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Abstract—Laplacian-based approximate consensus algorithms
are an important and frequently used building block in many
distributed applications, including formation control, sensor fu-
sion, and synchronization. These algorithms, however, converge
extremely slowly on networks that are more than a few hops
in diameter and where values are spatially correlated. This
paper presents a new algorithm, Power Law Driven Consensus,
which uses a self-organizing virtual overlay network to accelerate
convergence, at a cost of decreasing the predictability of the final
converged value. Experimental comparison with the Laplacian
approach confirms that PLD-consensus allows for drastically
faster convergence in spatial networks.

I. INTRODUCTION

Approximate consensus algorithms are an important build-
ing block for many distributed algorithms, including robot
formation control [1], flocking and swarming [2], sensor
fusion [3], modular robotics [4] and synchronization [5].
The dominant algorithmic approach to distributed approximate
consensus is a Laplacian-based approach in which each device
finds a weighted local average of its own current value with
the values held by its neighbors. In effect, this approach is
operating like particle diffusion, such that as the differences
between devices eventually equalize, the network is brought
into consensus. Although this approach supports a number of
elegant mathematical results [6], [7], including an exponential
rate of convergence derived from the graph Laplacian, the
bounds on the rate of convergence are extremely loose, and
may actually indicate a very slow rate of convergence indeed.

Spatial computers, which tend to have mesh-like net-
work structure many hops across, are an example of where
Laplacian-based consensus performs poorly. As demonstrated
in [8], on spatial computers, the expected convergence time
is actually O(diameter2) with a high constant factor, such
that Laplacian-based approximate consensus is expected to
converge extremely slowly whenever there is both significant
diameter and also a spatial correlation in the initial values of
devices. Since many applications of approximate consensus,
including those mentioned above, are commonly executed on
spatial computers with spatially correlated values, this can
severely limit the efficacy and applicability of consensus-based
applications.

This paper introduces a new algorithm, Power Law Driven
Consensus, which uses a self-organizing virtual overlay net-
work to accelerate convergence, at a cost of decreasing the
predictability of the final converged value. Following a brief

review and specification of problem context in Section II, I
present the new PLD-consensus algorithm in Section III. Sec-
tion IV then compares the new algorithm with the Laplacian
approach in simulation, confirming that PLD-consensus allows
for drastically faster convergence in spatial networks.

II. APPROXIMATE CONSENSUS ON SPATIAL COMPUTERS

A spatial computer is generally defined as any collection of
devices in which the difficulty of moving information between
any two devices is strongly dependent on the distance between
them, and where the functional goals of the system are linked
to its spatial structure. Examples include ad-hoc communica-
tion networks, swarms of unmanned aerial vehicles (UAVs),
sensor networks, and colonies of engineered biological cells.

For purposes of this paper, we will consider a more re-
stricted class of spatial computer, in which a set of n devices
are arranged in a graph G = {V,E} and also embedded by
a function p : V → M into a Riemannian manifold M with
distance function d. Edges are assumed to be bidirectional, to
have equal weight, and not to exist between two vertexes i
and j if d(p(i), p(j)) is greater than some threshold.

Laplacian-based average consensus algorithms [7] solve a
specific class of distributed consensus problem: given a real-
number initial local value li(0) for each device i, Laplacian-
based consensus computes the approximate mean of li(0) by
iterative applying the transformation:

li(t + 1) = li(t) + ε
∑

j∈N (i,t)

lj(t)− li(t) (1)

where N (i, t) is the set of graph neighbors of device i at time
t and the constant ε > 0 is the step size of the algorithm.
For simplicity, we give only the synchronous specification;
only minor modification is required for a more general non-
synchronized algorithm.

Laplacian-based consensus has been proven [7] to converge
exponentially toward the mean value of li(0), but the rate
of convergence is set by the second eigenvalue of the graph
Laplacian, which is very small for high-diameter mesh net-
works. In fact, as shown in [8], Laplacian-based consensus
performs badly on spatial computers, with a convergence time
that is O(diameter2) and a high constant factor due to the
generally large potential number of neighbors.

When there is no correlation in the distribution of values on
devices, this does not matter as much, since a rough estimate of



global values can be made from locally sampled information.
When values are correlated by their location in the network,
however, no reasonable estimate of consensus can be made
without moving information over long distances. Since spatial
computers often have a large diameter and values are often
highly correlated with location, a faster algorithm is clearly
needed.

III. POWER LAW DRIVEN CONSENSUS

If the problems with Laplacian-based consensus come from
the high diameter of the network, then one clear approach
to accelerating consensus would be to reduce the effective
network diameter through construction of an overlay network
containing long-distance links.

Power Law Driven Consensus is a simple implementation
of such an approach, where the overlay network self-organizes
using a 1/f distribution to break symmetry, selecting certain
devices to have their values spread over a longer distance.
Under PLD-consensus, devices compete to become “domi-
nant” over one another, drawing their bids for dominance from
the scale-free 1/f distribution. The value of using a scale-
free distribution of this sort is that, no matter the size or
arrangement of the network, the expected distribution contains
one device that receives a value large enough to dominate the
network. Note that this is an initial version, and the process
can likely be optimized significantly through modulation of
this distribution.

Dominance decays over both time and space, so this com-
petition results in a partition of the network into “dominance
regions” that shift over time. Values then spread outward from
dominant devices through the regions that they dominate, and
each device blends the local dominant value with its own
value.

Since this distribution is scale-free, the regions of domi-
nance begin small, allowing local blending of values, much
like Laplacian-based consensus. The regions then expand
rapidly until the entire network is dominated by a single
device, effectively reducing diameter and allowing for rapid
convergence. Finally, because dominance decays over time,
any dominant device that fails will eventually be replaced by
other dominant devices.

A. Formal Algorithm Specification

Having giving some intuitions for how PLD-consensus will
function, we will now provide a formal specification of the
algorithm. For simplicity, this specification will be stated in
terms of synchronous rounds. In fact, however, there is no
requirement for synchrony, both the overlay construction and
blending operations are relaxation methods, meaning that any
local updates (within the stable range) is expected to move the
system as a whole closer to a converged state. The algorithm
is thus expected to operate well under a wide range of non-
synchronous conditions as well (indeed, the simulations in
Section IV are non-synchronous).

Let us begin the specification by considering the computa-
tion of the dominance overlay. This sub-algorithm serves two

functions: first, determining the relative dominance level of
each device and second, flowing values down the dominance
gradient from more dominant to less dominant devices.

The dominant value state for each device i at each round t
is a tuple (di(t), ui(t), vi(t)) of the current dominance level
di(t), a tie-breaker unique identifier ui(t), and a dominant
value vi(t). In addition, each device i has a local value li(t),
which is its current candidate for a consensus value.

At each round, the algorithm considers three sources for the
new dominant value state. The driven state Sd is:

Sd = (b 1
u(0, 1)

c, ui(t), li(t)) (2)

where u(0, 1) is a uniform random distribution over the inter-
val (0, 1). Taking the inverse of u(0, 1) produces 1/f -noise,
giving a power-law distribution of candidate new dominance
levels being injected into the network at each round.

For each neighbor n ∈ N (i, t), where N (i, t) is the set of
neighbors of device i at time t, the neighbor-derived state Sn

is:
Sn = (dn(t)− 1, un(t), vn(t)) (3)

which takes the neighbor’s value at a decremented dominance
level.

Finally, if no neighbor has a higher dominance level, the
leader state Sl is:

Sl = (Li, ui(t), li(t)) (4)

where the leader dominance Li is

Li =

{
di(t)− 1 if ∀n ∈ N (i, t), di(t) > dn(t)
0 else

(5)

which decrements the old dominance level but inserts the new
local value.

The new state is then set to whichever of these three sources
has the highest dominance level:

(di(t + 1), ui(t + 1), vi(t + 1)) =
Lmax(Sd ∪ Sl ∪ {Sn|n ∈ N (i, t)}) (6)

where Lmax is a lexicographic maximum, such that the first
elements of a tuple are compared, then if they are equal the
second elements are compared, etc.

Figure 1 shows an example of the regions of dominance
produced by this computation. Initially, no devices are domi-
nant over their neighbors, but as dominance levels are injected
via the 1/f -noise, regions of dominance grow rapidly until
eventually some device is able to dominate the entire network.

Once the dominance overlay has been established, computa-
tion of consensus is relatively straightforward. Given an initial
local value of li(0) at each device i, the value at round t may
be computed as a simple proportional blend:

li(t) = α · vi(t) + (1− α) · li(t− 1) (7)

where vi(t) is the dominant value as provided from the
overlay, and α is the proportional blending constant. Note,



(a) Initial (b) 10 rounds (c) 30 rounds (d) 100 rounds

Fig. 1. Visualization of dominance competition driven by 1/f -noise, by having each device spread a unique RGB color computed from its UID. From an
initial state where no devices are dominant (a), regions of dominance are expected to grow rapidly (b,c) until eventually some device is able to dominate the
entire network.

(def dominant-value (value)
(3rd
(rep ;; Declare three state variables; only third will be returned
(tup dominance id spread-value)
;; Initialize to no dominance, local ID and value
(tup 0 (mid) value)
(let* ;; Three options for finding dominant value:

;; 1: Drive new dominance with 1/f noise
((local (floor (/ 1 (rnd 0 1))))

;; 2: Take a decremented dominance from a neighbor
(hoodmax (max-hood

(nbr (tup (- dominance 1)
id spread-value))))

;; 3: Decrement old dominance, but use new value
(leader (= (2nd hoodmax) (mid))))

;; Use whichever option has greater dominance
(if (or leader (> local (1st hoodmax)))

(tup (max local (1st hoodmax)) (mid) value)
hoodmax)))))

Fig. 2. Proto code for computing dominant value. Comments are in blue,
state variables in green.

however, that updating in this way uses only overlay values
and no neighbor values at all.

To soften this non-locality, PLD-consensus mixes overlay
blending and the local blending of Laplacian-based consensus
by the simple expedient of adding the standard Laplacian
differential term:

li(t) = α · vi(t) + (1− α) · li(t− 1) +

β
∑

n∈N (i,t)

w(ei,n) · (ln(t− 1)− li(t− 1)) (8)

where β is the step size for Laplacian-based consensus. PLD-
consensus thus makes use of both neighbor values and values
delivered through the overlay, and reduces to pure overlay
blending when β = 0 and to Laplacian-based consensus when
α = 0.

IV. EXPERIMENTAL VALIDATION

In this section, I present experimental validation of the PLD-
consensus algorithm in simulation. These experiments have
two aims: first, to quantitatively compare the performance

(def PLD-consensus (initial alpha beta)
(rep
value ;; Declare one state variable: current consensus value
initial ;; Initialize consensus with local initial value
;; Find regionally-dominant value . . .
(let ((dominant (dominant-value value)))

;; . . . and blend incrementally with local value . . .
(+ (+ (* alpha dominant) (* (- 1 alpha) value))

;; . . . and add Laplacian differential
(* beta (sum-hood (- (nbr value) value)))))))

Fig. 3. Proto code for PLD-consensus algorithm. Comments are in blue, state
variables in green.

of PLD-consensus against Laplacian-based consensus, and
second, to gain an initial understanding of the behavior of
PLD-consensus under different configurations and conditions
of execution.

For these experiments, I implemented the PLD-consensus
algorithm in Proto [9], [10]. The code for creating and
propagating values through the dominance overlay is listed in
Figure 2, and the code for the full PLD-consensus algorithm
is listed in Figure 3. Proto was a desirable language for
implementation and experimental validation for two reasons:
first, Proto’s programming model allows a concise and di-
rect implementation of the mathematical specification given
in the previous section, and, second, the network simulator
distributed with MIT Proto made it simple to run and analyze
experiments on large spatial networks.

Except where otherwise noted, all experiments are run with
the following parameters: the network consists of 1000 devices
distributed uniformly randomly in a 100 meter by 100 meter
rectangle. Devices use a unit disk model of communication,
communicating with all other devices within r meters, where
r is computed to give an expected 10 neighbors per de-
vice. The algorithms are run for 1000 rounds of partially
synchronous execution (equal frequency, random phase), and
PLD-consensus is run with α = 0.02 and β = 0, while
Laplacian-based consensus is run with a step size of ε = 0.02.
For each experimental condition, 10 trials are run. When
analyzing the convergence statistics of a network, the devices



with the top and bottom 2.5% of values are ignored, to ensure
that any devices that may be disconnected due to the random
distribution are excluded. A network is then considered to
have converged if the difference between the minimum and
maximum value within the median 95% of devices is less than
1% of the initial difference (e.g., less than 0.01 if all devices
start with values between 0 and 1).

A. Illustrative Comparison of Algorithms

Let us begin with an illustrative comparison of Laplacian-
based consensus and PLD-consensus, to provide an initial
intuition of the difference between these two approaches. For
this experiment, we use a set of 1000 devices distributed
uniformly randomly in a 100 meter by 100 meter rectangle.
Devices can communicate via broadcast to all other devices
within 7 meters, giving approximately 15 expected neighbors
per device. Devices are initialized to one of two values based
on their spatial location, with devices in the left hand side
of the plane given an initial value li(0) = 10, and on the
right hand side li(0) = 30, producing a highly spatially
correlated distribution. To have the purest comparison of PLD-
consensus and Laplacian-based consensus, we consider the
case of α = 0.01 and β = 0 for PLD-consensus, meaning
that only dominance overlay values are used, and compare
against a step size of ε = 0.01 for Laplacian-based consensus.

Figure 4 shows the evolution of values held by the various
devices over time during a single trial run. Although both cases
begin the same, PLD-consensus converges rapidly, within a
few hundred rounds, while even after 5000 rounds of com-
putation Laplacian-based consensus has not converged, with
a difference of 1.87 between the minimum and maximum of
the median 95%—nearly 10% of the initial value difference.

The trade-off for the faster convergence of PLD-consensus,
however, is a decreased accuracy in finding the overall mean
value. In this case, the Laplacian consensus values at t = 5000
have a mean of 19.56, which is quite close to the true mean
of 20. The converged value of PLD-consensus, on the other
hand, is somewhat farther off at 14.35.

B. Convergence Rate

For a more thorough comparison of convergence rate, let us
compare the evolution of value distributions in PLD-consensus
and Laplacian-based consensus. For this experiment, trials
were run for two initial distribution conditions: a homogeneous
condition in which each device’s initial value li(t) is drawn
uniformly randomly from the interval [0, 1], and a spatially-
correlated condition in which devices in the left half of the
distribution start with li(t) = 0 and devices in the right half
start with value li(t) = 1. Values were then recorded every 10
rounds for 1000 rounds.

Figure 5 plots the difference between highest and low-
est value in the median 95% against time. In both cases,
PLD-consensus clearly greatly outperforms Laplacian-based
consensus. Under the homogeneous condition, Laplacian-
based consensus initially converges more quickly than PLD-
consensus, but greatly slows when further convergence re-
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Fig. 5. PLD-consensus progresses toward convergence much faster than
Laplacian-based consensus, though Laplacian-based consensus initially pro-
gresses more quickly when initial values are homogeneously distributed.
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Fig. 6. Convergence time for PLD-consensus increases linearly with the width
of the network.

quires equalization of values over many hops. PLD-consensus
converges rapidly in both the homogeneous and spatially-
correlated conditions. With spatially-correlated initial values,
however, Laplacian-based consensus has barely even begun to
converge by t = 1000, and will not complete its convergence
for many thousands of rounds more, as seen in the prior
illustrative comparison.

C. Scaling with Diameter and Mobility

The poor scaling of Laplacian-based consensus as network
diameter increases has already been demonstrated in [8]. Since
the 1/f -noise driving PLD-consensus is scale-free, however,
the limiting factor should instead be communication time, and
thus the algorithm should scale in O(diameter). To test this,
I ran the PLD-consensus algorithm with spatially-correlated
initial values on networks with dimensions of X meters width
by 50 meters, where the width X ranged from 50 to 500 meters



(a) Initial Values (b) 50 rounds

(c) 500 rounds (d) 5000 rounds

Fig. 4. PLD-consensus vs. Laplacian-based consensus on a mesh network of 1000 devices with approximately 15 neighbors each. The devices are shown
as blue dots distributed in a plane, viewed at an angle, with their current values for consensus showed as the height of red (PLD-consensus) and green
(Laplacian-based) dots above the plane. From an initial spatially-correlated distribution (a), PLD-consensus begins to converge rapidly (b), arriving at an
approximation of the mean value within a few hundred rounds (c), while Laplacian-based consensus is eventually closer to the true mean, but even after 5000
rounds still retains nearly 10% of the initial value difference (d).

in steps of 50, and with a constant density of devices (thus
ranging in number from 250 to 2500).

For this experiment, convergence is nearly universal, the
only exceptions being one trial for X = 50 and one for
X = 100, in which the random distribution contained too
many disconnected devices. Figure 6 shows the scaling of con-
vergence time width respect to network width X: as expected
the convergence time increases approximately linearly with
the diameter, atop an approximately constant base convergence
time determined by the blending rate.

In many consensus applications, the participating devices
are not stationary. This could both be helpful, in lowering
the effective diameter of the network, and problematic, in
scrambling the structure of the overlay. To investigate the
effect of mobility, I ran the PLD-consensus algorithm with
spatially-correlated initial values with devices moving at a
velocity v varying geometrically from 0.01 to 1.0. Each device
moves towards a randomly chosen point in space at velocity
v, and upon reaching it (within quantization error) chooses a
new point to move towards.

Figure 7 shows the results of this experiment: PLD-
consensus converges for every trial, which is unsurprising
since mobility means that no devices will remain disconnected.
Perhaps more surprisingly, device movement does not appear
to have any significant effect on convergence rate. It is likely
that mobility does have some effect, but it is small enough
to not be observable under these experimental conditions.
Laplacian-based consensus, on the other hand, only converges
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Fig. 7. Device movement does have any significant effect on the rate at which
PLD-consensus converges within the range of parameters studied.

at all for v = 1, when 3 of the 10 trials converge just barely
before t = 1000.

D. Effect of α and β Parameters

Finally, we consider the effects of the blending parameters α
and β. For both of these parameters, there is a tension between
speed and stability: the higher they are, the faster the network
moves towards convergence, but if they are too high then it
may become unstable.
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(b) Time of Convergence

Fig. 8. PLD-consensus converges reliably for all α ≥ 0.01, while Laplacian-
based consensus nearly never converges (a). When PLD-consensus converges,
the convergence time appears to be dominated by blend rate for low α and
by overlay construction for high α (b).

To study the effect of varying α, I ran the PLD-consensus
algorithm with spatially-correlated initial values, holding β =
0 while ranging α geometrically from 0.001 to 0.5. The
experiment for β is the same, except that α = 0.02, and β
ranges from 0.001 to 0.5. For comparison with α variation,
Laplacian-based consensus is run with a step size ε that is
varied identically.

Figure 8 shows the results of varying α. PLD-consensus
converges reliably for all α ≥ 0.01. For those trials that
converge, the convergence time for low α is close to inversely
proportional to α, indicating that convergence is likely domi-
nated by blend rate. For high α, convergence time is nearly flat,
indicating that convergence convergence is likely dominated
by overlay construction. Laplacian-based consensus, on the
other hand only converges at all for two moderate-alpha trials:
with low α it converges too slowly and with high α it becomes
unstable and values diverge rapidly.

Variation of β, on the other hand, produces no significant
effect on either the convergence time or on the converged
value, until β = 0.1, where the Laplacian component becomes
unstable and values diverge. These results indicate that the
Laplacian component is likely to be operating so slowly on
spatially-correlated distributions as to have no measurable
effect at the diameter studied by this experiment; only at lower
α or diameter is there likely to be a significant effect.

V. CONTRIBUTIONS AND FUTURE WORK

This paper has presented a new approximate consensus
algorithm, PLD-consensus, which uses a self-organizing over-
lay network to accelerate consensus. This allows much faster
convergence, at a cost of higher expected deviation from the
mean of the network’s initial values.

This new algorithm has the potential for a major improve-
ments across a wide class of consensus-based applications.
Further study is required, however, before such applications
can be made. For example, some applications may depend
more on obtaining an accurate mean of initial values, while
others may be able to tolerate more inaccuracy in exchange
for speed. Likewise, this paper considered only the problem
of one-shot approximate consensus, while applications such
as flocking depend on tracking of a changing consensus over
time. Similarly, PLD-consensus only considers the simplest
overlay structure and means of combining Laplacian- and
overlay-based consensus approaches; more sophisticated ap-
proaches may be able to produce greatly improved perfor-
mance.
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