Since |e2| is a well-typed source expression, we have X
 |e2| : L. Then

by rules [F-THEN] and [R-FINAL] we have δ; �; X
r e′ : L.
Case [ELSE]. Similar to case [THEN] above.
Case [CONG]. By case analysis of the congruence context C used by rule [CONG] and of the typing rule used for deriving the

judgement δ; �; X
r e : E .

Subcase (nbr []). Typing rule [R-NBR]. Straightforward by induction.
Subcase (ds e [] e). Either typing rule [R-FUN-NULL] (if s = ◦) or typing rule [R-FUN-ARG] (if s �= ◦). Both cases are

straightforward by induction.
Subcase (o e [] e). Typing rule [R-OP]. Straightforward by induction.
Subcase (if [] e e). Typing rule [R-COND]. Straightforward by induction.
Subcase (if a·t [] e). Typing rule [R-THEN]. Straightforward by induction.
Subcase (if a·f e []). Typing rule [R-ELSE]. Straightforward by induction.

Case [REP]. e = (repl̊1 x w a)·◦, e′ = (repl̊1�l̊2 x w a′·l̊2)·l̊2 and (by rule [R-REP]) δ; �; X
r e : L. We have
X (w) = L, and
δ; π

(rep ˚l1 x w [])(�); X [x : L]
r a·◦ : L

(which are the premises of rule [R-REP]). By induction we have

δ; π
(rep ˚l1 x w [])(�); X [x : L]
r a′·l̊2 : L. (1)

We have two subcases.

Subcase l̊2 = ◦ Then, from (1) by rule [R-NBR], we have δ; �; X
r e′ : L.
Subcase l̊2 = l2 Judgement (1) is derived by rule [R-FINAL] and we have

δ; π
(rep ˚l1 x w [])(�); X [x : L]
f a′·l2 : L (which is the premise of rule [R-FINAL]). Then by rules [F-REP]

and [R-FINAL] we have δ; �; X
r e′ : L.

Case [FUN]. e = (ds a·v)·◦, e′ = (da a·v)·v̊, O(d) = E1 · · · En → E , (def d(x1 · · ·xn) e0), and

δ; �; X
r e : E. (2)

We have two subcases.

Subcase s= ◦ Judgement (2) is derived by rule [R-FUN-NULL]. We have

(for all i ∈ 1..n:) δ; π(d◦ e ...e [] e ...en)(�); X
r ei : Ei where ei = ai ·vi (3)
1 i−1 i+1

JID:SCICO AID:1962 /FLA [m3G; v1.169; Prn:1/12/2015; 16:57] P.26 (1-28)

26 F. Damiani et al. / Science of Computer Programming ••• (••••) •••–•••
(which are premises of rule [R-FUN-NULL]) and

(for all i ∈ 1..n:) δ; π(d◦ e1...ei−1 [] ei+1...en)(�); X
f ei : Ei (4)

(since the premises of rule [R-FUN-NULL] must be derived by rule [R-FINAL]). Since |e0| is a well-typed source
expression we have X
 |e0| : E and (by Lemmas A.2 and A.4) δ; �; X [x1 : E1, . . .xn : En]
r e0 : E . By
induction we have

δ; �; X [x1 : E1, . . .xn : En]
r a·v̊ : E. (5)

We have two subcases.

Subcase v̊ = ◦ Then, from (3) and (5) by rule [R-FUN-BODY], we have δ; �; X
r e′ : L.
Subcase v̊ = v Judgement (5) is derived by rule [R-FINAL] and we have

δ; �; X [x1 : E1, . . .xn : En]
f a·v : E (which is the premise of rule [R-FINAL]). Then, from this
judgement and (4), by rules [F-FUN] and [R-FINAL] we have δ; �; X
r e′ : L.

Subcase s= a0 Judgement (2) is derived by rule [R-FUN-BODY]. We have

(for all i ∈ 1..n:) δ; π(d◦ e1...ei−1 [] ei+1...en)(�); X
f ei : Ei where ei = ai ·vi (6)

δ; π(d[] e1···en)(�); X [x1 : E1, . . .xn : En]
r a0·◦ : E

(which are premises of rule [R-FUN-BODY]). By induction we have

δ; �; X [x1 : E1, . . .xn : En]
r a·v̊ : E. (7)

We have two subcases.

Subcase v̊ = ◦ Then, from (6) and (7) by rule [R-FUN-BODY], we have δ; �; X
r e′ : L.
Subcase v̊ = v Judgement (7) above must have been derived by rule [R-FINAL] and we have

δ; �; X [x1 : E1, . . .xn : En]
f a·v : E (which is the premise of rule [R-FINAL]). Then from this
judgement and (6) by rules [F-FUN] and [R-FINAL] we have δ; �; X
r e′ : L. �

The progress theorem guarantees that if a non-final configuration is well typed then some reduction rule is applicable.
We first prove the following auxiliary lemma.

Lemma A.7 (Progress). Let e be a subexpression of emain. Suppose � ∈ WFTE(δ, e), |e| = e, δ; �; X
r e : E and valueHasType(δ,
�,	, X).

1. If e = x·◦, then x ∈ dom().
2. If e = (nbr a·v)·◦ and π(nbr [])(�) = (δ �→ a·v), then vv are local values.
3. If e = (ifa·v e1 e2)·◦, then v is a Boolean value.
4. If e = (ifa·t a′·v e)·◦, then v is a local value.
5. If e = (ifa·f e a′·v)·◦, then v is a local value.
6. If e = (rep◦ x x′ a)·◦, then x′ ∈ dom().
7. If e = (repl̊1 x w a)·◦ and δ; π

(rep ˚l1 x w [])(�); 	, (x := ((w) � l̊1))
 a → a′·v, then v is a local value.

8. If e = (o a·v)·◦, then exec(o, v) is defined.
9. If e = (ds a·v)·◦, then (def d(x) e) and (x) = (v).

Proof.

1. Straightforward by inspecting rule [R-VAR].
2. Straightforward by inspecting rule [R-NBR], using the hypothesis � ∈ WFTE(δ, e).
3. Straightforward by inspecting rules [R-COND], [R-THEN] and [R-ELSE].
4. Straightforward by inspecting rule [R-THEN].
5. Straightforward by inspecting rule [R-ELSE].
6. Straightforward by inspecting rule [R-REP], using the hypothesis valueHasType(δ,�,	,X).
7. Straightforward by inspecting rule [R-REP], using Theorem A.6.
8. Straightforward by inspecting rule [R-OP], using Lemma A.5 (recall that ε(o, v1, · · · , vn) is defined only if all the field

values in v1, . . . , vn have the same domain, cf. end of Section 5.1).
9. Straightforward by inspecting rules [R-FUN-NULL], [R-FUN-ARG] and [R-FUN-BODY]. �

We can now prove the progress theorem.

JID:SCICO AID:1962 /FLA [m3G; v1.169; Prn:1/12/2015; 16:57] P.27 (1-28)

F. Damiani et al. / Science of Computer Programming ••• (••••) •••–••• 27
Theorem A.8 (Progress). Let e be a subexpression of emain. If � ∈ WFTE(δ, e), |e| = e, δ; �; X
r e : E and valueHasType(δ, �, 	,

X), then either e = a·v (for some a and v) or δ; �; 	
 e →.

Proof. According to the rules in Fig. 5, reduction gets stuck (i.e., it has reached a normal form that is not evaluated) only
when:

1. In rule [VAR] a variable not in dom() is found.
2. In rule [NBR] an attempt to build an ill-formed field (i.e., a “field” that maps at least one device to a value that is not a

local value) is made.
3. The condition of an if-expression evaluated to a not Boolean value.
4. In rule [THEN] the condition of the left branch of the if-expression evaluated to a field value.
5. In rule [ELSE] the condition of the right branch of the if-expression evaluated to a field value.
6. The second argument of a rep-expression is a variable that is not in dom().
7. The third argument of a rep-expression evaluated to a field value.
8. In rule [OP] the operator o is not defined on values v (this includes the case when the number of the values v is different

from the number of arguments required by o).
9. The number of actual parameters of a function call is different from the number of formal parameters in the definition

of the function.

Therefore the proof is straightforward by Lemma A.7. �
We are now able to prove the domain-alignment and type-soundness theorems.

Restatement of Theorem 7.2 (Domain alignment). For every well-typed program P and every device δ, if 〈δ, �, e〉 ∈ RC(δ, P) and
δ; �; •
 e → e′ (for some e′) then every subreduction δ; �0; 	
 e1 → e2 in the reduction δ; �; •
 e → e′ is such that if e2 = a·φ
then dom(φ) = dom(�0) ∪ {δ}.

Proof. Straightforward by Lemmas A.2, A.3 and A.5 and Theorem A.6. �
Restatement of Theorem 7.3 (Type soundness). For every well-typed program P and every device δ, if 〈δ, �, e〉 ∈ RC(δ, P) and
δ; �; •
 e �→, then 〈δ, �, e〉 is evaluated.

Proof. Straightforward by Lemmas A.2, A.3, A.4 and Theorems A.6 and A.8. �
References

[1] M.P. Ashley-Rollman, S.C. Goldstein, P. Lee, T.C. Mowry, P. Pillai, Meld: a declarative approach to programming ensembles, in: IEEE International Con-
ference on Intelligent Robots and Systems, IROS ’07, 2007, pp. 2794–2800.

[2] J. Bachrach, J. Beal, Building spatial computers, Technical report MIT-CSAIL-TR-2007-017, MIT, March 2007.
[3] J. Bachrach, J. Beal, J. Horowitz, D. Qumsiyeh, Empirical characterization of discretization error in gradient-based algorithms, in: IEEE International

Conference on Self-Adaptive and Self-Organizing Systems, SASO 2008, October 2008.
[4] J. Beal, Engineered self-organization approaches to adaptive design, in: R. Roy, E. Shehab, C. Hockley, S. Khan (Eds.), 1st International Conference on

Through-Life Engineering Services, Cranfield University Press, November 2012, pp. 35–42.
[5] J. Beal, J. Bachrach, Infrastructure for engineered emergence in sensor/actuator networks, IEEE Intell. Syst. 21 (March/April 2006) 10–19.
[6] J. Beal, J. Bachrach, D. Vickery, M. Tobenkin, Fast self-healing gradients, in: Proceedings of ACM SAC 2008, ACM, 2008, pp. 1969–1975.
[7] J. Beal, S. Dulman, K. Usbeck, M. Viroli, N. Correll, Organizing the aggregate: languages for spatial computing, in: M. Mernik (Ed.), Formal and Practical

Aspects of Domain-Specific Languages: Recent Developments, IGI Global, 2013, pp. 436–501, chapter 16, a longer version available at http://arxiv.org/
abs/1202.5509.

[8] J. Beal, D. Pianini, M. Viroli, Aggregate programming for the Internet of things, IEEE Comput. 48 (9) (2015).
[9] J. Beal, M. Viroli, Building blocks for aggregate programming of self-organising applications, in: Eighth IEEE International Conference on Self-Adaptive

and Self-Organizing Systems Workshops, SASOW 2014, London, United Kingdom, September 8–12, 2014, 2014, pp. 8–13.
[10] J. Beal, M. Viroli, Space–time programming, Philos. Trans. R. Soc. Lond. A, Math. Phys. Eng. Sci. 373 (2046) (2015).
[11] J. Beal, M. Viroli, F. Damiani, Towards a unified model of spatial computing, in: 7th Spatial Computing Workshop, SCW 2014, AAMAS 2014, Paris,

France, May 2014.
[12] L. Birkedal, S. Debois, E. Elsborg, T.T. Hildebrandt, H. Niss, Biographical models of context-aware systems, in: L. Aceto, A. Ingólfsdóttir (Eds.), Foundations

of Software Science and Computation Structures, 9th International Conference, FOSSACS 2006, Held as Part of the Joint European Conferences on Theory
and Practice of Software. Proceedings, ETAPS 2006, Vienna, Austria, March 25–31, 2006, 2006, pp. 187–201.

[13] W. Butera, Programming a paintable computer, PhD thesis, MIT, Cambridge, MA, USA, 2002.
[14] L. Cardelli, P. Gardner, Processes in space, in: 6th Conference on Computability in Europe, in: Lecture Notes in Computer Science, vol. 6158, Springer,

2010, pp. 78–87.
[15] L. Cardelli, A.D. Gordon, Mobile ambients, Theor. Comput. Sci. 240 (1) (June 2000) 177–213.
[16] S.S. Clark, J. Beal, P. Pal, Distributed recovery for enterprise services, in: Proceedings of the IEEE Conference on Self-Adaptive and Self-Organising

Systems 2015, SASO 2015, September 2015, pp. 111–120.
[17] L. Damas, R. Milner, Principal type-schemes for functional programs, in: Symposium on Principles of Programming Languages, POPL ’82, ACM, 1982,

pp. 207–212.

http://refhub.elsevier.com/S0167-6423(15)00357-3/bib4D656C64s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib4D656C64s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib70726F746F6B65726E656Cs1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib4265616C5361736F3038s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib4265616C5361736F3038s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib4265616C544553636F6E663132s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib4265616C544553636F6E663132s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib70726F746F303661s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib637266s1
http://arxiv.org/abs/1202.5509
http://arxiv.org/abs/1202.5509
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib4250562D434F4D505554455232303135s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib42562D464F43415332303134s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib42562D464F43415332303134s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib42562D5054525332303135s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib4256442D5343573134s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib4256442D5343573134s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib44424C503A636F6E662F666F73736163732F4269726B6564616C4445484E3036s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib44424C503A636F6E662F666F73736163732F4269726B6564616C4445484E3036s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib44424C503A636F6E662F666F73736163732F4269726B6564616C4445484E3036s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib627574657261s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib44424C503A636F6E662F6369652F43617264656C6C69473130s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib44424C503A636F6E662F6369652F43617264656C6C69473130s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib616D6269656E7473s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib44697374726962757465645265636F766572795341534F32303135s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib44697374726962757465645265636F766572795341534F32303135s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib44616D61732D4D696C6E65723A504F504C2D31393832s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib44616D61732D4D696C6E65723A504F504C2D31393832s1

JID:SCICO AID:1962 /FLA [m3G; v1.169; Prn:1/12/2015; 16:57] P.28 (1-28)

28 F. Damiani et al. / Science of Computer Programming ••• (••••) •••–•••
[18] F. Damiani, M. Viroli, D. Pianini, J. Beal, Code mobility meets self-organisation: a higher-order calculus of computational fields, in: S. Graf,
M. Viswanathan (Eds.), Formal Techniques for Distributed Objects, Components, and Systems, in: LNCS, vol. 9039, Springer International, 2015,
pp. 113–128.

[19] M. Egerstedt, X. Hu, Formation constrained multi-agent control, IEEE Trans. Robot. Autom. 17 (6) (2001) 947–951.
[20] N. Elhage, J. Beal, Laplacian-based consensus on spatial computers, in: AAMAS 2010, 2010.
[21] B.R. Engstrom, P.R. Cappello, The SDEF programming system, J. Parallel Distrib. Comput. 7 (2) (1989) 201–231.
[22] M. Eysholdt, H. Behrens, Xtext: implement your language faster than the quick and dirty way, in: Proceedings of the ACM International Conference

Companion on Object Oriented Programming Systems Languages and Applications Companion, ACM, 2010, pp. 307–309.
[23] J. Fernandez-Marquez, G. Marzo Serugendo, S. Montagna, M. Viroli, J. Arcos, Description and composition of bio-inspired design patterns: a complete

overview, Nat. Comput. 12 (1) (2013) 43–67.
[24] M.M. Haklay, P. Weber, Openstreetmap: user-generated street maps, IEEE Pervasive Comput. 7 (4) (Oct. 2008) 12–18.
[25] D. Helbing, A. Johansson, Pedestrian, crowd and evacuation dynamics, in: Encyclopedia of Complexity and Systems Science, Springer, 2009,

pp. 6476–6495.
[26] A. Igarashi, B.C. Pierce, P. Wadler, Featherweight Java: a minimal core calculus for Java and GJ, ACM Trans. Program. Lang. Syst. 23 (3) (2001).
[27] C. Lasser, J. Massar, J. Miney, L. Dayton, Starlisp reference manual, Thinking Machines Corporation, 1988.
[28] M. Mamei, R. Menezes, R. Tolksdorf, F. Zambonelli, Case studies for self-organization in computer science, J. Syst. Archit. 52 (8–9) (2006) 443–460.
[29] M. Mamei, F. Zambonelli, Programming pervasive and mobile computing applications: the tota approach, ACM Trans. Softw. Eng. Methodol. 18 (4)

(2009) 1–56.
[30] A. Mansutti, M. Miculan, M. Peressotti, Multi-agent systems design and prototyping with bigraphical reactive systems, in: K. Magoutis, P. Pietzuch

(Eds.), Distributed Applications and Interoperable Systems—14th IFIP WG 6.1 International Conference, DAIS 2014, Held as Part of the 9th International
Federated Conference on Distributed Computing Techniques, 2014. Proceedings, DisCoTec 2014, Berlin, Germany, June 3–5, 2014, pp. 201–208.

[31] R. Milner, Pure bigraphs: structure and dynamics, Inf. Comput. 204 (1) (2006) 60–122.
[32] R. Milner, M. Tofte, D. Macqueen, The Definition of Standard ML, MIT Press, Cambridge, MA, USA, 1997.
[33] MIT Proto, Software available at http://proto.bbn.com/, retrieved January 1st, 2012.
[34] R. Newton, M. Welsh, Region streams: functional macroprogramming for sensor networks, in: First International Workshop on Data Management for

Sensor Networks, DMSN, Aug. 2004, pp. 78–87.
[35] R. Olfati-Saber, Flocking for multi-agent dynamic systems: algorithms and theory, IEEE Trans. Autom. Control 51 (3) (March 2006).
[36] A. Omicini, M. Viroli, Coordination models and languages: from parallel computing to self-organisation, Knowl. Eng. Rev. 26 (1) (Mar. 2011) 53–59,

special issue 01 (25th anniversary issue).
[37] G. Paun, Computing with membranes, J. Comput. Syst. Sci. 61 (1) (2000) 108–143.
[38] D. Pianini, S. Montagna, M. Viroli, Chemical-oriented simulation of computational systems with Alchemist, J. Simul. 7 (2013) 202–215.
[39] D. Pianini, M. Viroli, J. Beal, Protelis: practical aggregate programming, in: Proceedings of the 30th Annual ACM Symposium on Applied Computing,

Salamanca, Spain, April 13–17, 2015, 2015, pp. 1846–1853.
[40] D. Pianini, M. Viroli, F. Zambonelli, A. Ferscha, Hpc from a self-organisation perspective: the case of crowd steering at the urban scale, in: 2014

International Conference on High Performance Computing Simulation, HPCS, July 2014, pp. 460–467.
[41] F. Raimbault, D. Lavenier, Relacs for systolic programming, in: Int’l Conf. on Application-Specific Array Processors, October 1993, pp. 132–135.
[42] J.-J. Slotine, W. Wang, A study of synchronization and group cooperation using partial contraction theory, Coop. Control (2005) 443–446.
[43] M. Viroli, Engineering confluent computational fields: from functions to rewrite rules, in: Spatial Computing Workshop, SCW 2013, AAMAS 2013, Saint

Paul, Minnesota, USA, May 2013.
[44] M. Viroli, J. Beal, M. Casadei, Core operational semantics of Proto, in: Proceedings of ACM SAC 2011, ACM, 21–25 Mar. 2011, pp. 1325–1332.
[45] M. Viroli, J. Beal, F. Damiani, D. Pianini, Efficient engineering of complex self-organising systems by self-stabilising fields, in: Proceedings of the IEEE

Conference on Self-Adaptive and Self-Organising Systems 2015, SASO 2015, September 2015, pp. 81–90.
[46] M. Viroli, J. Beal, K. Usbeck, Operational semantics of proto, Sci. Comput. Program. 78 (6) (June 2013) 633–656.
[47] M. Viroli, M. Casadei, S. Montagna, F. Zambonelli, Spatial coordination of pervasive services through chemical-inspired tuple spaces, ACM Trans. Auton.

Adapt. Syst. 6 (2) (June 2011) 14:1–14:24.
[48] M. Viroli, M. Casadei, A. Omicini, A framework for modelling and implementing self-organising coordination, in: Proceedings of ACM SAC 2009, Volume

III, 8–12 Mar. 2009, ACM, 2009, pp. 1353–1360.
[49] M. Viroli, F. Damiani, J. Beal, A calculus of computational fields, in: C. Canal, M. Villari (Eds.), Advances in Service-Oriented and Cloud Computing, in:

Commun. Comput. Inf. Sci., vol. 393, Springer Berlin Heidelberg, 2013, pp. 114–128.
[50] M. Viroli, D. Pianini, J. Beal, Linda in space–time: an adaptive coordination model for mobile ad-hoc environments, in: Proceedings of Coordination

2012, in: Lecture Notes in Computer Science, vol. 7274, Springer, 2012, pp. 212–229.
[51] M. Viroli, D. Pianini, S. Montagna, G. Stevenson, Pervasive ecosystems: a coordination model based on semantic chemistry, in: S. Ossowski, P. Lecca,

C.-C. Hung, J. Hong (Eds.), 27th Annual ACM Symposium on Applied Computing, SAC 2012, Riva del Garda, TN, Italy, 26–30 March 2012, ACM, 2012,
pp. 295–302.

[52] M. Viroli, D. Pianini, S. Montagna, G. Stevenson, F. Zambonelli, A coordination model of pervasive service ecosystems, Sci. Comput. Program. 110 (2015)
3–22.

[53] M. Welsh, G. Mainland, Programming sensor networks using abstract regions, in: Proceedings of the First USENIX/ACM Symposium on Networked
Systems Design and Implementation, NSDI ’04, Mar. 2004.

[54] K. Whitehouse, C. Sharp, E. Brewer, D. Culler, Hood: a neighborhood abstraction for sensor networks, in: Proceedings of the 2nd International Confer-
ence on Mobile Systems, Applications, and Services, ACM Press, 2004.

[55] A.K. Wright, M. Felleisen, A syntactic approach to type soundness, Inf. Comput. 115 (1) (Nov. 1994) 38–94.
[56] L. Xiao, S. Boyd, S. Lall, A scheme for asynchronous distributed sensor fusion based on average consensus, in: Fourth International Symposium on

Information Processing in Sensor Networks, 2005.
[57] C.-H. Yu, R. Nagpal, Self-adapting modular robotics: a generalized distributed consensus framework, in: International Conference on Robotics and

Automation, ICRA, 2009.
[58] F. Zambonelli, G. Castelli, L. Ferrari, M. Mamei, A. Rosi, G.D.M. Serugendo, M. Risoldi, A.-E. Tchao, S. Dobson, G. Stevenson, J. Ye, E. Nardini, A. Omicini,

S. Montagna, M. Viroli, A. Ferscha, S. Maschek, B. Wally, Self-aware pervasive service ecosystems, Proc. Comput. Sci. 7 (2011) 197–199.
[59] F. Zambonelli, M. Viroli, A survey on nature-inspired metaphors for pervasive service ecosystems, Int. J. Pervasive Comput. Commun. 7 (3) (2011)

186–204.

http://refhub.elsevier.com/S0167-6423(15)00357-3/bib44616D69616E694574416C2D666F72746532303135s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib44616D69616E694574416C2D666F72746532303135s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib44616D69616E694574416C2D666F72746532303135s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib45676572737465647448753031s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib656C686167655F636F6E73656E737573s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib53444546s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib657973686F6C6474323031307874657874s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib657973686F6C6474323031307874657874s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib44694D61727A6F436174616C6F673133s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib44694D61727A6F436174616C6F673133s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib6F736Ds1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib44424C503A7265666572656E63652F636F6D706C65786974792F48656C62696E674A3039s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib44424C503A7265666572656E63652F636F6D706C65786974792F48656C62696E674A3039s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib464As1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib726F6E616C646F73656C66s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib746F7461s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib746F7461s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib44424C503A636F6E662F646169732F4D616E73757474694D503134s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib44424C503A636F6E662F646169732F4D616E73757474694D503134s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib44424C503A636F6E662F646169732F4D616E73757474694D503134s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib4D696C6E6572323030363630s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib4D696C6E65723A313939373A44534D3A353439363539s1
http://proto.bbn.com/
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib726567696D656E74s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib726567696D656E74s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib4F6C666174697361626572466C6F636B733036s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib4F562D4B455232303131s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib4F562D4B455232303131s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib4768656F7267686532303030313038s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib616C6368656D6973742D6A6F7332303133s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib5042562D53414332303135s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib5042562D53414332303135s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib50565A462D4850435332303134s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib50565A462D4850435332303134s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib52654C614353s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib736C6F74696E6532303035s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib562D53435732303133s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib562D53435732303133s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib50726F746F436F726553656D616E746963733131s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib416772676567617465436F6D707574696E675341534F32303135s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib416772676567617465436F6D707574696E675341534F32303135s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib50726F746F53656D616E746963733132s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib56434D5A2D5441415332303131s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib56434D5A2D5441415332303131s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib56434F2D53414332303039s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib56434F2D53414332303039s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib5644422D464F434C4153412D43494332303133s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib5644422D464F434C4153412D43494332303133s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib7370617469616C636F6F72642D636F6F726432303132s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib7370617469616C636F6F72642D636F6F726432303132s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib56504D532D53414332303132s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib56504D532D53414332303132s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib56504D532D53414332303132s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib56504D535A2D53435032303135s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib56504D535A2D53435032303135s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib77656C736832303034726567696F6E73s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib77656C736832303034726567696F6E73s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib686F6F64s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib686F6F64s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib736F756E646E657373s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib5869616F4574416C3035s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib5869616F4574416C3035s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib59754E616770616C3039s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib59754E616770616C3039s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib5A6574616C2D50435332303131s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib5A6574616C2D50435332303131s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib5A562D4A50434332303131s1
http://refhub.elsevier.com/S0167-6423(15)00357-3/bib5A562D4A50434332303131s1

	A type-sound calculus of computational ﬁelds
	1 Introduction
	2 Computational ﬁeld mechanisms
	3 From global to local viewpoint
	4 Application to self-organisation
	5 The computational ﬁeld calculus
	5.1 Runtime expression syntax
	5.2 Congruence contexts and alignment contexts
	5.3 Auxiliary functions
	5.4 Reduction rules

	6 Well-formedness
	7 Typing and properties
	7.1 Typing rules for surface programs
	7.2 Domain alignment and type soundness

	8 Toolchain
	8.1 Protelis language
	8.2 Portable architecture
	8.3 Self-stabilising building blocks and APIs

	9 Related work
	10 Conclusion and future work
	Acknowledgements
	Appendix A Proofs of Theorems 7.2 and 7.3
	A.1 Typing runtime expressions and conﬁgurations
	A.2 Auxiliary properties and proofs

	References

