
0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2904239, IEEE
Transactions on Automatic Control

1

Robustness of the Adaptive Bellman-Ford
Algorithm: Global Stability and Ultimate Bounds
Yuanqiu Mo, Student Member, IEEE, Soura Dasgupta, Fellow, IEEE, and Jacob Beal, Senior Member, IEEE

Abstract—Self-stabilizing distance estimation algorithms are
an important building block of many distributed systems, such
as seen in the emerging field of Aggregate Programming. Their
safe use in feedback systems or under persistent perturbations
has not previously been formally analyzed. Self-stabilization
only involves eventual convergence, and is not endowed with
robustness properties associated with global uniform asymptotic
stability and thus does not guarantee stability under perturba-
tions or feedback. We formulate a Lyapunov function to analyze
the Adaptive Bellman-Ford distance estimation algorithm and
use it to prove global uniform asymptotic stability, a property
which the classical Bellman-Ford algorithm lacks. Global uniform
asymptotic stability assures a measure of robustness to structural
perturbations, empirically observed by us in a previous work.
We also show that the algorithm is ultimately bounded under
bounded measurement error and device mobility and provide a
tight bound on the ultimate bound and the time to attain it.

Index Terms—Ultimate Boundedness, Lyapunov Function, Sta-
bility, Robustness, Aggregating Computing, Internet of Things.

I. INTRODUCTION

As our world becomes increasingly interdependent and
interconnected, recent decades have seen a proliferation of
complex networked and distributed systems, typically com-
posed of multiple subsystems (physical and logical), which
may themselves be distributed. The resilience, safety, and
dynamical performance of such systems are of critical impor-
tance, but in general it is still extremely difficult to analyze
compositions of distributed algorithms.

Robustness and stability have been addressed for limited
classes of large-scale distributed systems in the controls liter-
ature for decades, using a mature set of tools from stability
theory [1]. The ongoing dispersion of services into local
devices, as occurs in the domains of smart cities, tactical
information sharing, personal and home area networks, and
the Internet of Things (IoT) [11], however, poses new and
challenging problems for analysis and design. In particular,
realizing the potential of these domains requires devices to

This work has been supported by the Defense Advanced Research Projects
Agency (DARPA) under Contract No. HR001117C0049. The views, opinions,
and/or findings expressed are those of the author(s) and should not be
interpreted as representing the official views or policies of the Department of
Defense or the U.S. Government. This document does not contain technology
or technical data controlled under either U.S. International Traffic in Arms
Regulation or U.S. Export Administration Regulations. Approved for public
release, distribution unlimited (DARPA DISTAR case 28473, 9/18/2017).

Y. Mo and S. Dasgupta are with the University of Iowa, Iowa City, Iowa
52242 USA (e-mail: yuanqiu-mo@uiowa.edu, soura-dasgupta@uiowa.edu). S.
Dasgupta is also a Visiting Professor at Shandong Computer Science Center,
Shandong Provincial Key Laboratory of Computer Networks, China.

J. Beal is with Raytheon BBN Technologies, Cambridge, MA, USA 02138
USA (e-mail: jakebeal@ieee.org)

G GController

Distributed
Services

C

Fig. 1. Distributed systems are often composed of multiple interacting
distributed subsystems: for example, in this notional example system, a set of
distributed services are managed by a controller device, which accepts load
information as input and provides a resource allocation plan as its output.
The blue subsystems are aggregate computing building blocks. The two to
the left of the controller are composed to implement information collection.
The resource allocation plan is disseminated by the block to the right.

interact safely and seamlessly with other devices in their
vicinity through low latency peer to peer communications,
often in feedback loops, with individual blocks independently
subjected to perturbations due to mobility, uncertainty and
noise. At the same time, however, these systems are open,
in the sense that they are expected to support an unbounded
and rapidly evolving collection of distributed services, repre-
sented by algorithms. To address these challenges, we need
a framework for analyzing the composition of distributed
services, both to guide service engineering and to support run-
time monitoring and management of complex compositions of
dispersed services.

Aggregate computing offers a potential approach to this
challenge by viewing the basic computing unit as a physi-
cal region comprising a collection of interacting computing
devices, rather than an individual physical device [11]. In
particular, [11] introduces a separation of concerns into dif-
ferent abstraction layers, much like the OSI model [12] does
for communication between individual devices, factoring the
overall task of distributed system design into sub-tasks of
device-level communication and discovery, coherence between
collective and local operations, resilience, and programmabil-
ity. Within this framework, we focus specifically on the “basis
set” approach to resilient design introduced in [13] and [14],
which show that a broad class of dispersed services can be
described by composition of three types of building block
distributed algorithms: (i) G-blocks that spread information
through a network of devices, (ii) C-blocks that summarize
salient information about the network to be used by interacting
units, and (iii) T -blocks that maintain temporary state. Figure
1 illustrates a typical example of such systems, in this case
making use of G and C blocks. A key function of these

0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2904239, IEEE
Transactions on Automatic Control

2

blocks is to coordinate interacting devices using packet-based
message passing in a highly distributed environment.

While the dynamics of these basis set systems appear
pragmatically amenable to effective composition [27]–[30], no
framework for analyzing the stability of such compositions
as yet exists. Our long term aim is thus to delineate the
circumstances under which compositions of these blocks do
or do not ensure stable behavior. As explained in Section II,
this in turn is facilitated by developing a Lyapunov framework
that can be used to establish (i) global uniform asymptotic
stability1 of these individual blocks under ideal conditions and
(ii) ultimate bounds under persistent perturbations. Roughly
speaking, global uniform asymptotic stability implies that
convergence characteristics are independent of the initial time.
As noted through an example in Section VII-A, it is also
important to characterize the time it takes to converge and/or
to attain ultimate bounds.

As a step toward this goal, we analyze an archetypal
and commonly used version of the aggregate computing G-
block, the Adaptive Bellman-Ford (ABF) algorithm, a globally
asymptotically stable variant of the classical Bellman-Ford
algorithm [20], [21]. As explained in Section II, the classical
Bellman-Ford algorithm [20], [21] is not globally stable. This
work builds on a preliminary conference version [17], which
lacks proofs, characterization of convergence time, and per-
turbation analysis. We also report several structural insights,
the most significant being that distributed algorithms such as
ABF require unusual Lyaponov functions, as the state update
of a node does not rely on its current value but rather on the
value of some distinguished neighbors. The work in this paper
thus completes the first critical step toward a general theory
of understanding the dynamics of aggregate computing.

Following a review of related work and background in
Section II, we formalize the problem in Section III and the
ABF algorithm in Section IV. In Section V, we formulate
a Lyapunov function based on greatest overestimation error
and least underestimation error, prove that this function is
non-increasing, and use it to prove global uniform asymptotic
stability of ABF in Section VI. We next provide a tight
bound on convergence time for ABF, in terms of the structural
characteristics of the underlying graph, identifying an intrinsic
asymmetry in the behavior of overestimates and underes-
timates. In Section VII, we apply the Lyapunov analysis
to behavior under persistent perturbations with two physical
interpretations: bounded motion of nodes and noisy distance
measurements, then show that under such perturbations ABF
is ultimately bounded (per the definition in [1]), furnish a
tight ultimate bound, and tightly upper bound the time taken
to attain it. Section VIII gives simulation and Section IX
summarizes and discusses implications and future work.

II. RELATED WORK AND APPROACH

Robustness and stability studies for some large-scale dis-
tributed systems spawns decades with [2] serving as a seminal

1The stationary point x∗ of a system x(t + 1) = f(x(t), t) is globally
uniformly asymptotically stable, if for all x(t0) and ε > 0, there exists a T
independent of the initial time t0, such that ‖x(t)− x∗‖ ≤ ε, for all t ≥ T.
The system itself is called globally uniformly asymptotically stable.

(though not the first) example. In recent years such research
has been dominated by the control of multiagent systems, ex-
emplified by consensus theory (see [3] and references therein)
and formation control, (see [4]- [8] and references therein).
Their analysis has leveraged classical stability theory tools like
Lyapunov theory, passivity theory [9], [10], center manifold
theory [5], [8], and the Perron-Frobenius Theorem [3].

As a first step in understanding the robust stability of
arbitrary compositions of blocks in Aggregate Computing,
it is important to understand how these individual systems
behave under perturbations. More precisely are there stability
properties robust to these perturbations? Does stability in the
ideal unperturbed setting translate to acceptable behavior in
the face of perturbations? While these blocks are known to be
self-stabilizing, [15], robust behavior cannot be deduced by
the mere demonstration of self-stabilization or even asymptotic
stability. Rather, as is now well understood in the adaptive
systems literature, [18], one should instead show global uni-
form asymptotic stability of the unperturbed system, as it
guarantees total stability [19], an ability to withstand modest
departures from idealizing assumptions. In particular, in a
totally stable system the state remains bounded in face of
sufficiently small perturbations in the system equations. Thus,
as in the literature of multiagent systems, we begin to develop
a framework for analyzing the stability, safety, and dynamical
behavior of arbitrary compositions of a basis set of distributed
algorithms by leveraging Lyapunov based tools to prove the
global uniform asymptotic stability of one distinguished block,
and to explicitly analyze its behavior under perturbations.

Specifically, we focus on a commonly used, archetypal
G-block, many of whose behaviors are inherited by other
types of G-blocks. The G-block in question is the ABF
algorithm, an adaptive version of the classical Bellman-Ford
algorithm, [20], [21], which estimates in a distributed fashion
distances of nodes in an undirected graph from the nearest in
a designated subset of source nodes. This variant is needed as
the classical Bellman-Ford algorithm is not globally uniformly
asymptotically stable mandating as it does that all initial
distance estimates be larger than the actual distances. Under
persistent topological perturbations (e.g. from interaction with
other components in a feedback system) these stringent initial
condition requirements cannot be met.

Our first contribution is to formulate a Lyapunov function,
prove that it is always non-increasing, and then use it to
demonstrate the global uniform asymptotic stability of ABF.
The Lyapunov function itself is the sum of two terms: The
largest positive distance estimation error, i.e. the greatest over-
estimation error, ∆+ and the magnitude of the most negative
estimation error, i.e. the greatest underestimation error, ∆−.
We show that this Lyapunov function is nonincreasing and use
it to prove global uniform asymptotic stability. This formally
validates the observed robustness to structural perturbations of
the underlying graph, including perturbations caused by certain
types of feedback relations empirically analyzed in [30].

The second contribution is to provide a tight bound on
the time to converge, in terms of the structural character-
istics of the underlying graph. This is of more than just
academic interest, as it reveals some important dependencies

0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2904239, IEEE
Transactions on Automatic Control

3

that influence distance estimation algorithms. Our preliminary
investigation in [26] suggests similar interdependencies also
characterize the behavior of algorithms representing C blocks.
The graph driven dependencies that we identify cause an
intrinsic asymmetry in the respective behavior of ∆+ and
∆−. Specifically, we show that ∆+ converges within what
we call the effective diameter of the graph. On the other hand,
while the convergence of ∆− is still bounded proportional to
effective diameter time, it could be much slower than for ∆+,
and is in fact limited by short links in the graph.

We apply the Lyapunov analysis to behavior under persistent
perturbations with two physical interpretations: First, that non-
source nodes experience persistent bounded motion around a
nominal point in space, and second, that the measurement
of distance between nodes is noisy. We show that under
such persistent, de facto or actual, perturbations the algorithm
is ultimately bounded, furnish a tight ultimate bound, and
tightly upper bound the time taken to attain it. We provide a
concrete aggregate computing application involving a cascade
combination of a G and a C block, where the ultimate
bound as well as the time taken to attain it are both of
critical importance. Beyond that, the demonstration of the
ultimate bound goes straight to the core objective that animates
this line of research: developing a framework for stability
analysis under potential feedback interconnections. Ultimate
boundedness unveils the prospect of developing variants of the
small gain theorem [1] that can be employed in such analysis.
While ultimate boundedness by itself is not enough to invoke
the classical small gain theorem, there are more sophisticated
variants of this theorem that rely on ultimate bounds [22], and
have been used to demonstrate closed loop stability.

We also note that ABF is only one of a large family of
algorithms for calculating shortest paths through graphs, all of
which are potentially suited to serve as G-blocks, e.g., [28],
[29], and [31]. Numerical comparisons between these and ABF
given in [28], [29], [31], and [27] show that these alternative
algorithms can provide better dynamical behavior for certain
applications. We focus on ABF rather than these alternatives,
however, because it is the simplest and most tractable for
analysis, yet closely enough related to the others that the
analytical approach here is likely to generalize to their analysis
as well. More distantly related algorithms include various
search and path planning algorithms (e.g., [32]- [37]), which
have a fundamentally different model focused on computation
(e.g., graph processing on a single or parallel processor
machine) rather than coordination of devices via message-
passing in a highly-distributed environment. Their focus is
on minimizing the number of operations (communications)
that it takes to converge in the smallest portion of the graph
relevant to navigation between a source and a destination.
While they differ in their ability to accommodate various
structural graph changes like new nodes, edge length changes
and mobility, their analysis assumes that the changes are
sufficiently slow to permit convergence between successive
instances of structural changes. They are designed to acheive
as fast a convergence as is possible, so that faster changes
can be tolerated. In contrast the analysis here accommodates
persistent perturbations in every iteration of the algorithm, that

Fig. 2. Illustration of ABF (adapted from [30]). Individual distance estimates
may go up and down, but the greatest overestimate (∆+) and least under-
estimate (∆−) are monotonic. This example shows a line network of five
nodes (circles, source red, others blue) with unit edges (grey links); distance
estimates evolve from initial t = 0 to converge to their correct values at t = 4.
The numbers on the edges are the edge lengths. The numbers on the nodes
are their current distance estimates.

never settle down to permit such convergence. Further, rather
than focusing just on the subgraph important to navigation
from a source to a destination, a G-block like ABF must spread
distance information throughout the network. Continuous time
shortest path algorithms, such as the continuous time Bellman-
Ford [38] are also related but do not fit well with a message-
passing paradigm: a packet-based message passing environ-
ment is inherently discrete and benefits strongly from finite
time convergence, which allows communication optimization
based on non-changing values.

III. PRELIMINARIES AND THE PROBLEM STATEMENT

In this section we set up the rest of the paper by outlining
the general framework and specifying a distance estimation
problem that serves as a typical example of a G-block for
information spreading over a network. Section III-A provides
a graphical framework. Section III-B defines the problem.

A. The Graphical Framework

We consider undirected graphs G = (V,E), with V the set
of vertices and E the set of undirected edges: Each node is a
device. Edges have a dual meaning. They indicate the existence
of a communication link between devices. They also define
paths between nodes, in the sense that a path exists between
two nodes if they are connected through a set of edges. We
call node i a neighbor of node j if there is an edge between
i and j. We define N (i) as the set of all neighbors of node i.
Further, no node is deemed to be its own neighbor: i 6∈ N (i).

We define the edge length between node i and node j as
eij , and assume that there exists an emin such that:

eij > emin > 0, ∀i ∈ V and j ∈ N (i), (1)

i.e., edge lengths between neighbors are all positive. Thus in
the graph in Figure 2 each edge length is 1. The distance
dij between two nodes is the shortest walk from i to j (the
distance to itself, of course, being zero). Thus, the distance
between the third and the last nodes in Figure 2 is 2. The
principle of optimality specifies the recursion:

dij = min
k∈N (i)

{eik + djk}. (2)

0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2904239, IEEE
Transactions on Automatic Control

4

This is also in effect a statement of the triangle inequality.
A subset S of the nodes in the graph will form a source set.

Our goal is to find the shortest distance between each node
and the source set S. More precisely we must find:

di = min
k∈S

{dik}. (3)

In view of (2), di obeys the recursion:

di = min
k∈N (i)

{eik + dk} (4)

and
di = 0, ∀i ∈ S. (5)

To avoid trivialities we make the following assumption:

Assumption 1. The graph G = (V,E) is connected, undi-
rected, S 6= V , with edge lengths eij obeying (1) and the
distance di of node i from the source set S obeying (4).

We now make an additional definition:

Definition 1. A k that minimizes the right hand side of (4) is
a true constraining node of i ∈ V \ S. As there may be two
nodes k and l such that dl + eil = dk + eik, a node may have
multiple true constraining nodes. The set of true constraining
nodes of a node i ∈ V \ S is denoted as C(i).

In view of (4) the following holds:

dk < di, ∀k ∈ C(i). (6)

The sets C(i) represents a structural characteristic of G =
(V,E) and S. The following related definition is crucial:

Definition 2. For a connected graph G, consider any sequence
of nodes such that the predecessor of each node is one of its
true constraining nodes. Define D(G), the effective diameter
of G, as the longest length such a sequence can have in G
(i.e., the diameter of the shortest path forest rooted at S).

The effective diameter is always bounded, per the following:

Lemma 1. Under Assumption 1, D(G) defined above is finite.

Proof. As defined in Definition 2, consider a sequence of
nodes ki in G such that, for all ki−1 is a true constraining
node of ki. Since there are only a finite number of nodes in
the graph, the only way that D(G) can be infinite is if for
some i > j, ki = kj . From (6) this leads to the contradiction:

dki
> dkj

= dki
. (7)

�

Every full sequence of the form described in Definition 2
commences at a source and ends at an extreme node.

This and other concepts thus far presented are exemplified
through the two graphs labeled G and G− in Figure 3. In G
the true constraining node of D is E, as:

dC + eCD = 2.1 + 0.7 > dE + eED = 1.3 + 1.3.

In contrast in G−, the true constraining node of D is C as:

dC + eCD = 0.3 + 0.1 < dE + eED = 0.7 + 0.7.

The longest sequence where each node is a true constraining
node of its predecessor, is {S,A,B,C} in G while it is
{S,A,B,C,D} in G−. Thus D(G) = 4 and D(G−) = 5.

A

B

C

E

S

G

0.7

0.7

0.7

1.3

D

0.7

1.3

A

B

C

E

S

0.1

0.1

0.1

0.7

D

0.1

0.7

G-

Fig. 3. Examples of effective diameter, showing edge length as labels on
edges. In the left graph G, D(G) = 4 and comes from the sequence S, A,
B and C, where each node is the true constraining node of its successor.
On the other hand in the right graph G−, D(G−) = 5 and comes from the
sequence S, A, B, C and D.

B. Problem Statement

The distance estimation we desire must be recursive and
distributed in the sense that in executing the algorithm at time
t, the i-th node knows only:
(A) Its edge length from each of its neighbors.
(B) The current estimated distance of its neighbors from the

source set, i.e. d̂j(t) for all j ∈ N (i).
These requirements are practical, as the existence of edges
between neighbors means they can communicate their dis-
tance estimates to each other. The classical Bellman-Ford
algorithm [20], [21], is a well known solution to this problem
but is not globally stable. Instead in Section IV we describe
an adaptive version of this algorithm (see [28]) which we have
empirically studied in [30] in isolation and in feedback loops.

IV. ADAPTIVE BELLMAN-FORD ALGORITHM

In the classical Bellman-Ford algorithm [20], [21] distance
from every node in an arbitrary graph to a designated source
node is estimated by the relaxation of a triangle inequality
constraint across weighted graph edges. However, the classical
algorithm only works if the initial distance estimates are all
overestimates, i.e. with t0 the initial time, for all i

d̂i(t0) ≥ di. (8)

Thus by definition the classical Bellman-Ford algorithm is not
globally uniformly asymptotically stable. In an interconnected
environment, the input to the algorithm may be graph topology
or the source set, which may change over time: At a given
instant the current estimate may well fall below the true
current distance. Classical Bellman-Ford cannot survive such
perturbations, prompting the adaptive variant.

This algorithm is based closely on the classical Bellman-
Ford algorithm, but unlike that algorithm, computes distances

0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2904239, IEEE
Transactions on Automatic Control

5

to the nearest member of a set of source nodes rather than just
a single node. Moreover, we wish to support the case where
the set of sources and/or the graph may change. Thus ABF
is an adaptive algorithm that a) sets the distance estimate of
every source node to zero, and b) for all other nodes, rather
than starting at infinity and always decreasing, recomputes
distance estimates periodically, ignoring the current estimate at
a node and using only the minimum of the triangle inequality
constraints of its neighbors.

In particular, suppose d̂i(t) is the current estimated distance
of i from the source set. Then the algorithm is:

d̂i(t+ 1) =

{
minj∈N (i)

{
d̂j(t) + eij

}
i /∈ S

0 i ∈ S
, ∀t ≥ t0.

(9)
Observe that (9) respects the information structure imposed in
(A) and (B) of Section III-B, and seeks to emulate (4) treating
the available distance estimates as their true values.

The behavior of this algorithm reduces to something very
close to classical Bellman-Ford in the case where there is
precisely one source node and neither the graph nor the
source ever change. We have previously presented an empirical
analysis and experimental results on the dynamics of this
algorithm in [30]; in this paper we give a formal analysis.

Analogous to true constraining nodes defined in Definition
1, we have the following definition:

Definition 3. A minimizing j in the first equation of (9) will
be called a current constraining node of i at time t.

A current constraining node of i constrains the distance
estimate of i. Note while true constraining nodes are fixed by
the graph topology, current constraining nodes may change
from iteration to iteration. Figure 2 illustrates the execution
of the algorithm. The numbers on the edges are edge lengths;
those on the nodes their estimated distances from the source
labeled red. Observe the true constraining node of the second
node from the left is the third node, though its current
constraining node at t = 1 is the first node from the left.

We will later show that d̂i = di for all i ∈ V constitutes the
only stationary point of (9), thus at least partially validating
ABF as a distance finding tool.

V. A LYAPUNOV FUNCTION

The goal of this section is to postulate a discrete time
Lyapunov (or energy) function and demonstrate that it is non-
decreasing. On the face of it, distance estimation errors,

∆i(t) = d̂i(t)− di, (10)

appear to form a natural measure of the algorithm’s perfor-
mance. However, as seen in Figure 2, ∆i(t) may well increase
in magnitude for individual nodes. This stems from the nature
of ABF given in (9): d̂i(t+ 1) does not explicitly depend on
d̂i(t). Instead, as will be evident in the sequel, depending on its
sign, ∆i(t+1) bears a natural comparison with ∆j(t) where
j is among one of two distinguished neighbors of i: either a
true constraining node of i or a current constraining node at
time t. This subtlety constitutes a key distinction between the
analysis here and typical discrete time Lyapunov analyses.

One requires a more global point of comparison from one
iteration to the next. As empirically studied in [30], the greatest
overestimate of the error ∆+(t) and the least underestimate of
the error ∆−(t) below collectively provide such a comparison:

∆+(t) = max
[
0,max

i
∆i(t)

]
(11)

∆−(t) = max
[
0,−min

i
∆i(t)

]
. (12)

Should, as empirically suggested by [30], each of these be non-
increasing then their sum forms a natural Lyapunov function:

L(t) = ∆+(t) + ∆−(t). (13)

Indeed in Figure 2, while individual ∆i may increase in
magnitude, ∆+ and ∆− never do. The rest of this section
verifies the validity of (13) as a Lyapunov function.

We begin by noting that this function clearly meets the non-
negativity requirement for a Lyapunov function as

L(t) ≥ 0, (14)

with equality holding iff for all i, ∆i(t) = 0. As a matter of
fact, it can readily be verified that L(t) acts as a valid norm
for a vector of the distance estimation errors.

As a preface to proving that L(t) is also non-increasing, we
define K+(t) as a set comprising all nodes whose error equals
∆+(t). More precisely:

K+(t) =
{
i ∈ V |∆i(t) = ∆+(t)

}
. (15)

Similarly,

K−(t) =
{
i ∈ V |∆i(t) = −∆−(t)

}
. (16)

If ∆+(t) 6= 0 then each member of K+(t) has the largest
estimation error. This is however, not necessarily true if
∆+(t) = 0, as then ∆i(t) ≤ 0, for all i ∈ V . If ∆−(t) 6= 0
then its members K−(t) have the most negative estimation
error. We now prove the non-increasing property of ∆+(t).

Lemma 2. Consider (9) under Assumption 1. Then with ∆+

defined in (11), for all t,

∆+(t+ 1) ≤ ∆+(t). (17)

Further, consider K+(t) in (15), and suppose ∆+(t) > 0.
Then equality in (17) holds iff there exists j ∈ K+(t) that is
both a current and a true constraining node (see definitions 1
and 3) of a member of K+(t+ 1).

Proof. As ∆+(·) ≥ 0, (17) holds if ∆+(t + 1) = 0. Assume
∆+(t+1) > 0 throughout the proof. Consider l ∈ K+(t+1)
and any neighbor j ∈ N (l) that is a true constraining node of
l, i.e. from (4) and Definition 1,

dl = dj + elj (18)

Then from (15) we find that (17) is proved through:

∆+(t+ 1) = ∆l(t+ 1)

= d̂l(t+ 1)− dl

≤ d̂j(t) + elj − dl (19)

= d̂j(t) + elj − elj − dj

= ∆j(t)

≤ ∆+(t), (20)

0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2904239, IEEE
Transactions on Automatic Control

6

where (19) comes from (9), and (20) from (11).
Suppose there is a j ∈ K+(t) that is both a constraining and

a current constraining node of l ∈ K+(t+1). From Definition
1, (18) holds; (19) is an equality as j ∈ C(l); and (20) is an
equality as j ∈ K+(t). Thus equality in (17) holds.

Now suppose equality in (17) holds. Then in the sequence of
inequalities above one can choose l ∈ K+(t+1) and j ∈ C(l),
i.e. a j that obeys (18), for which both (19) and (20) are
equalities. From (15), (20) implies that j ∈ K+(t). As (18)
implies that j ∈ C(l) and l ∈ K+(t + 1) this must mean a
node in K+(t) is a true constraining node of l ∈ K+(t+1). As
equality also holds in (19), this j is also a current constraining
node of l. The result follows. �

The biggest takeaways from this lemma are that ∆+(t)
cannot increase, and that a strict decrease eventuates from
iteration t to t+1 unless a node with the largest overestimate at
time t is both a current and a true constraining node of a node
that inherits the largest overestimate at time t + 1. Thus the
condition for lack of strict decrease for ∆+ is very stringent.
We next address ∆−.

There are more subtle properties of (9) exposed by the proof.
Referring back to the italicized statement at the beginning of
this section, the correct comparison point of an overestimate
∆l(t+1) is not ∆l(t) but in fact the overestimate at t of one
of its true constraining nodes j. In particular with j ∈ C(l),

∆l(t+ 1) ≤ ∆j(t), (21)

i.e, this new overestimate cannot exceed the overestimates of
the true constraining nodes of l.

Lemma 3. Consider (9) under Assumption 1. Then with ∆−

defined in (12), for all t,

∆−(t+ 1) ≤ ∆−(t). (22)

With K−(t) as in (16), unless ∆−(t) = 0, equality in (22)
holds iff there exists j ∈ K−(t) that is both a true and current
constraining node of a member of K−(t+ 1).

Proof. As ∆−(t+1) is nonnegative (22) holds if ∆−(t+1) =
0. Thus assume ∆−(t+ 1) > 0. Consider any l ∈ K−(t+ 1).
Because of (9) there is a j ∈ N (l), such that

d̂l(t+ 1) = d̂j(t) + elj (23)

Further, ∆−(t) cannot increase as

∆−(t+ 1) = −∆l(t+ 1)

= dl − d̂l(t+ 1)

= dl − d̂j(t)− elj

≤ elj + dj − d̂j(t)− elj (24)
= −∆j(t) (25)
≤ ∆−(t) (26)

where (24) comes from (4) and (26) follows from (12).
Suppose equality in (22) holds. Then for some l ∈ K−(t+1)

and a j satisfying (23), both (24) and (26) are equalities.
From Definition 3, j is a current constraining node of l. From
Definition 1 equality in (24) implies that j is also a true
constraining node of l. From (16), equality in (26) implies

that j ∈ K−(t). Thus, as l ∈ K−(t+ 1), ∆−(t+ 1) = ∆−(t)
only if there exists j ∈ K−(t) that is a true constraining node
of an l ∈ K−(t+ 1).

On the other hand suppose for some l ∈ K−(t+1), there is
a j ∈ K−(t) that is both a current and true constraining node
of l. Then from Definition 3, (23) holds. Further j ∈ K−(t)
implies equality holds in (26). As j is a true constraining node
of l equality also holds in (24), proving equality in (22).

�

Again, the biggest takeaways from this lemma are that
∆−(t) cannot increase and that a strict decrease eventuates
from iteration t to t + 1 unless a node at t with the most
negative error is both a true and current constraining node of
a node that inherits the largest underestimate at time t+ 1.

Further the proof reveals some subtle properties of (9) that
stand in contrast to the case of overestimates addressed by
Lemma 2. Referring back to the italicized statement at the
beginning of this section, the correct comparison point of an
underestimate ∆l(t+1) is not ∆l(t) but the underestimate at
time t of the current constraining nodes in (9). Specifically
unlike over estimates, for an underestimate, (21) holds but
with j a constraining rather than a true constraining node.
Mathematically, that is because the operational triangular
inequality used in the lemma proofs is represented by (9) for
underestimates and by (4) for overestimates. As will be evident
in the next section this has significant consequences to the rel-
ative convergence rates of overestimates and underestimates.
In particular, while ∆+(·), declines rapidly, ∆−(·) need not.

Lemma 2 and Lemma 3 together show that for all t,

L(t+ 1) ≤ L(t), (27)

validating the fact that L(t) is indeed a Lyapunov function.
Moreover, equality in (27) holds under stringent conditions.
In fact as shown below in Theorem 1, a strict decline in
L(t) must occur every D(G) iterations, where D(G) is the
effective diameter in Definition 2. Theorem 1 also provides
the aesthetically appealing result that d̂i = di, for all i ∈ V is
the only stationary point of ABF.

Theorem 1. Under the conditions of Lemma 2 and Lemma 3,
with D(G) as in Definition 2, L(t) as in (13), unless L(t) = 0,

L(t+D(G)− 1) < L(t), ∀t ≥ t0. (28)

Further d̂i = di, ∀i ∈ V is the only stationary point of (9).

Proof. Suppose L(t) > 0. From Lemma 2 and Lemma 3, (27)
holds. Suppose now for some t and T and all s ∈ {1, · · · , T−
1}, L(t + s) = L(t). Then from Lemma 2 and Lemma 3
there exists a sequence of nodes n1, · · · , nT , such that ni is
a true constraining node of ni+1. From Lemma 1 this means
T ≤ D(G). In fact T ≤ D(G)−1. To establish a contradiction,
suppose T = D(G). Then in the proofs of Lemma 2 and
Lemma 3, j = n1 ∈ S. Thus from (20) and (26), ∆+(t) =
∆−(t) = L(t) = 0. Thus (28) holds.

0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2904239, IEEE
Transactions on Automatic Control

7

Suppose for all i ∈ V , d̂i = di. For i ∈ S, and all t,
d̂i(t) = 0 = di, d̂i(t+ 1) = 0 = di, also holds. Now consider
any i ∈ V \ S. Then from (4), there holds:

d̂i(t+ 1) = min
j∈N (i)

{
d̂j(t) + eij

}
= min

j∈N (i)
{dj + eij}

= di.

Thus indeed d̂i = di, ∀i ∈ V is a stationary point of (9). Now
consider any other candidate stationary point d̂i = d∗i , with

d∗ =
[
d∗1, · · · , d∗|V |

]
6=

[
d1, · · · , d|V |

]
. (29)

Suppose also at some t, and all i ∈ V , d̂i = d∗i . Then L(t) > 0.
From the first part of this theorem, (28) holds and[

d̂1(t+D(G)), · · · , d̂|V |(t+D(G))
]
6= d∗.

Thus d∗ cannot be a stationary point. �

Of course without establishing a uniform bound from below
on the extent of decline in (28), we cannot establish global
uniform asymptotic stability. The next section does just that.

VI. GLOBAL UNIFORM ASYMPTOTIC STABILITY

We now establish the global uniform asymptotic stability
of ABF and tightly bound its convergence time. Recall that
(13) has two components (the largest overestimate ∆+(t) and
the largest underestimate ∆−(t)), that the classical Bellman-
Ford algorithm only copes with overestimates as it initializes
to ensure (8), and that the motivation behind (9) is to permit
underestimates.

It turns out that there is a fundamental disparity between
the behaviors of under and overestimates in (9): Overestimates
converge rapidly. Underestimates do not. Why this disparity?
The key lies in (21). When ∆l(t + 1) > 0 the j in (21) is
a true constraining node of l, while if ∆l(t + 1) < 0, it is
a current constraining node of l for the algorithm at time t.
While true constraining nodes are fixed by the graph, current
constraining nodes may change. Moreover, a pair of nodes
may constrain each other at alternate instants, and should
they share a short edge, their distance estimates rise slowly
in tandem by small amounts. Dubbed in [28] as the rising
value problem, this can lead to slow convergence.

By contrast, the following theorem shows that the overes-
timates all vanish to zero in at most D(G) − 1 steps, where
D(G)− 1 is the effective diameter defined in Definition 2.

Theorem 2. Under Assumption 1, ∆+(t) defined in (11) obeys

∆+(t) = 0, ∀ t ≥ t0 +D(G)− 1. (30)

Further, for every n = |V | > 1 there is a G = (V,E), obeying
Assumption 1 and a set of initial conditions such that ∆+(t) >
0, for all t < t0 +D(G)− 1,

Proof. As G is connected, every node belongs to a sequence
of nodes n1, n2, · · · , nT , such that ni is the true constraining

node of ni+1 and n1 ∈ S. From Lemma 1, T ≤ D(G). We
now assert and prove by induction that,

∆ni(t) ≤ 0, ∀ t ≥ i− 1 + t0, and i ≤ T. (31)

Then the result is proved from (11). As n1 ∈ S, (31) holds
from (9). Now suppose it holds for some i ∈ {0, · · · , T − 1}.
As ni ∈ C(ni+1) ⊂ N (ni+1), from (9), (4) and the induction
hypothesis, for all t ≥ i+ 1 + t0,

d̂ni+1
(t) ≤ d̂ni

(t− 1) + eni+1ni

≤ dni
+ eni+1ni

= dni+1
.

Thus (31) and hence (30) is true.
For the second part of the theorem, we first observe that if

j is both the true and current constraining node of i. Then

∆i(t+ 1) = d̂i(t+ 1)− di

= d̂i(t+ 1)− dj − eij

= d̂j(t) + eij − dj − eij

= ∆j(t). (32)

In the subgraph, Ĝ comprising the nodes S and 1, · · · , n in
Figure 4, D(Ĝ) = n + 1. Denote S = 0. Suppose for all
i ∈ {1, · · · , n}, 0 < ∆i(t0) < e. The result is proved if we
show that for all 0 ≤ j ≤ t < i ∈ {1, · · · , n}

0 < ∆i(t+ t0) < e, ∆j(t+ t0) = 0, (33)

and i−1 is the current constraining node of i. Observe for all
k ∈ {1, · · · , n}, dk = ke, k − 1 is the true constraining node
of k, and for all k ∈ {1, · · · , n− 1} (33) implies that

d̂k+1(t+ t0) + ek+1,k = (k + 1)e+∆k+1(t+ t0) + e

≥ (k + 2)e

= dk−1 + 3e

> dk−1 +∆k−1(t+ t0) + 2e

> d̂k−1(t+ t0) + ek−1,k,

i.e. k − 1 is the current constraining node of k. As n − 1
is the only neighbor of n, this is also true for k = n. Use
induction to prove (33), which holds for t = 0. Suppose it
holds for 1 ≤ t < m < n. As 0 < ∆i(m + t0) < e for all
i ∈ {m+1, · · · , n}, from (32), the inequality in (33) holds. As
∆m−1(t+m− 1) = 0, and m− 1 is the current constraining
node of m, so does the equality.

�

The proof of (30) implicitly expands on (21). Specifically,
one can view ni in the proof as being a node that is effectively
ni − 1 hops away from the source set. At the i-th instant
suppose l in (21) is a node that is (i+1) effective hops away.
Then for this node the actual error is forced to be nonpositive,
as j its true constraining node, one effective hop closer to the
source set, acquires a nonpositive estimation error an iteration
earlier. As we show below underestimates lack this property.

Depending on the initial distance estimates and the graph
topology, ∆+(t) may converge to zero in fewer than D(G)−1
rounds. This may happen for example, if ni acquires a negative

0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2904239, IEEE
Transactions on Automatic Control

8

Fig. 4. Illustration of the tightness of convergence time. The subgraph
comprising the nodes S and {1, · · · , n} is used in the proof of Theorem
2. The entire graph is used in the proof of Theorem 5.

error after i− 2 iterations, then convergence of ∆+(t) to zero
occurs an iteration sooner. Nonetheless the upper bound on
the time for ∆+ to converge is tight in the sense that for
all |V | ≥ 2, there is a graph and an initialization where
convergence cannot occur before D(G) − 1 iterations. The
proposition below shows more: If no initial estimate is an
underestimate, then convergence occurs in at most D(G)− 1
iterations. The proof follows from Lemma 3 and Theorem 2.

Proposition 1. Under Assumption 1, suppose ∆−(0) = 0.
Then the Lyapunov function L(t) defined in (13)

L(t) = 0, ∀t ≥ D(G)− 1,

where D(G) is defined in Definition 2.

This underscores why the classical Bellman-Ford algorithm
requires that ∆−(0) = 0. The next theorem quantifies the
rising value problem that causes a slower decline in ∆−(t).
Indeed, the classical Bellman-Ford algorithm, which assumes
(8) will also yield the same convergence time. But of course
it cannot cope with initial underestimates.

Theorem 3. Under the conditions of Lemma 3, consider a
pair of nodes i and j such that ∆i(t0) < 0 and

j = arg min
j∈N (i)

eij .

Then ∆i(T) ≥ 0 implies

T ≥ t0 −
∆i(t0)

eij
.

Proof. From (9) for any t

d̂j(t+ 1) ≤ d̂i(t) + eij . (34)

Likewise, as j ∈ N (i), using (34) the result follows as,

∆i(t+ 2) = d̂i(t+ 2)− di

≤ d̂j(t+ 1) + eij − di

≤ d̂i(t) + 2eij − di

= ∆i(t) + 2eij .

�

Thus the rising value problem may occur even if a pair of
nodes with underestimated distance estimates do not constrain
each other. Rather the rise is limited by the smallest edge
length impinging on a node with the largest underestimate.

0 2 4 6 8 10

time

0

1

2

3

4

∆
+
(t

)

(a) Greatest overestimate
∆+(t)

0 500 1000 1500

time

0

1

2

3

4

∆
- (t

)

(b) Least underestimate ∆−(t)

Fig. 5. Trace of (a) greatest overestimate ∆+(t) and (b) least underestimate
∆−(t) for 10 runs of 500 nodes randomly distributed in a 4x1 sq. km area,
showing that overestimates correct much faster than underestimates.

This behavior is shown in Figure 5, where 500 nodes,
including a solitary source, are uniformly distributed in a
4x1 kM field. Each has a communication range of 0.25
kilometers, i.e, the average size of N (i) is 20. The initial
distance estimates of non-source nodes are chosen randomly
in U(0, 4.12) kilometers. Figure 5 shows the results of 10
simulations, each run synchronously for 2000 seconds with 1
second per round. The results are consistent with our analysis:
∆+(t) decreases rapidly to zero within at most 4 rounds, even
though D(G) = 14. On the other hand, ∆−(t), limited by
close pairs of nodes, has much slower convergence. Observe
that the classical Bellman-Ford algorithm would have yielded
the same type of trace as in Figure 5(a), but cannot deal with
the violation of (8).

The next lemma helps lower bound the decline in ∆−(t).

Lemma 4. Under the conditions of lemmas 2 and 3 define,

S−(t) = {i ∈ V |∆i(t) < 0} , (35)

and
d̂min(t) = min

i∈S�(t)
{d̂i(t)}. (36)

Then with emin defined in (1), the following holds unless
S−(t+ 1) is empty:

d̂min(t+ 1) ≥ d̂min(t) + emin, ∀t ≥ t0. (37)

Proof. Suppose S−(t+1) is not empty. Then from Lemma 3,
and (16), S−(t) cannot be empty. Consider any i ∈ S−(t+1)
and suppose j is its current constraining node at t. Then we
assert that j ∈ S−(t). Indeed assume j /∈ S−(t). Thus d̂j(t) ≥
dj . As j ∈ N (i), from Definition 3 and (4),

d̂i(t+ 1) = d̂j(t) + eij

≥ dj + eij

≥ di.

Thus i /∈ S−(t + 1), establishing a contradiction. Hence j ∈
S−(t). Then from (35) and (36), (37) holds as ∀ i ∈ S−(t+1),

d̂i(t+ 1) = d̂j(t) + eij

≥ d̂min(t) + emin.

0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2904239, IEEE
Transactions on Automatic Control

9

�

We now prove that the decline in (28) is uniformly lower
bounded, proving global uniform asymptotic stability.

Theorem 4. Under conditions of Theorem 1, there exists α >
0, dependent on the initial conditions but not t0, such that

0 ≤ L(t+D(G)− 1) ≤ max[L(t)− α, 0], ∀ t ≥ t0. (38)

Further the unique stationary point of (9), ∆i = 0 for all
i ∈ V , is globally uniformly asymptotically stable.

Proof. As the postulated α in (38) is fixed by the initial
conditions and is independent of the initial time t0, (38) proves
global uniform asymptotic stability. From Theorem 2, the set
of ∆+(t) is a finite countable set that includes zero. Similarly,
because of Lemma 3 and (37) of Lemma 4, so is the set
of ∆−(t), as d̂min in (36), must equal the true distance it
estimates in a finite time. Thus L the set of L(t), for all
t ≥ t0 is a finite countable set. Then α, the smallest difference
between the elements of this set, is positive unless L(t0) = 0,
and while dependent on the initial conditions, is independent
of t0. From Theorem 1 a decrease in L(t) occurs every D(G)
iterations. As L(t) ∈ L, any change must be by at least α. �

We now tightly bound the time to convergence.

Theorem 5. Consider (9) under the conditions of Theorem 4,
D(G) as in Definition 2 and emin in (1). Define

dmax(G) = max
i∈V

{di}, (39)

for G = (V,E). Then L(t) = 0, ∀ t ≥ t0 + T , where,

T = max

{
D(G)− 1,

⌈
dmax − d̂min(t0)

emin

⌉}
. (40)

Further for every n = |V | > 3, there exists a G satisfying
Assumption 1 for which L(t) > 0 for all t < T .

Proof. From Theorem 2, ∆+(t0+D(G)−1) = 0, accounting
for D(G) in (40). From Lemma 4, and any i ∈ S−(t) in (35),
one obtains for any t ≥ t0,

∆−(t) ≤ di − d̂i(t)

≤ dmax − d̂min(t)

≤ dmax − d̂min(t0)− (t− t0)emin.

Thus ∆−(t) = 0, whenever

t− t0 ≥ T− =

⌈
dmax(G)− d̂min(t0)

emin

⌉
. (41)

To prove that convergence time can be as much as T , consider
the graph in Figure 4 with emin < e. Assume for all i ∈
{1, · · · , n}, d̂i(t0) > di, and d̂n+i(t0) = d̂2n+i(t0) = 0. Then
for all i ∈ {1, · · · , n}, and all t, ∆i(t) ≥ 0, and ∆n+i(t) =
∆2n+i(t) ≤ 0. From the proof of Theorem 2, it takes exactly
D(G)− 1 iterations for ∆+ to converge, and as shown in the
appendix, exactly T− iterations for ∆− to converge. �

Thus the bound on convergence time is tight, though the
worst case nature of the analysis also makes it conservative.

VII. ROBUSTNESS UNDER PERTURBATIONS

We now turn to the robustness of ABF to possibly persistent
perturbations in non-source nodes with the goal of demonstrat-
ing ultimate boundedness (per the definition in [1]) of distance
estimates around nominal distance values. We consider the
behavior of ABF in a framework with two physical interpre-
tations. 1) Nodes experience bounded, potentially perpetual
motion around nominal locations. In aggregate computing this
captures an incremental version of the common scenario of
mobile computing devices or of imprecise localization. 2) A
node receives noisy distance estimates of its neighbors.

Consider first the case where each non-source node moves
around a nominal position, i.e., edge lengths change from their
nominal values eij as

ēij(t) = eij + εij(t). (42)

Mobility is assumed to be both bounded and small, i.e., there
exists an ε such that with emin defined in (1),

|εij(t)| < ε < emin. (43)

This ensures that no edge length is ever negative. Based on
this assumption of bounded mobility, we also assume that the
set of neighbors N (i) of each node i does not change.

This also accommodates the setting where noisy estimates
of d̂i(t) available to its neighbors, with εij(t) modeling the
noise. Unlike the setting of mobility in this case we cannot
assume that the noise is symmetric, and permit

ēij(t) 6= ēji(t). (44)

In particular ēij(t) is the noisy edge length seen by node i as
opposed to node j. Thus (9) must be interpreted as:

d̂i(t+ 1) =

{
minj∈N (i)

{
d̂j(t) + ēij(t)

}
i /∈ S

0 i ∈ S
(45)

As

d̂j(t) + ēij(t) = d̂j(t) + eij + εij(t)

= (d̂j(t) + εij(t)) + eij ,

this captures the execution of ABF with noisy measurements
of d̂j(t). The problem formulation is otherwise unchanged.
The nominal graph is still G = (V,E) of Section III-A,
undirected in that i ∈ N (i) implies j ∈ N (j) and eij = eji,
and the goal is to study the perturbations of d̂i(t) from the
nominal distances di. We now define a shrunken version of G,
which represents the graph with the shortest links permitted
by our perturbation model. We will show that the distance
estimates provided by ABF when applied to this graph lower
bounds all d̂i(t). This will help provide the lower ultimate
bounds and the time to attain them.

Definition 4. Given G = (V,E), the undirected graph G− =
(V,E−), has the property that edge (i, j) ∈ E− iff (i, j) ∈ E.
The edge length e−ij between nodes i and j obeys

e−ij = eij − ε, (46)

with ε defined in (43). Further G− has the same source set
S as G, each i has the same set of neighbors as in G, and

0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2904239, IEEE
Transactions on Automatic Control

10

Di is the shortest distance between i and the nearest source
node, i.e. plays the role of di in G.

Our goal is to prove the ultimate boundedness of the
d̂i(t) provided by (45) by examining their difference with the
nominal distances di, through L(t), which retains its definition
in (13). Note ∆i(t) = d̂i(t)−di where di are the distances in
G. We summarize the underlying assumptions.

Assumption 2. Both the graphs G and G− defined in Defi-
nition 4 obey Assumption 1. The set of neighbors of node i,
is time invariant for all i ∈ V as is the source set. None of
the source nodes move. The edge length of each pair of nodes
i and j is given by (42) under (43) and (1). Although (44)
applies, eij = eji still holds. Also assume that t0 = 0.

Note t0 = 0 is without loss of generality because of the
fact that its uniform asymptotic stability, guarantees that the
behavior of (9) is independent of t0. Despite the topological
similarity of the graphs G− and G, their respective effective
diameters D(G−) and D(G), defined in Definition 2, may
differ. This is so as the true constraining nodes in the graphs
may be different, as is illustrated by the two graphs in Figure 3.
In G the true constraining node of D is E while in G−, it is
C. Further D(G) = 4 < D(G−) = 5. Lemma 7 shows that

D(G−) ≥ D(G). (47)

The next lemma proves the ultimate boundedness of ∆+(t).

Lemma 5. Consider (45), under Assumption 2. Then ∆+(t) ≤
(D(G) − 1)ε for all t ≥ D(G) − 1, where D(G) is as in
Definition 2 and ∆+(t) is as in (11).

Proof. Consider the sequence n1, n2, ..., nT in the proof of
Theorem 2 where the true constraining nodes are for the graph
G. As T ≤ D(G), the result holds if

d̂ni
(t) ≤ dni

+(i−1)ε, ∀ i ∈ {1, · · · , T} and t ≥ i−1. (48)

We prove (48) by induction. It is true for i = 1 from (45)
as n1 ∈ S. Thus suppose it holds for some i ∈ {1, · · · , T −
1}. Then from (45), (42), (43), and the definition of a true
constraining node we have for all t ≥ i− 1

d̂ni+1
(t+ 1) ≤ d̂ni

(t) + ēni+1ni
(t)

≤ dni
+ (i− 1)ε+ eni+1ni

+ εni+1ni
(t)

= dni+1
+ (i− 1)ε+ εni+1ni

(t)

≤ dni+1
+ (i− 1)ε+ ε

= dni+1
+ iε.

Thus (48) and hence the result follows. �

To address ∆−(t) we take an approach like the comparison
principle [1], by providing a lemma, proved in the appendix,
that establishes a connection between distance estimates in G
and those in its shrunken version, G−, defined in Definition
4.

Lemma 6. Suppose Assumption 2 holds. Consider

D̂i(t+ 1) =

{
minj∈N (i)

{
D̂j(t) + eij − ε

}
i /∈ S

0 i ∈ S
, (49)

and (45). Suppose for all i ∈ V , D̂i(0) = d̂i(0). Then d̂i(t) ≥
D̂i(t), ∀t ≥ 0 and for all i ∈ V .

Thus the estimates offered by (45) are uniformly lower
bounded by the estimates, D̂i(t), from the identically initial-
ized Adaptive Bellman-Ford algorithm applied to the graph
G−. As G− satisfies the same assumptions as G, and is
perturbation free, the greatest underestimation error it offers
converges to zero. To establish an ultimate bound on ∆− it
thus suffices to relate distances Di in G−, to distances di in
G. The next lemma, proved in the appendix, does just that.

Lemma 7. Suppose Assumption 2 holds. Then for all i ∈ V ,

di ≤ Di + (D(G−)− 1)ε, (50)

where G− is in Definition 4 and D(.) is in Definition 2.
Further, (47) holds.

We now prove the ultimate boundedness of ∆−.

Lemma 8. Consider (45) under Assumption 2. Then with
D(G−), emin, dmax(G

−) and d̂min defined in Definition 2,
(1), Theorem 5 and Lemma 4 respectively, for all

t ≥ T =
dmax(G

−)− d̂min(0)

emin − ε
, (51)

∆−(t) ≤ (D(G−)− 1)ε. (52)

Proof. Consider the algorithm in (49) with the initialization in
Lemma 6. As G− satisfies Assumption 1, D̂i(t) converges to
Di (see Definition 4) in a finite time T1. Thus from Lemma 6,
for all t ≥ T1 and i ∈ V , d̂i(t) ≥ Di. Thus the upper bound
in (52) follows from Lemma 7 and

−∆i(t) ≤ di −Di

≤ Di + (D(G−)− 1)ε−Di

= (D(G−)− 1)ε,

Time to attain (52) is that for the greatest underestimate in (49)
to go to zero. This is at most T in (51) from the following:
(i) Theorem 5. (ii) The minimum initial estimate in (49) is
d̂min(0). (iii) The shortest link in G− is at least emin − ε. �

Note dmax(G
−) can range from dmax(G) − ε, e.g. when

the node with the largest distance has a source as its true
constraining node, to dmax(G)−D(G−)ε.

Fig. 6. Illustration of the tightness of convergence time with perturbations.

0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2904239, IEEE
Transactions on Automatic Control

11

Theorem 6. Consider (45), the conditions of Lemma 8 and
Lemma 5. With T as in (54), L(t) in (13) obeys

L(t) ≤
(
D(G) +D(G−)− 2

)
ε, ∀t ≥ T. (53)

T = max

{
D(G)− 1,

dmax(G
−)− d̂min(0)

emin − ε

}
. (54)

Further, for every n = |V | > 3, there exists a graph and
perturbations conforming to Assumption 2 for which the bound
in (53) is attained in precisely T iterations.

Proof. Ultimate boundedness follows from Lemma 8 and
Lemma 5. Consider a perturbed version of the nominal graph
G in Figure 4 given in Figure 6. The perturbation obeys
Assumption 2 and the perturbed graph itself obeys Assumption
1. Since the perturbed graph has fixed edges its distance
estimates will converge to the correct values. In particular
d̂n will converge to dn + nε and d̂2n to d2n − nε. It is
readily checked that these are in fact the greatest over and
underestimates respectively. Thus, as D(G) = D(G−) = n+1,
(53) is precisely met. Suppose now d̂i(0) > i(e + ε) for all
i ∈ {1, · · · , n}, and d̂i(0) = 0 for all i ∈ {n + 1, · · · , 3n},
then the arguments given in the proof of Theorem 5 establish
that convergence of d̂n and d̂2n occur precisely by the first
and second terms on the right side of (54). �

Though tight, these bounds are conservative.

A. Interpretation and Consolidation

If one views the underlying nonlinear system as one from
the inputs εij(t) in (42) to the errors ∆i(t), then D(G) +
D(G−) − 2 in (53) acts as a gain that relates the `∞ bound,
(|V | − |S|)ε on the vector of inputs to the ultimate bound on
L(t), which in turn serves as a norm of the vector of ∆i(t).
There is a subtlety: D(G−) does depend on ε. However, with
modest conservatism, in view of (47), it can be replaced by
emin, leading to a classical ultimate bound that is linear in ε.

This in and of itself goes to the heart of issues motivating
this line of research: Namely to assess the stability of inter-
connections of aggregate computing building blocks, possibly
with feedback interactions. A classical and effective device for
such an assessment is provided by the celebrated small gain
theorem. The ultimate boundedness established here holds
forth the prospect of formulating variations of the classical
small gain theorem in the tradition of [22], that have been
shown to be useful in demonstrating closed loop stability.

Ultimately, Theorem 6 establishes the aesthetically pleasing
result that despite persistent perturbations, estimation errors in
ABF settle into a range of values proportional to ε. The time
it takes to settle down, given in (54) is also of importance in
aggregate computing. For example, consider the combination,
shown in Figure 1, of a G block represented by (9) and a
summarizing C block, with the goal of determining the total
resource load of distributed services on computing devices in
the network. Significantly over-counting or under-counting this
number may lead to unacceptable consequences. This value
can be computed with a C algorithm, which determines a

spanning tree and then iteratively sums the load at descen-
dants of a source node in the spanning tree. The spanning
tree, in turn, is determined adaptively and summations over
descendants iteratively computed using the current distance
estimates offered by a G block. As shown in [26], the transient
phase of ABF can result in over or under counting and there is
virtue in waiting out the transient phase. Its characterization
thus has a critical role in safe aggregate computing. Unsur-
prisingly, the transient phase is dominated by the behavior of
underestimates, and restricted by emin.

VIII. SIMULATIONS AND DISCUSSION

We empirically confirm the results presented in the prior
sections through simulations under three classes of persistent
perturbations: device movement, error in distance measure-
ments, and periodic changes of source location to induce large
perturbations. Unless otherwise noted, all use 500 nodes, one
of which is a source, distributed randomly in a 4x1 km field,
communicating over a 0.25 km radius, and run synchronously
for 2000 simulated 1-second rounds, with d̂i(0) ∈ U(0, 4.12)
km. As under perturbations, (8) will not be sustained, the
classical Bellman-Ford algorithm cannot cope with them.

A. Device Movement

At each t a node is perturbed from its nominal location by
[r cos θ, r sin θ]T with r ∼ U(0, 0.5emin), emin = 0.0048, and
θ ∼ U(0, 2π). Thus ε = emin in (42). Note (42) and (44) are
satisfied with probability 1. The results are in Figure 7.

Lemma 5 and Lemma 8, predict ultimate bounds for ∆+

and ∆− of (D(G) − 1)ε and (D(G−) − 1)ε, respectively. In
Figure 7(a) ∆+(t) goes lower than (D(G)−1)ε after 3 rounds,
D(G) = 17. On the other hand, Figure 7(b) shows that ∆−(t)
is still constrained by the “rising value problem” and needs a
much longer time than ∆+(t) to drop below (D(G−)− 1)ε.

Figure 7(c) and (d) depict snapshots well beyond the time
after the ultimate bounds are attained. Unsurprisingly, due to
the worst case nature of the Lyapunov based analysis, which
is inherently conservative, there is a significant gap between
∆+(t), ∆−(t) and their corresponding ultimate upper bounds.

Nevertheless, since these geometric considerations are scale-
free, the size of the distance estimate errors should still be
linear in the perturbation size. To validate this hypothesis, we
set the initial distance estimates of nodes to be the same as
their true values, and run the simulation for the same graph
with different perturbation amplitudes. Figure 8 shows that, as
expected, the mean values of ∆+(t) and ∆−(t) are roughly
proportional to the amplitudes of the perturbations.

B. Measurement Error

Next consider static nodes with asymmetric noise in the
estimated eij . Figure 9 shows the results of simulation in
which measurement errors are sampled from a uniform dis-
tribution of U(−0.5emin, 0.5emin) in each round. In this case
ε = 0.5emin = 0.5× .0049. The behavior is similar to the case
of device motion. When the amplitude of the measurement
error is varied, as seen in Figure 10, as expected the mean
values of ∆+(t) and ∆−(t) are roughly proportional.

0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2904239, IEEE
Transactions on Automatic Control

12

0 2 4 6 8 10
0

1

2

3

4

(a) ∆+(t) and (D(G)− 1)ε

0 500 1000 1500 2000
0

1

2

3

4

(b) ∆−(t) and (D(G−)− 1)ε

1000 1200 1400 1600 1800 2000
0

0.02

0.04

0.06

0.08

0.1

(c) ∆+(t) and (D(G)− 1)ε

1000 1200 1400 1600 1800 2000
0

0.05

0.1

0.15

0.2

(d) ∆−(t) and (D(G−)− 1)ε

Fig. 7. Comparison between (a) the greatest overestimate ∆+(t) and
(D(G) − 1)ε, and (b) comparison between the least underestimate ∆−(t)
and (D(G−)− 1)ε (b), as well as their partial enlarged views (c) and (d). In
this example, each node is moving within a circle with a radius of 0.5emin.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.02

0.04

0.06

0.08

0.1

0.12

Fig. 8. Mean values of ∆+(t) and ∆−(t) and their upper bounds with
different amplitudes of perturbation. In this example, initial distance estimates
are set the same as true values, all nodes are moving within a circle with a
radius uniformly distributed in (0,mε), and m is ranging from 0.05 to 0.5
with an interval 0.05. Here emin = 0.0040 and ε = 2memin

0 2 4 6 8 10
0

1

2

3

4

(a) ∆+(t) and (D(G)− 1)ε

0 500 1000 1500 2000
0

1

2

3

4

(b) ∆−(t) and (D(G−)− 1)ε

1000 1200 1400 1600 1800 2000
0

0.05

0.1

0.15

0.2

(c) ∆+(t) and (D(G)− 1)ε

1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

(d) ∆−(t) and (D(G−)− 1)ε

Fig. 9. Comparison between (a) the greatest overestimate ∆+(t) and
(D(G) − 1)ε, and (b) comparison between the least underestimate ∆−(t)
and (D(G−) − 1)ε (b), as well as their partial enlarged views (c) and
(d). In this example, edge lengths are perturbed by measurement errors in
U(−0.5emin, 0.5emin).

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Fig. 10. Mean values of ∆+(t) and ∆−(t) and their upper bounds with
different amplitudes of measurement errors. In this example, initial distance
estimates are set the same as true values, and measurement errors obey a
uniform distribution U(−memin,memin) with m ranging from 0.05 to 0.5
with an interval 0.05; ε = memin, emin = 0.0049.

0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2904239, IEEE
Transactions on Automatic Control

13

0 200 400 600 800 1000
0

2

4

6

(a) ∆+(t) and (D(G)− 1)ε

0 200 400 600 800 1000
0

2

4

6

(b) ∆−(t) and (D(G−)− 1)ε

Fig. 11. Comparison between (a) the greatest overestimate ∆+(t), (D(G)−
1)ε and the theoretical bound of ∆+(t) for unperturbed system, and (b)
comparison between the least underestimate ∆−(t), (D(G−)− 1)ε and the
theoretical bound of ∆−(t) for unperturbed system. In this example, there
are two source nodes in the graph, one is at [3.75, 0.5] and the other is at
[0.25, 0.5], switching between source nodes every 50 simulated seconds while
all nodes are moving within a circle with a radius of 0.5emin.

C. Source Change

The previous two settings involve small perturbations. We
now simulate large errors by periodic change of the source set
in addition to device movements. The graph periodically alter-
nates between two sources nodes at [3.75, 0.5] and [0.25, 0.5].
The remaining 498 nodes are randomly distributed in a 4x1
km field. At each transition the old source inherits a distance
estimate of zero and other nodes acquire a large estimation
error. The non-source nodes still move around their nominal
values, in a disk with radius in U(0, 0.5emin), emin = 0.0044
and ε = emin. To mimic frequent changes, we alternate the
sources every 50 seconds while the simulation runs for 2000
iterations. The results in Figure 11 show that due to the fast
convergence rate, ∆+(t) will drop below its ultimate upper
bound, then bounce back up again when the source changes.
The two different “spike” patterns of ∆+ result from the
alternation of the two source nodes. On the other hand, due
to its slow convergence rate, ∆−(t) in this case never attains
its ultimate bound. Yet, even if errors are not small due to
the frequent change of source nodes, the algorithm reduces
them from the large values they acquire at source transitions.
Under less frequent changes ∆−(t) converges as well, e.g. in
Figure 12, where the sources switch every 1000 seconds.

IX. CONTRIBUTIONS AND FUTURE DIRECTIONS

We have analyzed ABF, by formulating and using a Lya-
punov function based on maximal error, to demonstrate global

0 1000 2000 3000 4000 5000
0

2

4

6

(a) ∆+(t) and (D(G)− 1)ε

0 1000 2000 3000 4000 5000
0

2

4

6

(b) ∆−(t) and (D(G−)− 1)ε

Fig. 12. Comparison between (a) the greatest overestimate ∆+(t), (D(G)−
1)ε and the theoretical bound of ∆+(t) for unperturbed system, and (b)
comparison between the least underestimate ∆−(t), (D(G−)− 1)ε and the
theoretical bound of ∆−(t) for unperturbed system. In this example, there
are two source nodes in the graph, one is at [3.75, 0.5] and the other is at
[0.25, 0.5], switching between source nodes every 1000 simulated seconds
while all nodes are moving within a circle with a radius of 0.5emin.

uniform asymptotic stability. We have further shown that the
algorithm is ultimately bounded in face of persistent mobility
of devices or communication noise, have characterized the
time to attain the ultimate bound and have validated these
results empirically in simulation. The ultimate bounds and the
time to attain them are tight.

The results presented in this paper are of immediate and
practical use in the design and analysis of any distributed sys-
tem that uses distance estimates. Our analysis also introduces
a novel approach to the construction of Lyapunov functions
that exploit dependencies between devices to effectively ana-
lyze distributed algorithms with complex interaction patterns.
Building on these results, in future work we aim to take a
similar approach to expand from Adaptive Bellman-Ford to al-
ternative distance estimation algorithms, such as in [28], [29],
and [31], for which complimentary traits have been empirically
observed. More broadly, we aim to obtain similar results for
other uses of G-block, as well as other aggregate computing
building blocks. The ultimate boundedness in particular opens
up the prospect of establishing small gain type stability, [22],
of G-blocks appearing in feedback loops and possibly through
equivalent theorems, [23], like the passivity theorem and its
offshoots, [24], [25]. Such results would allow the principled
design and analysis of stability and convergence time for a
large class of distributed systems, thus offering improvements
in safety and efficiency across many areas of application.

0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2904239, IEEE
Transactions on Automatic Control

14

REFERENCES

[1] H. K. Khalil, Nonlinear Systems, Prentice Hall, 2002.
[2] M. Vidyasagar, “Decomposition techniques for large-scale systems with

nonadditive interactions: Stability and stabilizability,” IEEE Transactions
on Automatic Control, vol. 25, pp. 773 – 779, 1980.

[3] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation
in networked multi-agent systems,” Proceedings of the IEEE, vol. 95, pp.
215 – 233, 2007.

[4] J. Baillieul and A. Suri, “Information patterns and hedging brockett’s
theorem in controlling vehicle formations,” in Proceedings of 42nd IEEE
Conference on Decision and Control, 2003.

[5] L. Krick, M.E. Broucke, and B.A. Francis. Stabilization of Infinitesimally
Rigid Formations of Multi-Robot Networks. International Journal of
Control, 82(3):423–439, 2009.

[6] B. Fidan, S. Dasgupta and B. D. O. Anderson, “Adaptive range-
measurement-based target pursuit”, International Journal of Adaptive
Control and Signal Processing, pp. 66-81, 2013.

[7] M. Cao, C. Yu, A. S. Morse, B. D. O. Anderson and S. Dasgupta.
“Generalized controller for directed triangle formations”, in Proceedings
of the IFAC World Congress, 2008.

[8] T. H. Summers, C. Yu, S. Dasgupta, and B. D. O. Anderson, “Control of
minimally persistent leader-remote-follower and coleader formations in
the plane,” IEEE Transactions on Automatic Control, vol. 56, pp. 2778
– 2792, 2011.

[9] M. Arcak, “Passivity as a Design Tool for Group Coordination”, IEEE
Transactions on Automatic Control, pp. 1380-1390, 2007.

[10] T. Hatanaka, N. Chopra, M. Fujita, and M. Spong, Passivity-Based
Control and Estimation in Networked Robotics. Communications and
Control Engineering. Springer International Publishing, 2015

[11] J. Beal, D. Pianini, and M. Viroli, “Aggregate programming for the
internet of things,” IEEE Computer, vol. 48, no. 9, pp. 22–30, 2015.

[12] H. Zimmermann, “OSI reference model–The ISO model of architecture
for open systems interconnection.” IEEE Transactions on Communica-
tions vol. 28, no. 4, pp 425–432, 1980.

[13] J. Beal and M. Viroli, “Building blocks for aggregate programming of
self-organising applications,” in Workshop on Foundations of Complex
Adaptive Systems (FOCAS), 2014.

[14] M. Viroli and F. Damiani, “A calculus of self-stabilising computational
fields,” in Coordination 2014, 2014, pp. 163–178.

[15] S. Dolev, Self-Stabilization, MIT Press, 2000.
[16] M Schneider, “Self-stabilization,” ACM Computing Surveys, vol. 25,

pp. 45–67, 1993.
[17] S. Dasgupta and J. Beal, “A Lyapunov Analysis for the Robust Stability

of an Adaptive Bellman-Ford Algorithm,” in Proceedings of 55th IEEE
Conference on Decision and Control, 2016.

[18] B. D. O. Anderson, R. R. Bitmead, C. R. Johnson, P. V. Kokotovic,
R. L. Kosut, I. M. Y. Mareels, L. Praly, and B. D. Riedle, Stability of
Adaptive Systems: Passivity and Averaging Analysis, MIT Press, 1986.

[19] W. Hahn, Stability of Motion, Prentice Hall, 1967.
[20] R. E. Bellman, “On a routing problem,” Quarterly of Applied Mathe-

matics, vol. 16, pp. 87-90, 1958.
[21] L. R. Ford Jr., “Network flow theory,” Tech. Rep. Paper P-923, RAND

Corporation, 1956.
[22] Z. Jiang, I. M. Y. Mareels, and Y. Wang, “A Lyapunov formulation

of the nonlinear small-gain theorem for interconnected ISS systems,”
Automatica, vol. 32, pp. 1211 – 1215, 1996.

[23] B. D. O. Anderson, “The small-gain theorem, the passivity theorem and
their equivalence”, Journal of the Franklin Institute, pp. 105-115, 1972.

[24] M. Fu, S. Dasgupta and Y. C. Soh, “Integral quadratic constraint
approach vs. multiplier approach”, Automatica, pp. 281-287, 2005.

[25] M. Fu and S. Dasgupta, “Parametric Lyapunov functions for uncertain
systems: The multiplier approach”, Advances in linear matrix inequality
methods in control, pp. 95-108, 2000.

[26] Y. Mo, J. Beal, and S. Dasgupta, “Error in Self-Stabilizing Spanning-
Tree Estimation of Collective State” in IEEE International Conference
on Self-Adaptive and Self-Organizing Systems Workshops (SASOS), IEEE,
September 2017.

[27] M. Viroli, J. Beal, F. Damiani, and D. Pianini, “Efficient engineering
of complex self-organizing systems by self-stabilising fields,” in IEEE
International Conference on Self-Adaptive and Self-Organizing Systems
(SASO). IEEE, September 2015, pp. 81–90.

[28] J. Beal, J. Bachrach, D. Vickery, and M. Tobenkin, “Fast self-healing
gradients,” in ACM Symp. on Applied Computing, 2008.

[29] J. Beal, “Flexible self-healing gradients.” in ACM Symp. on Applied
Computing, 2009.

[30] A. Kumar, J. Beal, S. Dasgupta, and R. Mudumbai, “Toward predicting
distributed systems dynamics,” in Spatial and COllective PErvasive
Computing Systems (SCOPES). IEEE, September 2015, pp. 68–73.

[31] G. Audrito, F. Damiani, and M. Viroli, “Optimally-Self-Healing
Distributed Gradient Structures Through Bounded Information Speed.”
In International Conference on Coordination Languages and Models,
Springer, pp. 59–77, 2017.

[32] A. Stentz, “The focussed D* algorithm for real-time replanning”, in
Proc. International Joint Conference on Artificial Intelligence, 1995.

[33] S.Koenig, M. Likhachev, and D. Furcy, “D* lite”, in Proceedings of the
Eighteenth National Conference on Artificial Intelligence, 2002.

[34] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning A*.”,
Artificial Intelligence Journal, pp. 93–146, 2004.

[35] S. Karaman, and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning”, Int. Journal of Robotics Research, pp. 846–894, 2011.

[36] O. Arslan, and P. Tsiotras, “Use of relaxation methods in sampling-
based algorithms for optimal motion planning”, in Proceedings of IEEE
International Conference on Robotics and Automation (ICRA), 2013.

[37] M. Otte and E. Frazzoli, “RRTX: Asymptotically optimal single-query
sampling-based motion planning with quick replanning”, The Interna-
tional Journal of Robotics Research, pp. 797-822, 2016.

[38] Y. Shang and S. Li, “Distributed Biased Min-Consensus With Appli-
cations to Shortest Path Planning”, IEEE Transactions on Automatic
Control, vol. 62, no. 10, pp. 5429-5436, 2017.

APPENDIX

Proof of the tightness of the bound on the time for ∆− to
converge: For simplicity assume t0 = 0. Suppose⌈

e

emin

⌉
= m. (55)

Then we assert that for all i ∈ {1, · · · , n},

d̂n+i(t) = d̂2n+i(t) =

{
temin i ∈

{⌊
t
m

⌋
, · · · , n

}
dn+i otherwise . (56)

Call each pair 2n + i and n + i partners. When t ∈
{1, · · · ,m − 1}, as e > emin, and d̂2n+i(0) = d̂n+i(0) = 0,
these nodes constrain each other and their respective distance
estimates rise by increments of m. Thus all d̂2n+i(m) =
d̂n+i(m) = e. Thus d̂2n+1(m) = d̂n+1(m) = d2n+1(m) =
dn+1(m) = e, and at t = m the nodes n + 1 and n + 2
are constrained by S, while the remaining are constrained by
their partners. Since distance estimates cannot fall in value,
for all t ≥ m n + 1 and n + 2 are constrained by S, and
d̂2n+1(t) = d̂n+1(t) = d2n+1(t) = dn+1(t) = e, for all
t ≥ m. Continuing this argument (56) is readily proved. Thus,

d̂3n−1(t) = d̂2n−1(t) < ne = d2n−1(t) = d3n−1(t), ∀t < mn.
(57)

Result follows from (41) as d̂min(0) = 0, dmax(G) = ne and

mn = n

⌈
e

emin

⌉
=

⌈
dmax(G)− d̂min(0)

emin

⌉
.

Proof of Lemma 6: Use induction. As the result holds for
t = 0, suppose for some t ≥ 0, d̂i(t) ≥ D̂i(t), ∀i ∈ V.
Suppose j ∈ N (i) is a current constraining node of i at time
t in (45) while k ∈ N (i) is a current constraining node of i
at time t in (49). Then from (42) and (43), there obtains:

D̂i(t+ 1) = D̂k(t) + eik − ε

≤ D̂j(t) + eij − ε

≤ d̂j(t) + eij − ε

≤ d̂j(t) + eij + εij(t)

= d̂i(t+ 1). (58)

0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2904239, IEEE
Transactions on Automatic Control

15

Proof of Lemma 7: Consider nodes n1, · · · , nT1
, such that

n1 ∈ S, and for all i ∈ {1, · · · , T1−1} ni is a true constraining
node of ni+1 in G−. Every node is in one such sequence. We
assert that for all i ∈ {1, · · · , T1},

dni
≤ Dni

+ (i− 1)ε. (59)

As n1 ∈ S the result holds for i = 1. Now suppose it holds
for some i ∈ {1, · · · , T1 − 1}. As ni and ni+1 are neighbors
in both G and G−, ni is the true constraining node of ni+1

in G−, and (46) holds, (59) holds as

dni+1
≤ dni

+ enini+1

≤ Dni
+ (i− 1)ε+ enini+1

= Dni
+ (i− 1)ε+ e−nini+1

+ ε

= Dni+1
+ iε.

Then (50) follows as from Lemma 1, T1 ≤ D(G−).
To prove (47) suppose D(G) > D(G−). Then there is a

sequence of nodes in G, without loss of generality {1, · · · , n},
such that 1 ∈ S and for all i ∈ {1, · · · , n}, i is a true
constraining node of i+ 1. Further

dn =
n−1∑
i=1

ei,i+1. (60)

As D(G) > D(G−), there is a sequence of nodes
{p1, · · · , pl, n} such that in G−, p1 ∈ S and pi is a true
constraining node of pi+1, pl is a true constraining node of n
and l + 1 < n. Further

Dn =
l−1∑
i=1

(
epi,pi+1

− ε
)
+ epl,n − ε. (61)

By definition the distance from S along the path comprising
{1, · · · , n} in G− is less than Dn, i.e.

l−1∑
i=1

(
epi,pi+1

− ε
)
+ epl,n − ε <

n−1∑
i=1

(ei,i+1 − ε)

⇒
l−1∑
i=1

epi,pi+1
+ epl,n <

n−1∑
i=1

ei,i+1,

where the last inequality follows from the fact that l+1 < n,
and violates (60). The contradiction proves (47).

Yuanqiu Mo was born in Yangzhou, China, in 1991.
He received the B.E. degree in electrical engineering
from the Nantong University, Nantong, China, in
2013, and the M.E. degree in electrical engineering
from the Harbin Institute of Technology, Harbin,
China, in 2015. He is currently working towards
the Ph.D. degree in electrical engineering at the
University of Iowa. His research interests include
control systems and compressed sensing for MRI.

Soura Dasgupta, (M’87, SM’93, F’98) was born
in 1959 in Calcutta, India. He received the B.E.
degree (Hons. I) in Electrical Engineering from the
University of Queensland (Australia) in 1980, and
the Ph.D. in Systems Engineering from the Aus-
tralian National University, in 1985. He is currently
Professor of Electrical and Computer Engineering
at the University of Iowa, U.S.A and holds an ap-
pointment with Shandong Computer Science Center
(National Supercomputer Center in Jinan), Shandong
Provincial Key Laboratory of Computer Networks.

In 1981, he was a Junior Research Fellow in the Electronics and Com-
munications Sciences Unit at the Indian Statistical Institute, Calcutta. He has
held visiting appointments at the University of Notre Dame, University of
Iowa, Universite Catholique de Louvain-La-Neuve, Belgium, Tata Consulting
Services, Hyderabad, and the Australian National University

From 1988 to 1991, 1998 to 2009 and 2004 to 2007 he respectively served
as an Associate Editor of the IEEE TRANSACTIONS ON AUTOMATIC
CONTROL, IEEE Control Systems Society Conference Editorial Board, and
the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS- II. He is a
co-recipient of the Gullimen Cauer Award for the best paper published in the
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS in the calendar
years of 1990 and 1991, a past Presidential Faculty Fellow, a past subject
editor for the International Journal of Adaptive Control and Signal Processing,
and a member of the editorial board of the EURASIP Journal of Wireless
Communications. In 2012 he was awarded the University Iowa Collegiate
Teaching award. In the same year he was selected by the graduating class for
an award on excellence in teaching and commitment to student success. Since
2015 he has been a 1000 Talents Scholar in the People’s Republic of China.

His research interests are in Controls, Signal Processing and Communica-
tions. He was elected a Fellow of the IEEE in 1998.

Jacob Beal is a scientist at Raytheon BBN Tech-
nologies in Cambridge, Massachusetts. His research
focuses on the engineering of robust adaptive sys-
tems, particularly on the problems of aggregate-
level modeling and control for spatially distributed
systems like pervasive wireless networks, robotic
swarms, and natural or engineered biological cells.
Dr. Beal received a PhD in electrical engineering
and computer science from MIT. He is an associate
editor of ACM Transactions on Autonomous and
Adaptive Systems, is on the steering committee of

the IEEE International Conference on Self-Adapting and Self-Organizing
Systems (SASO), and is a founder of the Spatial Computing Workshop series.
He is a Senior Member of IEEE. Contact him at jakebeal@ieee.org

