
A Basis Set of Operators for Space-Time
Computations

Jacob Beal
BBN Technologies

Cambridge, MA, USA, 02138
Email: jakebeal@bbn.com

Abstract—Although many different models of spatial computa-
tion have been proposed, no unifying theory of computation over
continuous space-time has yet been developed. Lack of such a
theory has made it difficult to compare spatial computing models
and impossible to determine their completeness. This paper takes
a step toward the goal of a unifying model by identifying a
mathematical basis set of operators from which any finitely-
approximable causal computation can be constructed. The utility
of this basis set of operators is then further demonstrated by
using it to analyze the universality of the Proto spatial computing
programming language.

I. INTRODUCTION

Many different computational models and programming
languages have been proposed for specifying computation on
spatial computers. Some models lean strongly on continuous
abstractions, such as Proto[1], which describes computation
in terms of dataflow field operators and information flow over
manifolds, MGS[2], which operates on k-dimensional math-
ematical complexes, or Regiment[3], which operates on data
streams collected from space-time regions. Others are discrete,
as in the viral tuple-passing of TOTA[4] or in the distributed
logical programming models of LDP[5] and MELD[6], or even
regular, as in Yamins’ work on local computability[7].

At present, it is often extremely difficult to connect work
done with or on such models and languages to one another.
Each model tends to have its own unique set of space-time
representation and operations, and as yet there is no unifying
theory of computation over continuous space-time.

At first glimpse, it might be surprising that this is a problem.
After all, the theory of computation is well developed for
discrete computational devices, and spatial computers are
typically implemented using a network of discrete devices
(despite some possible exceptions, such as chemical reaction-
diffusion computers[8] or optical image computation[9]). As
we shall see, however, the continuous abstractions that are
often present in spatial computing models mean that the model
in which programs are actually specified is super-Turing.

In some relatively simple cases, it is possible to map the
computation to a tractable case of existing continuous theory,
such as analytic functions or dynamical systems. In general,
however, properties of continuous abstraction computations
can at present only be established indirectly, by considering
how the computation is approximated on some realizable
system (Figure 1). Much preferable would be to be able to
analyze the computation directly, as we can do for those

!"#$%#&"&'
()*+,-.%/,
01""2

3%'+1,$,
4,$5"16
01""2

!"#$%#&"&'
(),+%2%+*$%"#

3%'+1,$,
7/)8,/,#$*$%"#

!""#$%&'!()

!""#$%&'!()

"
#$
*
)

"
#$
*
)

Fig. 1. Currently, properties of computations specified using a continuous
space-time abstraction can be proved only indirectly, by translating the
computation to a particular discrete implementation, then proving correctness
of that implementation (right path). A theory of computation over continuous
space-time will allow simpler direct proofs of correctness independent of
implementation choice (downward path), which then need only be shown
to be preserved under approximation.

special cases, then test that an implementing platform gives
a sufficiently faithful approximation.

This paper takes a step toward the goal of a unifying model
by identifying a mathematical basis set of operators from
which any finitely-approximable causal computation can be
constructed. The utility of this basis set of operators is then
further demonstrated by using it to analyze the universality of
the Proto spatial computing programming language.

A. Related Work

Continuous models of computation have been studied along-
side discrete models of computation throughout the history of
computation, albeit at a much lesser intensity. For a thorough
survey of the history of continuous computational models,
see [10]. Most work on these models, however, has been in
the context of real-valued systems evolving over continuous
time, such as Shannon’s Differential Analyzer[11], Hopfield
networks[12], and timed automata[13], or in discrete opera-
tions on real numbers, such as the BSS machine[14].

Recently, as the application of computational ideas has

broadened into fields like biology and the physical sciences,
and as von-Neumann-model digital computation has begun
to approach its limits, interest in continuous space models
of computation has grown. Although computational models
are plentiful—those referenced in the introduction are only a
few of many—little theoretical grounding has been developed
for the highly discontinuous and non-linear computations
demanded in many applications. The main work that has been
developed to date is ordinary differential equation (ODE) mod-
els of computation (e.g. [15], [16]) and an optical computation
model proposed by Naughton[17].

II. INSUFFICIENCY OF TURING UNIVERSALITY

First, let us understand why the conventional theory of
computing is insufficient. Consider a spatial computing model
that makes use of continuous abstractions, such as Proto[1]
(continuous space and time) or OSL[18] (continuous space
only). In languages such as these, the computation is specified
agnostic of the system on which it will eventually be executed.
In practice, however, this continuous specification is typically
transformed into an approximate implementation by means of
a set of operations on discrete devices. For example, a Proto
program might be approximately implemented via message
passing on a radio network, finite state machines on a cellular
automata, or chemical signals emitted by engineered bacteria.

We might thus attempt to avoid the need for any new
theory by analyzing computations only in the discrete imple-
mentation. The continuous specification would then become
irrelevant, and we would need only to apply distributed
computing theory, stochastic chemical models, or whatever
other tool is appropriate for the medium of implementation.
This constitutes an indirect analysis (Figure 1), and is the
current means of proving the properties of continuous space-
time computations.

There are critical shortcomings of such indirect proofs,
however. First and foremost, indirect proofs may not be trans-
ferable between different discrete implementations, meaning
that the same algorithm must be proved over again for each
different implementation. As a corollary, it should be clear
that an indirect proof does not actually establish a property
for a continuous computation. Although intuition and proofs
for multiple implementations may lead us to conclude that
the property does hold, it has not been established with the
mathematical rigor we normally demand of our proofs.

Moreover, continuous descriptions are often significantly
simpler than discrete ones (an observation even more likely
to hold in the case of computations that a person has chosen
to describe using a continuous abstraction). This tendency is
further amplified by the fact that the discrete implementation is
not the native form, but a product of automated transformation,
and therefore likely to be much more complicated.

Analysis done directly on a continuous computation, how-
ever, can conclusively establish a property. We need then only
ask whether a particular implementation is a close enough
approximation of the continuous space-time abstraction for

acceptable approximation bounds to be established. For an ex-
ample of such a proof and approximation bound, see the proof
of self-stabilization time for the CRF-Gradient algorithm
in [19].

Given that we wish to analyze computation over continuous
space-time, it is clear that a unifying theory of computation
over continuous space-time is desirable. The challenge is
that continuous space-time computation is often theoretically
super-Turing, given the uncountable number of points that may
be involved in the computation. Conventional computational
theory, which deals only with countable sequences of oper-
ations (even though these may involve uncountable sets of
values or execution times) is thus not applicable without some
adjustment.

Note, however, they we are explicitly not claiming super-
Turing capabilities of spatial computers. What we are claiming
is that a many useful abstractions for specifying spatial
computations can have theoretically super-Turing capabilities.
In general, we cannot perform useful computations on a real
spatial computer unless we avoid taking advantage of those
super-Turing capabilities. At the end of the day, in the real
world, the computation will likely be executed on a collection
of interacting Turing-equivalent machines, and any attempt to
execute a super-Turing computation will fail (and may even be
theoretically impossible, depending on questions like whether
the universe is fundamentally discrete or continuous).

We therefore embrace a super-Turing model for its benefits
in describing spatial computations. Having adopted a super-
Turing model, however, questions about computational proper-
ties such as universality are not so straightforward to resolve.
We must, in fact, clearly define computation on continuous
space-time before we can resolve the question of what a
universal basis set of operators might be.

III. DEFINING SPACE-TIME COMPUTATION

Let us consider a computation occurring over some time
across an unchanging region of continuous space. We may
formalize the volume on which the computation occurs as the
cross-product of a manifold M (the space) and a real interval
T ⊂ (−∞,∞) (the time). In order to define a formal model of
computation across such a space, we will begin with the limit
model of the amorphous medium, which treats every point
as a computational device, then define computation over an
amorphous medium in terms of state trajectories.

A. Amorphous Medium

The amorphous medium abstraction[20] is derived from
the observation that in many spatial computing applications,
we are interested not in the particular devices that make up
our network, but rather in the space through which they are
distributed. The point of a sensor network, for example, is
generally the environmental values that it senses. If more
sensors are available, the area of interest can be inspected
at a higher resolution, but the essential task remains the same.

The amorphous medium abstraction takes this to its logical
extreme: an amorphous medium is a compact Riemannian

neighborhood of P

P

Fig. 2. An amorphous medium is a manifold where every point is a device
that knows its neighbors’ recent past state.

manifold M with a computational device at every point
(Figure 2).1 Adding in the dimension of time, we may also
consider the foliated manifold M × T , where each point
describes the state of a device m ∈ M at time t ∈ T .
Distance between points in M is defined with a metric d and
information propagates through this medium at a maximum
velocity c. Each device is associated with a neighborhood
N(m) of nearby devices, and knows the state of every device
in its neighborhood intersected with its past light cone (i.e. the
most recent information that can have arrived from its neigh-
bors), as well as the topological structure of the neighborhood.
We generally assume neighborhoods are relatively small: for
purpose of this paper, we will formalize that assumption as a
requirement that every neighborhood be contained within the
domain of some chart in the atlas of M .2

In this paper, we will consider only computations on static
devices, such that N(m) remains fixed over time. For an initial
discussion of the amorphous medium for mobile devices, see
[21]. The issue of manifold boundaries pose another important
theoretical challenge, particularly regarding mobile devices,
which will also not be addressed in this paper.

While an amorphous medium cannot, of course, be con-
structed, any actual spatial computer can be viewed as a
discrete approximation of an amorphous medium for the space
that it fills. If programs are formulated with continuous units
of measure, such as meters and seconds, and an appropriate
conversion is made between continuous and discrete units, then
a continuous-space program can be executed approximately on
the discrete network, and it is possible to predict the quality
of the discrete approximation of the continuous program—see,
for example [22] and [19].

B. Formal Definition

How shall we formally define a computation, in order to best
facilitate our search for a universal basis set? A fairly intuitive
approach, inspired by typical definitions of Turing universality,
is to define computation algorithmically. A computation would
then be expressed in terms of a sequence of operations to be
executed, and two computations would be equivalent if the
operations of each can be mapped onto the operations of the
other.

1Note that compact and Riemannian may be stronger properties than are
strictly necessary.

2A chart is a homeomorphic map assigning Euclidean coordinates to a
portion of a manifold, and an atlas is a collection of charts covering the
whole manifold.

Variable Definition Type
M Spatial region compact Riemannian manifold
T Time interval T ⊆ (−∞,∞)
d Distance function on M d : M ×M → R
c Max speed of information meters per second

N(m) Neighborhoods on M N : M → P(M)

V Computable values
⋃

k≥0
Rk

St Computed state at time t St : M → V
S0 Initial state S0 : M → V
ST Computed state on interval T ST : M × T → V
E Environmental state E : M × T → V
C A computation C : M × T × E × S0 → ST

B A basis set of operators Set of C and functions of Ck → C

TABLE I
TABLE OF VARIABLES

We shall not take this approach. The problem is that it
requires a comparison between two sets of operations, to see if
one is stronger than the other. We do not yet have our “Turing
machine” for spatial computers, so we do not a priori know if
any set of operations is “universal enough.” Put another way:
we do not know enough about what should be computable on
a spatial computer to test whether a given set of operations is
“universal enough.”3

Instead, we shall define a computation C in terms of its
trajectory of computed results, not concerning ourselves with
how exactly these results are to be achieved. This approach is
borrowed from variational mechanics, and in particular the
computational presentation in [23]. In mechanics, the state
trajectory representation allows a system to be considered as
a whole and to be analyzed without committing to a particular
set of coordinates. It will serve a similar purpose for us,
allowing computations to be defined and examined without
committing to a particular basis set of operators or means of
realizing them.

Formally, let us define the computed state at time t ∈ T as
a function:

St : M → V

where V is any value (for simplicity, we shall not consider
types but represent all values using arbitrary-length tuples
of real numbers). The initial state of the system, S0, is
given rather than computed, and computation takes place with
respect to some external environmental state E, which we shall
define similarly as

E : M × T → V

This environmental state includes the outcome of random
choices and any other sources of non-determinism used by
the computation but not controllable by it—controllable state,
such as actuators, will be taken to be part of St.

A computation C is thus a function mapping from all
conditions of execution to their trajectories of computed state:

C : M × T × E × S0 → ST

3Remember, the jury is still out on whether is it physically possible to
compute anything that is not computable by a Turing machine: it is simply
that Turing universality covers every means of computing that has ever been
implemented, and so has become accepted as clearly being “universal enough”

(a) (b)

!"#$%

&
'(
%

(c)

Fig. 3. Examples of causal and finitely-approximable space-time computa-
tions, illustrated on a 1D space: elapsed time since an environmental cue (a,
darker is higher value), distance from environment-designated source points
(b, darker is higher value, blue is ’undefined’), whether an environmental cue
is known to be present anywhere (c, red = yes, blue = no).

where ST is a state trajectory: the collection of St for all
t ∈ T .

Order relationships between computations can be defined in
terms of the state that they produce:

Definition (Implements). A computation C ′ implements com-
putation C if there is a restriction of S′T that is equal to
ST almost everywhere, and if for any non-equal point p,
there it a sequence of points pi converging on p such that
limi→∞ S′T (pi) = limi→∞ ST (pi).

In other words, one computation C ′ implements another
C if they produce equivalent results (discarding intermediate
state used by C ′ in the computation). The “almost everywhere”
means that there may be points that are not the same, but
the measure of the non-converging set is zero; combined
with the sequence condition, this allows discontinuous state
functions to differ in how they assign boundary points to
regions. Using this definition, two computations are equivalent
if each implements the other; we shall, however, mostly be
interested only in implementation and not in equivalence.

We thus have a definition of computation that is not de-
pendent on any particular choice of a basis set of operators.
To give a better intuition of this definition, some examples of
computations, evaluated for particular combinations of space,
time, environment and initial state, are illustrated in Figure 3.
Note that because we have not yet committed to a basis set
of operators, there is nothing in this definition that requires
a computation to be practically realizable or that models the
cost of the computation.

C. Universality

A basis set of operators is a collection of computations and
functions on computations, which can be composed to cover
some portion of the set of possible computations. Universality
for a basis set of operators is therefore defined as follows:

Definition (Space-Time Universal). A basis set of operators
B is space-time universal if, for any computation C that can
be specified by some basis set of operators (we need not
know what operators or how it is specified), it is possible

to implement an equivalent computation C ′ using operators
in B.

Unlike Turing equivalence, this is not fundamentally a
constructive proof. Thus, even though we will know that it is
possible to implement a computation using our basis operators,
we may not know just how to do so or how to relate it to some
other computational model. I do not regard this as a serious
disadvantage, however: few programmers ever begin by asking
how to achieve their goal using a Turing machine.

D. Causal and Finitely-Approximable Computations

As discussed in Section II, truly universal computation
over space-time is unlikely to be of practical interest, as the
vast majority of possible computations cannot be physically
implemented. Instead, we shall limit our investigation to those
computations that are practical to consider implementing:
computations that are both causal and finitely-approximable.

Let us define a causal computation as one where the value
computed at each point of space-time depends only on infor-
mation that can possibly have reached it. In other words, the
computation cannot use information from the future, nor from
events too far away to have communicated their information
across space.

Formally, we shall define this as:

Definition (Causal Computation). A computation is causal if,
for every point (m, t), the value of C(m, t,E, S0) depends
only on a restriction of M × T to the set of points (m′, t′)
with t′ ≤ t and non-positive interval d(m,m′)2 − c2(t− t′)2.

This notion of intervals and causality is borrowed from
relativity. For example, a computation that measures time since
an environmental event last occurred within 10 meters of each
device is causal, while a computation that measures the time
until the next unpredictable environmental event occurs within
10 meters is not causal.

Similarly, let us define a finitely-approximable computation
as one that is capable of being approximated well by a
discrete implementation. Formally, we shall define this in
terms of a limit as the density of approximating discrete
devices increases:

Definition (ε-approximation). Consider a finite set Aε of
points in M × T , chosen such that no point in M × T is
more than distance ε from a point in Aε. The ε-approximation
of a computation C with regards to the set Aε is a function
Cε that is equal to C computed with S′0 equal to S0 at the
nearest point in Aε and E′ equal to E at the nearest point in
Aε (choosing arbitrarily for equidistant points).

Definition (Finitely-Approximable Computation). A compu-
tation C is finitely-approximable if, for every countable se-
quence of εi-approximations Ci of C with εi < εi−1, the value
of Ci converges to an implementation of C.

For example, a computation that measures how many square
meters of area where temperature is above 320K is finitely-
approximable, as is a computation that tests whether the area

is in the range [4 − δ, 4 + δ] square meters, where δ is some
small number. A computation that tests whether the area is
equal to precisely 4 square meters, however, is not finitely-
approximable: if the continuous area truly is 4 square meters,
then arbitrarily small differences in approximation can switch
the answer between “true” and “false.” Note also that this
definition allows both continuous and discontinuous functions
to be finitely approximated.

An interesting corollary observation: some analog of a
Nyquist rate is likely to be useful in analyzing finitely-
approximable computations. We know that a discrete imple-
mentation of a finitely-approximable computation converges to
its continuous specification as the density of devices increases.
Going in the other direction, as density decreases many
computations reach a point where the approximation relation
breaks down. For example, a computation that produces an
alternating pattern where each stripe is 2 meters across cannot
operate correctly when the density is significantly less than
one device every two meters. Being able to identify a cusp
density, below which approximation experiences qualitative
degradation, appears both plausible and likely to be useful,
though we shall not explore this idea further in this paper.

IV. A BASIS SET OF SPACE-TIME COMPUTATION
OPERATORS

We can now propose a basis set of space-time operators on
the amorphous medium model:
• P is any Turing-universal set of point-wise operators, that

is, operators on state at individual points (m, t). These in-
clude constants, branches, arithmetic operations, sensors,
and actuators.4 Given an input function f : M ×T → V ,
a one-argument point-wise operator p ∈ P produces
a function mapping: (m, t) → p(f(m, t)). Multiple-
argument point-wise operators are defined similarly, but
with multiple inputs, and sensors also draw on the envi-
ronmental state E.

• nd collects the vectors to neighbors in local coordinates,
producing a function whose value at each point is:
(m, t) → (n ∈ N(m) → (φ(n) − φ(m))), where φ is
a chart in the manifold’s atlas that contains both n and
m in its domain.

• g collects the metric tensor gm at each point, producing a
function whose value at each point is: (m, t) → gm with
respect to some system of local coordinates.

• nv collects state from neighbors. Given an input function
f : M ×T → V , applying nv produces a function whose
value at each point is a map from neighbors to their f
values: (m, t) → (n ∈ N(m) → f(n, t− d(m,n)/c)).

• nr restricts neighborhood-valued fields. Given two input
functions, one Boolean valued f : M × T → {0, 1} and
the other neighborhood-valued g : M × T → (N(m) →
V), applying nr restricts the domain of the neighborhood
functions to those points where f(m) = 1, producing:
(m, t) → (n ∈ {N(m)|f(n) = 1} → g(m)(n).

4Computation on reals is super-Turing, but approximate computation of
arbitrary precision (e.g. floating point arithmetic) is not.

!"#$%

&
'(
%

)(*+,

-
.
//-

(

-
0

Fig. 4. Values can be sampled from past time-like regions by chaining
together neighbor operators. Given a value gathered by nv , the nr operation
clips the operators to only the region where the sample should be drawn from
(grey box). The nm operation then finds the minimum value on light-cones
intersecting the area (magenta line), and this value can be conveyed along
light cones to the point of computation (blue lines) using another chain of
nm · nv operations.

• nm computes minimum over neighborhood-valued fields.
Given an input function f : M × T → (N(m) → R),
applying nm produces a function that maps each point
(m, t) → infimum(f(m, t)(N(m))).

Intuitively, these operators may be thought of as belonging
to three groups. The P operators implement computing on in-
dividual devices; they are not further specified since this is just
ordinary computing and can be implemented in innumerable
well-established ways. The g and nd operators give access to
the local structure of the manifold. Finally, the nv , nr, and
nm operators collect and process causally accessible state.

Theorem. Any finitely-approximable causal computation C
can be implemented using the basis set of operators
{g, nd, nv, nr, nm} ∪ P ,

Proof: For space reasons, we will only sketch the proof.
Consider any finitely-approximable causal computation C.
Because C is causal, its value at (m, t) is completely

determined by some combination of properties of the manifold
M and values at points (m′, t′) that are accessible via chains
of nv functions.

Using nv , nm, nd, and nr, it is possible to collect at (m, t)
an arbitrary-precision sampling of a value from any past time-
like region. For each state sample to be taken, we use nv

to collect s, a neighborhood-valued function of the state of
interest. Constructing an indicator field for the sample using
operations from P , we apply nr to discard s everywhere but
within ε of the desired sample point. Applying nm to the
resulting field gives every point along the light cone in the

neighborhood a value arbitrarily close to the value of some
point within ε of the desired sampling point—we don’t get
exactly the sample we intended, but we do get one from a
location within an arbitrary epsilon. By combining nm and
nv , the sample value can be chained from neighborhood
to neighborhood until it reaches (m, t). Since P is Turing-
universal, we can use recursion to repeat this sampling process
for other points in the desired past time-like region, collecting
a sampling with a distance of no more than ε between points.

Because M is Riemannian, it is also differentiable. This,
combined with the definition of a Riemannian metric, ensures
that any property of the manifold can be approximated from a
finite sampling of points on M , and that these approximations
converge to the true value as the density of the sampling in-
creases. Because the structure of the manifold can be recovered
completely from g and nd, and because P is Turing-universal,
it is possible to compute an ε-approximation of any property
of the manifold at (m, t), subject to causal restrictions, by
sampling values of g and displacements sampled from nd.

Since C is finitely approximable and P is Turing-universal,
it is possible to compute an ε-approximation of C using ε-
approximations of the geometric properties of M and sampling
of state from the past light-cone.

Finally we can use recursion to define the computation of
a sequence of ε-approximations that converge to the value
of C almost everywhere. We thus have a computation that
implements C.

A. Application to Proto

Proto[1] is a spatial computing language that describes com-
putation in terms of functional dataflow computation on fields.
Any reader familiar with Proto may have already noticed the
similarity between Proto’s operators and the operators of the
proposed basis set:
• The point-wise universal operators P can be implemented

by Proto’s universal set of constant, arithmetic, tuple,
function, and branch operators, plus platform-specific
sensors and actuators.

• nd is equivalent to Proto’s nbr-vec.
• nv is equivalent to Proto’s nbr.
• nr can be implemented by Proto’s if, applied to fields

of neighborhood values.
• nm is equivalent to Proto’s min-hood.

The only operator that is missing from Proto is g. This tells us
that Proto can (in theory) implement any finitely-approximable
causal computation that does not depend on manifold proper-
ties that can only be recovered with the aid of the metric
tensor gm. For example, Proto can easily implement all of
the computations shown in Figure 3. It is not immediately
clear, however, whether Proto can compute the divergence of
a vector field.

V. CONTRIBUTIONS

In this paper, we have taken several steps toward establish-
ing a unifying theory of computation over continuous space-
time: we have established why such a theory is needed, and

how it relates to discrete implementations of spatial compu-
tations, we have established a formal definition of continuous
space-time computation, and we have identified a basis set
of space-time operators that can be used to implement any
finitely-approximable causal computation and are useful for
analyzing the capabilities of spatial computing models and
programming languages.

These steps open up a host of important questions to be
addressed, including:

• What is an appropriate measure of space-time computa-
tion cost, and what finitely-approximable operators are
best for minimizing cost?

• Can we identify a useful analog to Nyquist rate to use
for analyzing approximate implementation?

• Can we establish bounds on approximability of functions?
• What families of continuous-space proofs can be auto-

matically translated into discrete network proofs?
• How can this theory be extended to computation on

manifolds that change over time?
• What is a good way to extend Proto to cover computations

that require g?
• How powerful are other spatial computing models?

Finally, as the theory of computation over continuous space-
time continues to develop, we expect that it will become easier
to analyze and compare proposed models of computation,
increasing the unity of the field and the transferability of
results from model to model.

REFERENCES

[1] J. Beal and J. Bachrach, “Infrastructure for engineered emergence
in sensor/actuator networks,” IEEE Intelligent Systems, pp. 10–19,
March/April 2006.

[2] J.-L. Giavitto, C. Godin, O. Michel, and P. zemyslaw Prusinkiewicz,
“Computational models for integrative and developmental biology,”
Univerite d’Evry, LaMI, Tech. Rep. 72-2002, 2002.

[3] R. Newton and M. Welsh, “Region streams: Functional macroprogram-
ming for sensor networks,” in First International Workshop on Data
Management for Sensor Networks (DMSN), Aug. 2004.

[4] M. Mamei and F. Zambonelli, “Programming pervasive and mobile
computing applications: the TOTA approach,” ACM Transactions on
Software Engineering and Methodology, 2008.

[5] M. D. Rosa, S. C. Goldstein, P. Lee, J. D. Campbell, and P. Pillai,
“Programming modular robots with locally distributed predicates,” in
IEEE International Conference on Robotics and Automation (ICRA ’08),
2008.

[6] M. P. Ashley-Rollman, S. C. Goldstein, P. Lee, T. C. Mowry, and
P. Pillai, “Meld: A declarative approach to programming ensembles,”
in IEEE International Conference on Intelligent Robots and Systems
(IROS ’07), 2007.

[7] D. Yamins, “A theory of local-to-global algorithms for one-dimensional
spatial mu lti-agent systems,” Ph.D. dissertation, Harvard, December
2007.

[8] A. Adamatzky, “Programming reaction-diffusion processors.” in UPP,
2004, pp. 33–46.

[9] T. J. Naughton and D. Woods, “On the computational power of a
continuous-space optical model of computation,” in Machines, Compu-
tations, and Universality, ser. Lecture Notes in Computer Science, 2001,
pp. 288–299.

[10] O. Bournez and M. L. Campagnolo, “A survey on continuous time
computations,” in New Computational Paradigms. Springer New York,
2008, pp. 383–423.

[11] C. Shannon, “Mathematical theory of the differential analyser,” Journal
of Mathematics and Physics, vol. 20, pp. 337–354, 1941.

[12] J. J. Hopfield, “Neural networks with graded responses have collective
computational properties like those of two-state neurons,” Proceedings
of the National Academy of Sciences, vol. 81, pp. 3088–3092, 1984.

[13] R. Alur and P. Madhusudan, “Decision problems for timed automata: A
survey,” in Formal Methods for the Design of Real-Time Systems, ser.
Lecture Notes in Computer Science, M. Bernardo and F. Corradini, Eds.,
2004, vol. 3185, pp. 1–24.

[14] L. Blum, M. M. Shub, and S. Smale, “On a theory of computation and
complexity over the real numbers; np completeness, recursive functions
and universal machines,” Bulletin of the American Mathematical Society,
vol. 21, pp. 1–46, 1989.

[15] D. Graca, M. Campagnolo, and J. Buescu, “Robust simulations of turing
machines with analytic maps and ows,” in Proceedings of CiE05, New
Computational Paradigms, ser. Lecture Notes in Computer Science.
Springer, 2005, vol. 3526, pp. 169–179.

[16] P. Koiran and C. Moore, “Closed-form analytic maps in one and
two dimensions can simulate universal turing machines,” Theoretical
Computer Science, vol. 210, no. 1, pp. 217–223, 1999.

[17] D. Woods and T. Naughton, “An optical model of computation,” Theo-
retical Computer Science, vol. 334, pp. 227–258, 2005.

[18] R. Nagpal, “Programmable self-assembly: Constructing global shape
using biologically-inspired local interactions and origami mathematics,”
Ph.D. dissertation, MIT, 2001.

[19] J. Beal, J. Bachrach, and M. Tobenkin, “Constraint and restoring force,”
MIT CSAIL, Tech. Rep. MIT-CSAIL-TR-2007-044, August 2007.

[20] J. Beal, “Programming an amorphous computational medium,” in Un-
conventional Programming Paradigms International Workshop, Septem-
ber 2004.

[21] J. Bachrach, J. Beal, and J. McLurkin, “Composable continuous space
programs for robotic swarms,” Neural Computing and Applications,
vol. 19, no. 6, pp. 825–847, 2010.

[22] J. Bachrach, J. Beal, J. Horowitz, and D. Qumsiyeh, “Empirical charac-
terization of discretization error in gradient-based algorithms,” in IEEE
International Conference on Self-Adaptive and Self-Organizing Systems
(SASO) 2008, October 2008.

[23] G. J. Sussman and J. Wisdom, Structure and interpretation of classical
mechanics. Cambridge, MA, USA: MIT Press, 2001.

