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Superdiffusive Dispersion and Mixing of Swarms
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A common swarm task is to disperse evenly through an environment from an initial tightly packed forma-
tion. Due to communication and sensing limitations, it is often necessary to execute this task with little
or no communication between swarm members. Unfortunately, prior approaches based on repulsive forces
or uniform random walks can often converge quite slowly. With an appropriate choice of random distribu-
tion, however, it is possible to generate optimal or near-optimal dispersion and mixing in swarms with zero
communication. In particular, we discuss three extremely simple algorithms: reactive Levy walk, reactive
ball dispersion, and purely reactive dispersion. All three algorithms vastly outperform prior approaches
in both constrained and unconstrained environments, providing a range of options for trading off between
aggressiveness and evenness in dispersion.
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1. INTRODUCTION
Dispersion is one of the basic maneuvers needed for a wide variety of swarm applica-
tions: beginning from an initially tightly packed formation, the individuals comprising
a swarm spread out evenly through their environment. Moreover, due to communica-
tion and sensing limitations, it is often necessary to execute this task with little or no
communication between swarm members.

To be effective in many applications, swarm dispersion must balance between two
contradictory goals: on the one hand, members of a swarm need to spread outward
quickly in order to disperse well (aggressive dispersion). At the same time, however,
it is often the case that the swarm needs to simultaneously maintain a continuous
coverage over its initial deployment area (even dispersion). For example, if the swarm
is being used for information gathering or for communication then the swarm needs
to start accomplishing its task quickly, yet the process of deploying the swarm should
not leave any large transient gaps in covering the immediate area around the people
deploying it.

Prior methods of low-communication dispersion have generally been based on simple
physics models, such as repulsive forces or diffusion through uniform random walks.
These methods, however, are unable to spread the members of a swarm quickly unless
carefully tuned for the expected scale of the swarm and its environment.
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One possible issue that may have contributed to this problem is a lack of sufficient
definition of the problem of dispersion. In particular, there has been no general metric
for comparing the efficacy of dispersion algorithms, nor analysis of upper bounds for
“ideal dispersion” as a benchmark to compare against. Prior work has instead gener-
ally examined only particular outcomes of dispersion, such as the time to reach some
“final” configuration (e.g., [McLurkin and Smith 2004; Poduri and Sukhatme 2007;
Howard et al. 2002], the position of swarm members at an arbitrary “snapshot” in
time (e.g., [Ludwig and Gini 2006; Howard et al. 2002], or how well an application goal
is achieved (e.g., [Mullins et al. 2012; Oyekan et al. 2010]).

This manuscript thus begins, after a review of related work in Section 2 with a math-
ematical definition of the problem of dispersion of swarms (Section 3). This formulation
reveals that dispersion algorithms must make trade-offs between competing goals of
aggressiveness and evenness, which cannot in general both be simultaneously opti-
mal. From this analysis, in Section 4 we derive two extreme algorithms, reactive ball
dispersion and purely reactive dispersion, the first of which is maximally even and the
second maximally aggressive in unconstrained environments. A third algorithm, reac-
tive Levy walk, is derived from physical models of super-diffusion and offers tunability
across a spectrum of dispersion behaviors, including both maximal evenness and max-
imal aggressiveness. Through a range of experiments in simulation, presented in Sec-
tions 5, 6, and 7, we find that all three algorithms vastly outperform prior approaches
in both constrained and unconstrained environments, while requiring minimal sens-
ing and no communication between members of the swarm, and providing a range of
options for trading off between aggressiveness and evenness in dispersion. Finally,
Section 8 summarizes our findings and presents directions for further investigation.

2. RELATED WORK
Much of the prior work on swarm dispersion (or coverage, which is closely related) has
considered systems out of scope of the investigation in this paper due to reliance on
high levels of communication, centralized planning, or ability to leave markers such as
pheromones in their shared (real or virtual) environment. The vast majority of such
methods rely on some form of shared coordinate system and map (a good introductory
survey may be found in [Choset 2001]). If map-based coordination is centralized, then
every member of the swarm must be able to communicate frequently with the central
coordinator, which may not be possible for any number of reasons, including physical
constraints (e.g., operation in confined spaces), lack of infrastructure (e.g., disaster re-
sponse), or size of the swarm (e.g., UAVs sharing a satellite uplink). If map-based
coordination is decentralized, then swarm members must exchange potentially high
resolution map data in order to maintain aligned models of the environment and the
dispersal of swarm members therein. Thus these methods often have high commu-
nication requirements, which may be problematic for a number of reasons, includ-
ing difficult communication environment (e.g., operation in buildings or urban areas)
or lack of available bandwidth (e.g., acoustic communication underwater). Marker-
based approaches eliminate these problems by placing information directly into the
actual physical environment. At present, however, it is rarely practical to make fre-
quent marks on a physical environment: for example, marks may be too durable or too
fragile, require time to place, expend a limited payload of marking agent, be unreliable
to read, etc. Virtual markers do not have these problems, but reduce back to the same
problem of map alignment and exchange.

More local and self-organizing approaches typically fall into two categories of nature-
inspired models. One set are primarily based on uniform random walks, either unbi-
ased or biased (e.g., [Oyekan et al. 2010; Poduri and Sukhatme 2007; Ludwig and Gini
2006]). The other, more common strategy uses repulsive forces in a variety of com-
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binations and models such as flocking (e.g., [Mathews et al. 2012]), potential fields
(e.g., [Howard et al. 2002]), and gradient descent (e.g., [McLurkin and Smith 2004]).
There are also a number of modified or hybrid strategies, such as combining biased
random walks and diffusion-limited aggregation [Mullins et al. 2012] or springs and
random walks [Eckert et al. 2012]. Asymptotic analyses, however, reveal that both uni-
form random walks [Beal et al. 2009] and force-driven dispersion (viewed as a process
of distributed consensus [Elhage and Beal 2010]), will generally perform poorly for
large swarms.

The use of reactive Levy walks for swarm dispersion was introduced in [Beal 2013] (a
prior, less developed version of this manuscript). Purely reactive dispersion was intro-
duced in [Beal 2013] as well, as a control comparison for reactive Levy walks, and dis-
covered to provide highly effective dispersion in constrained environments. Levy walks
and/or flights have previously been used for generating search patterns for robots or
other agents a number of times [Nurzaman et al. 2010; Calitoiu 2009; Keeter et al.
2012], as well as for routing [Shin et al. 2008], though these systems considered only
small numbers of agents in sparse environments, a problem with significantly different
constraints and requirements than dispersion.

More generally, Levy flights and Levy walks are scale-free particle motion processes
originally formulated as models in the study of chaotic physical phenomena [Mandel-
brot 1983] (precise definitions will be given in Section 4.3). Although these two random
processes are distinct, they are often frequently used and referred to interchangeably
in the literature (this sort of imprecise thinking can lead to significant problems, as
in the recent challenges to some analyses of Levy motions by animals [Edwards 2011;
Benhamou 2007; Plank and Codling 2009]). Levy motions have been applied to model-
ing a number of physical processes, including diffusion under turbulence [Shlesinger
et al. 1987], the passage of photons through hot gases [Mercadier et al. 2009], and
plasma physics [AV et al. 2002]. More recently, it has been proposed that animals
use Levy walks in their foraging patterns [Viswanathan et al. 1999; Schuster and
Levandowsky 1996], and evidence of such behavior has been reported for an extremely
wide range of organisms, from amoebas [Schuster and Levandowsky 1996], to bum-
blebees, deer, and albatross [Viswanathan et al. 1999], from predatory fish, turtles,
and penguins [Sims et al. 2008; Humphries et al. 2010], to spider monkeys [Ramos-
Fernndez et al. 2004]. Even humans appear to evidence Levy statistics in our move-
ments [Brockmann et al. 2006; Rhee et al. 2011].

3. FORMALIZING THE PROBLEM OF DISPERSION
Let us begin our investigation of swarm dispersion with a careful examination of the
nature of the problem. Speaking informally, there are two qualitative goals that it is
generally expected that any swarm dispersion algorithm should fulfill. First, the mem-
bers of the swarm should rapidly spread out through space. Second, as the members of
the swarm spread through space, they should do so in a manner that does not lead to
any large gaps between swarm members. We will term these goals aggressiveness and
evenness, respectively.

Despite their simplicity, it is often impossible to simultaneously maximize both
aggressiveness and evenness, particularly in highly constrained environments. Intu-
itively, this can be understood as aggressiveness requiring members of the swarm to
move outward as quickly as possible, while evenness requires some to lag behind to
fill gaps (we will demonstrate this more formally below). Depending on the particulars
of the applications, different trade-offs between aggressiveness and evenness may be
desirable. For example, a swarm of UAVs used to deploy a wireless broadband network
over a large wilderness area might maximize aggressiveness and be able to tolerate
a large transient gap during its initial deployment. A swarm of ground robots used
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Fig. 1. Graphical illustration of the dispersion problem: a collection of n particles (here 10) move freely
through some space A at a speed of up to v meters per second. Particle are initially positioned (grey dots)
in some space D0. After t seconds of dispersion, the new positions (black dots) define the effective region of
dispersion Dt|f as the convex hull around the fraction f of particles closest to D0. Here two examples are
shown: Dt|1.0 includes all particles, while Dt|0.8 excludes the furthest two as likely outliers. The goal is to
expand Dt|f aggressively while maintaining an even distribution of particles within Dt|f .

for tactical building clearance, on the other hand, may need to sacrifice some aggres-
siveness to maximize evenness in order to ensure that there are no dangerous gaps in
observation.

There are many additional challenges and constrains that can also play into the
dispersion problem: the maneuvering capabilities of swarm members, imprecision of
movement, environmental factors such as wind or rough terrain, maintenance require-
ments, energy constraints, etc. For the purposes of this paper we will abstract these
away, dealing only with a swarm of idealized particles.1

3.1. Formal Problem Definition
Under the assumption of idealized particles, the problem of dispersion may be formal-
ized as follows:

— A swarm consists of a collection of n particles.
— Particles can move freely through a k-dimensional area of space A with a velocity of

up to v meters per second.
— The particles of the swarm are initially arbitrarily dispersed through some initial

region of space D0 ⊆ A.
— Particles can coordinate by broadcasting information to neighboring particles (under

some communication model) at a rate of O(1) bits per second.
— Particles have a proximity sensor that can reliably detect the close presence of other

particles or obstacles (e.g., via bump sensors, sonar ranging, LIDAR, positioning bea-
cons, etc.), including the boundary of A.2

— Particles have no information about A other than its dimensionality k and whatever
can be gathered from their motions, proximity sensor, and communication with other

1It is worth noting, however, that many such concerns can be dealt with as modulations of space, per the
discussion in [Beal 2012], and the algorithms we discuss in the paper all should adapt well to such an
approach.
2Note that the boundary of A might be either physical (e.g., walls of a building) or virtual (e.g., an “invisible
fence” on permitted operating space).
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Fig. 2. Example of optimally aggressive and even dispersion in one dimension at v = 1 meter/second from
an initial uniform distribution D0 on a 2 meter interval. At each second, the distribution has expanded
outward by 1 meter in each direction, with the density of particles decreasing proportionally but remaining
uniform.

particles. For example, particles do not have any a priori information about the
position of the boundaries of A.

— Following t seconds of movement under control of some dispersion algorithm, the
space through which the swarm has dispersed is a region Dt|f ⊆ A, where f is a
fraction between zero and one and Dt|f is the convex hull of the closest dfne particles
to D0.

Figure 1 shows a graphical illustration of this definition.
The reason for the somewhat complex definition of the dispersed region Dt|f is that

we need some way of mapping back from discrete positions to a continuous region
of space that can cohere with our intuitive understanding of “where the swarm has
dispersed through.” A convex hull is a simple way of capturing such a notion, yet with
many methods it can be significantly distorted by a few “lucky” particles that move a
long distance, while the bulk of the particles are generally much less well dispersed.
By setting f slightly lower than 1, we can exclude such outliers and focus on the bulk
of the swarm. Except where otherwise noted, we will use f = 0.95, i.e., restricting to
particles at or below the 95th percentile of displacement from their initial positions.

Note also that the communication model is left extremely flexible and open to further
definition. The communication model is left so open-ended in order to cover as broad
a class of swarm algorithms as possible.3 The main goal of this definition is simply
to rule out “heavy-weight” algorithms that do not scale well, such as joint planning.
In fact, however, we shall see that with an appropriate choice of random distribution,
highly effective dispersion can be achieved with no communication at all (except for
whatever might be used in implementing the proximity sensor).

3.2. Aggressiveness and Evenness
Under this formalization of dispersion, the goal of aggressive dispersion is to maximize
the expected area of Dt|f at every t, and the goal of even dispersion is to ensure a
uniform expected distribution of particles through Dt|f .

The first is easy to quantify: to quantify aggressiveness, we will simply measure the
rate of growth of Dt|f with respect to time. The optimally aggressive behavior for a
dispersion algorithm is for Dt|F to expand its boundaries outward at rate v. We shall

3In fact, in many swarm scenarios, it would be entirely reasonable to allow somewhat more, e.g., O(logn).
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(a) (b)

Fig. 3. In constrained dispersion, it is not generally possible for a dispersion to be simultaneously optimally
aggressive and optimally even. For example, (a) shows a snapshot of dispersion starting from the left side
of an “uneven dumbbell” comprising two open areas connected by a very thin “pipe,” with the region filled
by the swarm marked in red. In this state, optimal evenness requires that the vast majority of the swarm
particles are in the left area. A short time later, in (b), optimal evenness requires that the majority of the
particles are in the right area, but this cannot be accomplished at an optimally aggressive rate because too
many particles were too far away in the left side at time (a).

thus consider as near-optimal any algorithm where the diameter of Dt|f with respect
to rising t is O(t).

The second is a bit more tricky: we will quantify evenness at any given point in
time by examining the probability density function ρ of particles distributed over some
region of space X (typically Dt|0.95 in this manuscript). To be precise, the probability
density function ρ may be defined for a specific dispersion algorithm and set of ex-
perimental conditions as a function that, when sampled, produces the same statistics
of particle positions as execution of the algorithm is expected to produce under those
conditions. When studying the behavior of algorithms empirically, of course, we cannot
measure probability density directly, but must estimate it in various ways from the
observed samples of various trial runs.

Given an estimate of such a probability density function, we will calculate a “worst
case” measure of the evenness E(X) of the distribution by the ratio between the lowest
and highest density regions:

E(X) =
min{ρ(x)|x ∈ X}
max{ρ(x)|x ∈ X}

A perfectly even dispersion will thus obtain the maximum measure of E(X) = 1 and
dispersion with a consistent failure to cover some portion of space will obtain the min-
imum measure of E(X) = 0. Using the ratio effectively normalizes the measure, so
that a distribution with the same structure will receive the same rating no matter the
scale of region size. We shall thus consider as near-optimal any algorithm where the
evenness for E(Dt|f ) with respect to rising t is O(1) and significantly above zero.

Note that E(X) is, of course, dependent on our choice of region. For example, with a
dispersion algorithm that produces high densities in the center and lower toward the
edges, such as a uniform random walk, E(Dt|0.95) will always be lower than E(Dt|0.8).
This is not a problem, however, so long as we choose the fraction consistently and focus
on the bulk of the swarm rather than outlier particles.

3.3. Trade-offs between Aggressiveness and Evenness
In an unconstrained environment, is it possible for dispersion to be both optimally
aggressive and optimally even. Figure 2 shows an example of such a dispersion in one
dimension. Beginning with an initial uniform distribution D0 on a 2 meter interval,
the distribution expands outward in both directions at v = 1 meter per second. As
the covered interval expands, the density of particles decreases proportionally, but
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can remain uniform, since the required rate of mass-flow is never greater than v. An
equivalent construction can be made with an expanding disc in two dimensions, an
expanding ball in three dimensions, etc.

In a constrained, environment, however, it is not generally possible for dispersion to
simultaneously optimize both aggression and evenness. Instead, we must make some
trade-off between them. Figure 3 shows a simple counter-example, using a dumbbell-
shaped space of two open areas connected by a very thin “pipe.” If the swarm starts
in one open area and fills it, then the bulk of its particles must be in that area; once
it begins to spread into the other area, a large mass of particles must pass through
the thin connecting space. Both the narrowness and length of the pipe pose obstacles:
to keep optimal evenness, only a small fraction of particles can be passing through at
any time, and even if this were violated the particles cannot arrive until they have had
time to pass along the length of the pipe. To be aggressive, particles must disperse at a
lower density in the new area; to be even, the new area must fill more slowly. Moreover,
by varying the sizes of the open areas and the pipe, we can force an arbitrarily bad
trade-off. Problematic proportioning such as this is likely to be quite common in built
environments: consider, for example, dispersing a swarm through a pair of buildings
connected by a skywalk, or through a city center where tightly built up areas connect
to plazas or parks.

Thus we see that there can be no “one size fits all” solution to the problem of disper-
sion in general. Different applications will need to make different trade-offs in aggres-
siveness versus evenness. Thus, in the next section, we introduce a set of algorithms
that allow such a trade-off to be made.

4. REACTIVE FAST DISPERSION ALGORITHMS
Prior methods of dispersion are nowhere near the theoretical bounds established in the
prior section. Both uniform random walks and force-driven dispersion are expected to
perform well on evenness, as driven by an expected normal distribution of particles. On
aggressiveness, however, they are far from optimal with the diameter of the dispersed
region expected to grow at a rate of no more than O(

√
t).

We thus introduce a set of three new algorithms for fast dispersion, covering a spec-
trum of trade-offs between maximal aggressiveness and maximal evenness. The first,
reactive ball dispersion, is maximally even but does not take full advantage of particle
mobility. The second, purely reactive dispersion, is maximally aggressive but suffers
from high transient unevenness. Finally, reactive Levy walk is a physics-based model
that offers a tunable trade-off between aggressiveness, evenness, and centrality of dis-
tribution, reducing to purely reactive dispersion at one extreme and uniform random
walks at the other.

4.1. Maximizing Evenness: Reactive Ball Dispersion
If we vary the speed that swarm members move, so that some may move much more
slowly than others, then an optimally even and aggressive dispersion of a swarm in
unconstrained space can be produced by an extremely simple mechanism. Pseudocode
for this algorithm, which we will term reactive ball dispersion, is given in Algorithm 1.

With this algorithm, each particle essentially selects a polar coordinate position uni-
formly distributed over a sphere of dimension k, by choosing a random direction î and
a fractional radius α. Particles then move at rate αv in their chosen direction, thereby
uniformly expanding the sphere outward at a collective rate v (quantized in steps of
∆t in this implementation).4

4Note that the infinitesimal chance of a particle choosing α = 0 and therefore not moving is acceptable: a
particle’s current location is just as valid a position to cover as anywhere else.
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Fig. 4. Particles in a swarm that begins tightly packed will transition between two distinct phases in execut-
ing a reactive fast dispersion algorithm. Particles in the interior of the tightly packed portion of the swarm
are highly constrained by one another and will move slowly (or possibly not at all) following a constrained
uniform random walk. Particles at the “surface” of the packed region, on the other hand, are largely uncon-
strained and will disperse rapidly away from the packed region, enabling the particles they had constrained
to begin rapidly dispersing as well.

ALGORITHM 1: Reactive Ball Dispersion
repeat

// Choose a Random Motion
î := random-direction()
α := U [0, 1]

1
k // kth root of unit uniform random number

// Move until proximity sensor triggered
repeat every ∆t seconds

move(αvî)
until proximity-sensor()

This algorithm also includes a reactive term, which aborts and picks a new random
motion whenever the proximity sensor is triggered. This is important because it allows
the algorithm to cope with constrained environments—including that of the interior of
a packed initial distribution of particles. When a swarm is dispersing from an initially
tight distribution, most of its particles are initially operating in a highly constrained
environment, where each member’s movements are obstructed by the other nearby
members of the swarm. Without a reactivity term, particles moving counter to one
another may enter a mutually blocking configuration and become stuck; likewise, when
a particle encounters an obstacle in the environment.

With the inclusion of reactivity, we may predict that this algorithm (and the other
reactive fast dispersion algorithms we present) will produce different behaviors on
the edges and in the interior of a swarm (Figure 4). On the edges, particles are not
significantly constrained by proximity, and are able to move superdiffusively, rapidly
dispersing the swarm. In the interior, where particles are constantly in close proximity
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to one another, the reactive Levy walk reduces to a constrained random walk. Particles
in this region move at best diffusively, effectively marking time while they wait to the
dispersion of the edges to allow them to move more freely.

This algorithm is guaranteed to produce an optimally even dispersion that expands
with optimal aggressiveness through unconstrained space. Because some particles
move arbitrarily slowly, however, this algorithm is not taking advantage of the full mo-
bility of the particles, and can be expected to perform less well in constrained spaces.

4.2. Maximizing Aggressiveness: Purely Reactive Dispersion
If reactive ball dispersion does not take full advantage of the mobility of swarm par-
ticles, that can be easily enough remedied. The purely reactive dispersion pseudocode
in Algorithm 2 is identical except that the rate term α modulating particle velocity is
dropped.

ALGORITHM 2: Purely Reactive Dispersion
repeat

// Choose a Random Motion
î := random-direction()
// Move until proximity sensor triggered
repeat every ∆t seconds

move(vî)
until proximity-sensor()

This algorithm is thus expected to produce a maximally aggressive dispersion in
open space, in which every particle moves away from its initial location at maximum
speed v (once it is no longer constrained by other swarm particles). The disadvantage
is that the distribution is also maximally uneven, leaving an empty region with no
particles in the center of the dispersed region. In a constrained space, reactivity will
eventually randomize the paths of the particles such that this gap is filled, and on
highly constrained spaces where reactivity dominates, this algorithm performs best of
the three that we present.

4.3. Trading off Aggression and Evenness: Reactive Levy Walk
Reactive ball dispersion and purely reactive dispersion both have shortcomings: reac-
tive ball dispersion does not take full advantage of particle mobility, and purely reac-
tive dispersion is highly uneven in its initial distribution. Our third algorithm, reactive
Levy walk, addresses both of these shortcomings and provides a tunable trade-off be-
tween aggressiveness, evenness, and centrality of distribution.

A Levy flight [Mandelbrot 1983] is a random movement process similar to a random
walk: a particle makes a sequence of moves, where each move is in a random direction.
Unlike a random walk, however, where the lengths of the moves are identical, Levy
flight moves have a random length generated from a (usually heavy-tailed) probability
distribution, such that the probability of moving an integral distance of d is:

p(d = l) ∝ l−k (1)
The exponent k gives the fractal dimension of the area visited by the pro-
cess [Shlesinger et al. 1993]. When k ≥ 1, each move of a Levy flight moves an un-
bounded expected distance, modeling a scale-free superdiffusive motion of particles—
that is, where particles have an expected displacement over time much further than
predicted by uniform random-walk models of diffusion.
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Levy walks are Levy flights where the particle moves at a constant velocity. This
maintains the scale-free property of the distribution while restricting to more physi-
cally realizable motions. This model (and its generalization to coupled continuous-time
random walks [Becker-Kern et al. 2004; Kotulski 1995]) is used to model a number of
natural phenomena, as described in Section 2.

A reactive Levy walk is then identical to an ordinary Levy walk, except that it adds a
reactivity term for handling constrained environments, much the same as the prior two
algorithms: whenever the proximity sensor is triggered, the current move is aborted
and a new random move is started. Pseudocode for a reactive Levy walk is given in
Algorithm 3.

ALGORITHM 3: Reactive Levy Walk
repeat

// Choose a Random Motion
î := random-direction()
α := U [0, 1]k // kth power of unit uniform random number
accumulator := 0
// Move until threshold is reached or proximity sensor triggered
repeat every ∆t seconds

move(vî)
accumulator := accumulator + α · ∆t

until accumulator ≥ T or proximity-sensor()

In addition to adding the reactivity term, this formulation also specifies the scale-
free distribution using a variable-rate accumulator rather than the standard probabil-
ity computation given in Equation 1. A particle executing a reactive Levy walk begins
by selecting a random direction î, selecting a random rate of accumulation α as the kth
power of a uniformly random number between 0 and 1, and setting its accumulator to
zero. While the accumulator value rises at a rate of α per second (quantized in steps of
∆t in this implementation), the particle moves in direction î at velocity v. The particle
resets its accumulator and selects a new direction and rate whenever either its accu-
mulator reaches some fixed threshold T (taking α−1 seconds) or its proximity sensor is
triggered.5

Neglecting the reactivity term, this inverted formulation of Levy walking has equiv-
alent statistics to a standard Levy walk, but can be implemented with a simple parallel
circuit, as shown in Figure 5, that can be easily realized using either digital or analog
electronics or a neural or biochemical network.

As with standard Levy walks, the behavior of a reactive Levy walk can be modulated
by adjusting the k term, which corresponds to the fractal dimension expected to be cov-
ered by each particle’s trajectory.6 Applied to swarm dispersion, this allows us to tune
the algorithm for different trade-offs between aggressiveness and evenness. Choosing
k equal to the dimension of the overall space A is expected to produce the best even-
ness that this algorithm can offer. Increasing k will increase the aggressiveness of the
algorithm, decreasing the proportion of particles in the center of the distribution, until

5Note that in the infinitesimal chance that a particle chooses α = 0, it will never change direction except
reactively. This is, however, an acceptable behavior, indistinguishable from the much greater likelihood of
choosing a α that happens to be have a timeout longer than the dispersion process will be run for.
6Changing the other parameters affects behavior only by a constant factor, so long as the algorithm param-
eters are non-trivial (v > 0 and T > 0).
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Fig. 5. Reactive Levy walk implemented as a parallel circuit that can be easily implemented as an elec-
tronic, neural, or biochemical network.

at the limit of k = ∞, reactive Levy walk reduces to purely reactive dispersion. In the
opposite direction, decreasing k will produce more centrally weighted distributions,
until at the limit of k = 0, reactive Levy walk reduces to a uniform random walk.

5. ASYMPTOTIC (UNCONSTRAINED) DISPERSION
In comparing the new reactive fast dispersion algorithms against prior methods of
dispersion, let us begin by considering the asymptotic case, where the swarm is dis-
persing through a very large environment with little constraint. In this case, the reac-
tivity term plays little role, and we can approximate behavior with fast dispersion in
which the proximity sensor is never triggered, since the likelihood of particle coming
in proximity of one another drops rapidly as they disperse.

5.1. Comparison of Dispersion Algorithms
In particular, we investigate dispersion in two dimensions, though the results in two
dimensions are expected to generalize to one-dimensional, three-dimensional, or even
higher dimensional spaces. Thus, for reactive ball dispersion and reactive Levy walk,
we choose the appropriate dimensionality parameter k = 2. For comparison, we also
test an under-dimensioned reactive Levy walk with k = 1 (we investigate the effect of
k on reactive Levy walks more thoroughly in Section 5.2).

For comparison with prior methods, we use two representative algorithms, uniform
random walk and repulsive forces. We implement these as follows:

— Random walk moves at v meters per second in a random direction, selecting a new
random direction every ∆t seconds.

— Repulsive forces applies a force inversely proportional to the distance dij from each
particle i to its neighbors j ∈ nbrs(i), where the neighbors are the set of particles up
to r meters away:

v(i) = F
∑

j∈nbrs(i)

d−1ij (2)

Note that although the combination of forces and exponents for various repulsive
force approaches in the literature varies, the asymptotic behavior will typically be
similar, as the convergence time is typically driven more by the delays and decay of
influence from neighborhood to neighborhood, rather than by the structure of inter-
actions within an individual neighborhood.

To empirically compare the efficacy of dispersion algorithms with the predictions in
Section 4, we consider the trajectories of swarms of 1000 particles dispersing in open
space in two dimensions.
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(a) Random Walk (b) Repulsive Forces (c) Reactive Ball Dispersion

(d) Purely Reactive Dispersion (e) Levy Walk k = 1 (f) Levy Walk k = 2

Fig. 6. Snapshots of swarms of 1000 particles after t = 200 seconds of dispersion from the center of a
500x500 meter region via random walk (a), repulsive forces (b), reactive ball dispersion (c), purely reactive
dispersion (d), and reactive Levy walk for k = 1 (e) and k = 2 (f).

Figure 6 shows examples of these six methods operating with v = 1, ∆t = 1, T = 1,
and repulsive force parameters F = 0.05 and r = 10, after dispersing for t = 200
seconds from an initial uniform random distribution across a 10-meter square. Even
after such a short period of time, the contrast between the various approaches is stark:
random walk has barely begun to disperse (Figure 6(a)), while purely reactive dis-
persion (Figure 6(d)) has moved outward the maximum distance possible, leaving the
center entirely empty. The properly dimensioned reactive ball dispersion (Figure 6(c))
and reactive Levy walk (k = 2, Figure 6(f)) have the same extent, but fill space gen-
erally evenly—reactive Levy walk has a slightly denser band of particles at its outer
boundary. The under-dimensioned k = 1 Levy walk (Figure 6(e)) has spread particles
through the same area, but they are much more densely clustered in the center than at
the edges. Finally, at this early moment, repulsive forces (Figure 6(b)) appears to come
close to matching the even dispersion of reactive ball dispersion and reactive Levy
walk, but in fact it is already rapidly decelerating its dispersion as repulsive forces
decrease on the particles at the edge of the swarm.

For a more systematic comparison, we consider the trajectories of 10 trials of each
method on a swarm of 1000 particles dispersing for 10,000 seconds with the same
parameters and initial distribution, with the positions of the swarm members recorded
every 100 simulated seconds. All other parameters are the same as before.

In evaluating the results of these simulations, we exploit the radial symmetry of all
of the algorithms and consider only the absolute displacement of each particle from the
initial center of the swarm. We then estimate the radius of Dt|f for each percentile, i.e.,
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(a) Random Walk
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(b) Repulsive Forces
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(c) Reactive Ball Dispersion

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10 4

10 3

10 2

10 1

Meters from initial swarm center

Pa
rti

cl
es

/m
et

er
2

(d) Purely Reactive Dispersion
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(e) Levy Walk k = 1
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(f) Levy Walk k = 2

Fig. 7. Evolution of distributions of 1000 particles dispersing from the center of a region via random walk
(a), repulsive forces (b), reactive ball dispersion (c), purely reactive dispersion (d), and Levy walk for k = 1
(e) and k = 2 (f). Colors indicate time, ranging linearly from t = 1, 000 (orange) to t = 10, 000 seconds (red).
Note that random walk and repulsive forces are shown with a different X-axis, because they disperse so
slowly relative to the rest. The others all disperse with optimal or near-optimal aggressiveness, but vary
wildly in evenness.
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Fig. 8. The 95th percentile of particle displacement rises at a near-optimal linear rate for all three fast
dispersion algorithms when their dimension k matches the dimension of the space. Both purely reactive
dispersion and reactive Levy walk with k = 2 are “faster than optimal” due to the high number of parti-
cles at the outer edge in these distributions, while reactive ball dispersion is almost precisely optimal. The
dimension-mismatched Levy walk with k = 1 disperses slightly more slowly than linear. Repulsive forces
and random walk both disperse at a rate of O(

√
t), though repulsive forces rapidly slows to a stop as neigh-

bor forces decrease. The 10th percentile lines follow a similar trend, except for purely reactive dispersion,
which is not visible because it precisely overlaps its 95th percentile line, indicating the empty center of the
distribution.
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Fig. 9. All dispersion methods provide consistent near-optimal evenness except for the under-dimensioned
reactive Levy walk with k = 1 (which has an increasing relative density at the center) and purely reactive
dispersion, which has a completely empty center and is above zero only by virtue of the numerical approxi-
mations in our density estimation.

for f ranging from 0.01 to 1.00 in steps of 0.01. From this set of radii, we can compute an
approximate probability density function by dividing the number of particles in each
percentile by the difference in area between Dt|f and Dt|f−1, and compute evenness by
comparing the densities of different percentiles. Note that since we are working with
random processes, this approximate calculation is affected by our choice of granularity,
particularly with regards to computing evenness. As noted with the choice of f in
Section 3.2, this does not impair our ability to compare algorithms and evaluate their
asymptotic properties. Note also that this approximation yields a very small value
rather than the true value of zero for the interior of purely reactive dispersion, which
we shall ignore.
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Figure 7 illustrates the evolution of distributions for each of the six methods, sam-
pled every 1, 000 seconds. The results are, in general, as expected from the analysis in
Section 4 and the snapshots in Figure 6. Random walk has a slowly expanding normal
distribution, while repulsive forces comes to an even distribution and stops. Reactive
ball dispersion maintains a close approximation of an optimally even distribution that
expands at an optimally aggressive rate. Purely reactive dispersion moves an impulse
distribution outward at an optimally aggressive rate. Finally, the k = 2 reactive Levy
walk mixes a nearly-even distribution with an impulse at the edge similar to purely
reactive, while under-dimensioned k = 1 reactive Levy walk blends a central peak with
aggressive expansion at a slowly decreasing relative density.

These trends are quantified over the whole data set in Figure 8 and Figure 9. Fig-
ure 8 compares the aggressiveness of the six methods, as well as an optimally ag-
gressive and even dispersion, by measuring the displacement of the 95th and 10th
percentiles over time. The trends are as expected from the sample distributions in Fig-
ure 7: the displacement of the 95th percentile from the center of the initial distribution
rises at a near-optimal linear rate for all three fast dispersion algorithms with appro-
priate dimension. Both purely reactive dispersion and reactive Levy walk with k = 2
are slightly “faster than optimal” due to the high number of particles at the outer edge
of the distribution shifting the location of the 95th percentile closer to the edge, while
reactive ball distribution is almost precisely optimal. Random walk disperses slowly,
at a rate proportional to

√
t (following the well-known mathematical result). The ex-

pected bound for repulsive forces may be derived from the same result: repulsive forces
may be considered as a process of diffusion of potential energy, and diffusion is the con-
tinuous analog of random walk. Thus, we may expect repulsive forces to initially also
follow a

√
t trajectory (which it does); once particles reach distance r from one another,

however, they lose contact and will cease dispersing.
Figure 9 shows the evenness metric computed by comparing the density estimates

for each percentile. Note that expanding the estimation window to reduce variability
causes the evenness metric to rise for all methods but does not affect the conclusions
drawn from the comparison. As can be seen, appropriately dimensioned reactive ball
dispersion and reactive Levy walk are both near-optimal, providing a consistent level
of evenness, as do uniform random walk and repulsive forces. The under-dimensioned
reactive Levy walk with k = 1, however, slowly degrades in evenness, and purely reac-
tive dispersion is of course completely uneven.

Thus, we see that for dispersion in large open regions, appropriately dimensioned
reactive ball dispersion and reactive Levy walk both operate with near-optimal ag-
gressiveness and near-optimal evenness. By contrast, other methods produce either
much slower or highly uneven dispersion.

5.2. Tuning Levy Walk Dimensionality
From analysis in Section 4 and the two examples in the previous section, we know that
the dimensionality constant k in reactive Levy walks should allow this algorithm to be
incrementally tuned to blend aggressiveness, evenness, and centrality. We now study
this blending more closely by running reactive Levy walks varying k linearly from 0.0
to 5.0 in steps of 0.1. For each condition, we consider 10 trials on a swarm of 1000
particles dispersing for 10,000 seconds with the same parameters (v = 1, ∆t = 1, and
T = 1) and initial distribution are before. Also as before, the positions of the swarm
members are recorded every 100 simulated seconds, and radial statistics computed for
aggressiveness and evenness.

Figure 10 illustrates the evolution of distributions at various values for k, sampled
every 1, 000 seconds and excluding the farthest 5% of particles as possible outliers.
For two-dimensional dispersion, at k = 0, the distribution is identical to uniform ran-
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(a) k = 0.0
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(b) k = 0.5
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(c) k = 1.0
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(d) k = 1.5
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(e) k = 2.0
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(f) k = 2.5

Fig. 10. Reactive Levy walks exhibit radically different behaviors depending on their value of k: at low k
(a), they behavior as uniform random walks. At k equal to the spatial dimension (e), they provide a near-
optimal even dispersion. At high k they to approximate purely reactive dispersion, and in between (b,c,d,f)
they provide tunable blends of these behaviors.

dom walk. As k rises, the distribution stretches out more aggressively, until it becomes
heavy-tailed and approaches optimal aggressiveness by around k = 1 (though of course
we know from the prior experiment that it is not quite optimally aggressive). From
these, the distribution continues to flatten out, losing its central bulge, until by k = 2
the distribution is quite even, with the central moment almost (but not quite) entirely
gone and an “impulse” of maximally aggressive particles gathering at the outer edge,
similar to those in purely reactive dispersion. As k continues to rise, this impulse con-
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Fig. 11. In two dimensions, reactive Levy walks are near-optimally aggressive for k above around 1.5, but
only provide even dispersion when k is near 0 or 2.

tinues to grow, with the distribution rapidly coming to approximate purely reactive
dispersion.

Figure 11 summarizes the observed aggressiveness and evenness for the experiment
as a whole. Evenness is calculated as before, and Figure 11(b) shows several time
points to illustrate how it evolves in uneven distributions. In general, evenness is high
when the distribution is similar to uniform random, fails at the middle of the transition
to even dispersion, and fails again for high k, when the distribution is similar to purely
reactive dispersion. The aggressiveness values in Figure 11(a) give the exponent on the
growth of the radius of Dt|0.95 with respect to t (computed as a linear least squares fit
of logDt|0.95 vs. log t). Initially O(

√
t), as expected for a uniform random walk, it rapidly

rises starting at around k = 0.05 to provide near-optimal aggressiveness in dispersion
by around k = 1.5.

We thus see that in two dimensions reactive Levy walks provide both aggressive
and even distributions when k = 2; this “sweet spot” is likely due to the match be-
tween fractal and real dimension, and so for other dimension spaces the “preferred” k
is expected to shift to match the dimension of the space. From this “preferred” point, k
can be adjusted to mix either with a central distribution or increased aggressiveness,
providing a range of trade-offs that can be used to tune the algorithm for different
applications. For example, a partially central distribution may be desirable for ap-
plications with greater sensitivity near the origin, such as convoy protection, while
increased aggressiveness may be useful in highly constrained environments such as
urban areas.

6. CONSTRAINED DISPERSION AND REACTIVITY
In a constrained space, the reactivity in reactive fast dispersion comes into play, caus-
ing the particles of the swarm to restart their random motions whenever they en-
counter an obstacle. This has a large effect on the patterns of dispersion produced by
an algorithm, particularly with regards to evenness. We should expect that the more
constrained the space, the more that reactivity will dominate, and the less that algo-
rithm elements aimed at creating evenness will matter. Instead, evenness in highly
constrained environments will be produced primarily by the frequent restarts of ran-
dom motion originating in new locations.

To evaluate the performance of our algorithms, we consider two constrained environ-
ments, one where the amount of constraint is low, the other where it is high. The low
constraint environment is an open box 1000 meters on a side. The high constraint en-
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(a) Random Walk (b) Repulsive Forces (c) Reactive Ball Dispersion

(d) Purely Reactive Dispersion (e) Reactive Levy Walk k = 1 (f) Reactive Levy Walk k = 2

Fig. 12. Mean density of particles from t = 5, 000 to t = 10, 000 seconds of dispersion of a swarm of 100
particles from the center of a 1000x1000 meter box via random walk (a), repulsive forces (b), reactive ball
dispersion (c), purely reactive dispersion (d), and reactive Levy walk for k = 1 (e) and k = 2 (f). Warmer
colors indicate logarithmically greater density.

Open Box Maze
Random Walk 0 0
Repulsive Forces 0 0
Reactive Ball Dispersion 0.062 0.067
Purely Reactive Dispersion 0.176 0.055
Reactive Levy Walk k = 1 0.049 0.028
Reactive Levy Walk k = 2 0.073 0.042

Fig. 13. Evenness of dispersion in constrained conditions

vironment is a a 100-by-100 meter maze-like environment with a large central “room”
and narrow “corridors” leading outward and around it (Figure 14). For both experi-
ments, we use a swarm of 100 particles, each particle in the swarm is a 1-meter cube,
and the movements and physical interactions of particles with one another and the
maze are simulated in Proto [Beal and Bachrach 2006; MIT Proto 2012] using the
ODE [Russel Smith et al. 2010] Newtonian physics engine. The swarm begins packed
as tightly as possible, in physical contact in a 10 meter square in the center of the
environment. Dispersion is then run for 10,000 seconds using the same methods and
parameters as before, 10 trials per method, with the positions of the swarm members
recorded every 10 simulated seconds.
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(a) Random Walk (b) Repulsive Forces (c) Reactive Ball Dispersion

(d) Purely Reactive Dispersion (e) Reactive Levy Walk k = 1 (f) Reactive Levy Walk k = 2

Fig. 14. Snapshots of swarms of 100 particles after t = 2000 seconds of dispersion from the center of a
100x100 meter “maze” of barriers via random walk (a), repulsive forces (b), reactive ball dispersion (c),
purely reactive dispersion (d), and reactive Levy walk for k = 1 (e) and k = 2 (f).

6.1. Low-Constraint Dispersion
The results of the low-constraint simulation are presented in Figure 12, where each
pixel shows the mean density of particles in a 10-by-10 meter square over the second
half of the simulation, from t = 5, 000 to t = 10, 000, for all runs. As in the asymptotic
case, random walk and repulsive forces perform poorly, never even coming close to
reaching the edges of the environment. All of the reactive fast dispersion methods
perform fairly well, though in all cases there is a tendency for the random motions of
particles to keep them closer to the walls than in the center.

Figure 13 shows the evenness values computed by comparing the densities quan-
tized in 10-by-10 meter squares. In computing evenness, we exclude the set of squares
immediately adjacent to the edges to avoid boundary effects and the fact that particles
occasionally get “stuck” in a corner in this simulation. Reactivity dramatically trans-
forms the relative ordering of the algorithms: rather than being least even, purely
reactive dispersion is now the most even, thanks to the fact that particles have been
able to decorrelate their trajectories through random bounces off of the walls. The k = 2
reactive Levy walk and reactive ball dispersion perform similarly but somewhat less
well, and the under-dimensioned k = 1 reactive Levy walk is a nearby but unsurprising
last.

The one significant surprise here is the relatively poor performance of reactive ball
dispersion, which is, after all, optimally even in unconstrained space. Careful exam-
ination of the density plot for reactive ball dispersion gives a hint as to why this is:
there are strong individual “streaks” of higher probability, likely caused by individual
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(a) Random Walk (b) Repulsive Forces (c) Reactive Ball Dispersion

(d) Purely Reactive Dispersion (e) Reactive Levy Walk k = 1 (f) Reactive Levy Walk k = 2

Fig. 15. Mean density of particles per square meter from t = 5, 000 to t = 10, 000 seconds of dispersion of a
swarm of 100 particles from the center of a 100x100 meter “maze” of barriers via random walk (a), repulsive
forces (b), reactive ball dispersion (c), purely reactive dispersion (d), and reactive Levy walk for k = 1 (e) and
k = 2 (f). Warmer colors indicate logarithmically greater density.

particles that are moving particularly slowly. Moreover, the proportion of slow-moving
particles may be expected to be higher in constrained space than unconstrained, since
faster particles encounter walls and rechoose their speed more frequently than slower
ones. Random variations in coverage are thus therefore more likely to persist longer
with this algorithm than with purely reactive dispersion and reactive Levy walks.

6.2. High-Constraint Dispersion
The results of the high-constraint “maze” simulation are presented in Figure 14, which
shows example snapshots of swarms after t = 2000 seconds of dispersion, and Fig-
ure 15, which shows the mean density of particles per square meter over the second
half of the simulation, from t = 5, 000 to t = 10, 000. As in the asymptotic case, ran-
dom walk performs poorly, spreading slowly enough that it never actually reaches all
parts of the maze (though it does better than the low-constraint case simply because
the space is smaller). Repulsive forces perform even worse, quickly reaching a sta-
ble equilibrium where particles on the edges no longer move outward, even though
many others in the swarm are under significant stress. Once again, all of the reactive
fast dispersion algorithms effectively disperse particles through the entire maze, with
turn-on-contact slightly outperforming reactive Levy walks.

Figure 13 shows the evenness values computed by comparing the densities quan-
tized in one meter squares. To compute evenness in this environment, we exclude the
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(b) Swarm Visited

Fig. 16. All of the reactive fast dispersion algorithms effectively mix a swarm, as shown by measurements
of distance displaced (a) and fraction of swarm visited (b) in a swarm of 300 sparsely distributed particles.

walls of the maze and the edges. As before, we also exclude the immediate bound-
ary squares to avoid boundary effects and occasional stuck particles. In this highly
constrained environment, reactivity clearly dominates and the differences between
the reactive fast dispersion algorithms are nearly eliminated, except for the under-
dimensioned k = 1 reactive Levy walk, which is hindered by the centrality of its distri-
bution.

We thus see that, when properly dimensioned, both reactive ball dispersion and re-
active Levy walks produce aggressive and even dispersion in both highly constrained
and unconstrained environments. Purely reactive dispersion, while extremely uneven
in unconstrained environments or during initial deployment in a low-constraint envi-
ronment, performs well in a highly constrained environment where particle motions
become rapidly decorrelated through reactivity.

7. SWARM MIXING
Mixing of a swarm is a similar maneuver to dispersion, but starting with the swarm
already distributed over space rather than tightly packed. In our problem formulation,
this means that D0 is on the same scale as A, and the growth of Dt|f not generally
of interest. Uses include data ferrying, blending of mission and maintenance tasks,
and enhancing robustness through diversity. Dispersion algorithms should generally
work well for mixing also, since both dispersion and mixing require particles to move
relatively long distances with low correlation in their movements. Based on the results
in prior sections, we should thus expect the efficacy of mixing to be good for the reactive
fast dispersion methods, but poor for random walk (where particles traverse space
more slowly) and for repulsive forces (where there is high correlation in movement).

For an empirical test, we consider the same algorithms and parameters as before,
but now consider a swarm of 300 particles beginning distributed uniformly randomly
through a 1000-by-1000 meter space with no internal obstacles. Dispersion is then
run for 5,000 seconds using the same methods and parameters as before, 10 trials
per method, with the positions of the swarm members recorded every 10 simulated
seconds.

To evaluate the mixing efficacy of the six methods under consideration, we will use
two measures: the displacement of a particle from its initial position, and the number
of other particles that an particle “visits” over time, i.e., that it comes within some
threshold d meters of. Figure 16 shows the evolution of the displacement and visit
metrics over time for the four methods, using a threshold of d = 10 meters for visit
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proximity. As expected, all of the reactive fast dispersion algorithms perform well,
while random walk and repulsive forces do not. The under-dimension reactive Levy
walk with k = 1 does perform significantly less well than the other fast dispersion
algorithms, as we might expect from the low-constraint dispersion experiment in the
last section. Reactive ball dispersion also fares significantly less well in the fraction
of the swarm visited, likely due to the fact that particles are generally moving more
slowly and thus have less opportunity to rendezvous.

8. SUMMARY AND CONCLUSIONS
Formalizing and analyzing the problem of swarm dispersion has shown that the goals
of aggressive dispersion and even dispersion are compatible in an unconstrained envi-
ronment, but cannot be generally simultaneously optimized in a constrained environ-
ment. The three algorithms presented in this manuscript—reactive ball dispersion,
purely reactive dispersion, and reactive Levy walks—are all effective methods for dis-
persion and mixing of swarms. These methods are much faster than prior approaches,
while requiring only simple computation (readily implementable in electronic or bio-
logical hardware), minimal sensing, and no communication between swarm particles.
Between them, they offer a range of trade-offs between aggressiveness and evenness,
particularly given the fact that reactive Levy walks can be tuned via their dimension-
ality parameter to mix properties of aggressiveness, evenness, and centrality.

An important direction for future investigation will be to determine how much var-
ious existing applications can be improved by replacing the use of prior less effective
dispersion methods. In addition, both analysis and algorithms could be further refined
with respect to constrained environments. While the algorithms of this paper perform
fairly well, there is much room fore improvement. For example, a small amount of ac-
tive coordination between devices might allow faster exploration of newly discovered
regions, obtaining some of the benefits of “heavy-weight” approaches such as map-
making without the corresponding communications cost. Finally, for pursuing some
applications, it will also be important to ensure that these algorithms can be adapted
to cope with environmental constraints such as wind and terrain and maneuverability
constraints such as limited turning radius, imprecise movement, and limited energy.
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