
0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3140253, IEEE
Transactions on Automatic Control

1

Stability and Resilience of Distributed Information
Spreading in Aggregate Computing

Yuanqiu Mo, Member IEEE, Soura Dasgupta, Fellow IEEE and Jacob Beal, Senior Member IEEE

Abstract—Spreading information through a network of devices
is a core activity for most distributed systems. Self-stabilizing
algorithms for information spreading are one of the key building
blocks enabling aggregate computing to provide resilient coordi-
nation in open complex distributed systems. This paper improves
a general spreading block in the aggregate computing literature
by making it resilient to network perturbations, establishes
its global uniform asymptotic stability and proves that it is
ultimately bounded under persistent disturbances. The ultimate
bounds depend only on the magnitude of the largest perturbation
and the network diameter, and three design parameters trade
off competing aspects of performance. For example, as in many
dynamical systems, values leading to greater resilience to network
perturbations slow convergence and vice versa.

Index Terms—aggregate computing, multi-agent systems, dis-
tributed graph algorithms, nonlinear stability, ultimate bounds.

I. INTRODUCTION

OPEN complex networks like smart cities and the Internet
of Things (IoT) require seamless distributed device co-

ordination as individual devices must collaborate with their
neighbors to perform multiple tasks, often under persistent
perturbations caused by mobility, noise and device and link
losses. Distributed algorithms using ordinary programming
are ill-equipped to perform such coordination and delivering
predictable performance as they overly focus on message
passing and construction. Device coordination often involves
compositions of these algorithms, sometimes in feedback. The
analyses of compositions of ordinary programming algorithms
are typically limited to self-stabilization. None exist for tran-
sient performance like time to converge or bounds under
persistent perturbations, needed to guarantee safe operations.

Aggregate Computing [1] avoids these issues by making
details of message passing implicit and enforcing abstrac-
tion barriers to information access, allowing each block in
distributed coordination to be analyzed separately. Crucially,

This work has been supported by the Defense Advanced Research Projects
Agency (DARPA) under Contract No. HR001117C0049. The views, opinions,
and/or findings expressed are those of the author(s) and should not be
interpreted as representing the official views or policies of the Department of
Defense or the U.S. Government. This document does not contain technology
or technical data controlled under either U.S. International Traffic in Arms
Regulation or U.S. Export Administration Regulations. Approved for public
release, distribution unlimited (DARPA DISTAR case 33519, 10/14/20).

Mo is with the Institute of Advanced Technology, Westlake Institute for
Advanced Study, Westlake University, Hangzhou 310024, China (moyuan-
qiu@@westlake.edu.cn). Dasgupta is with the University of Iowa, Iowa City,
Iowa 52242 USA (soura-dasgupta@uiowa.edu). S. Dasgupta is also a Visiting
Professor at Shandong Computer Science Center, Shandong Provincial Key
Laboratory of Computer Networks, China. Beal is with Raytheon BBN
Technologies, Cambridge, MA, USA 02138 USA (jakebeal@ieee.org)

compositions of three basis blocks realize most coordination
tasks: G block spreads information from sources across a
network according to some optimality criterion, C sends
information from devices to sources, and T performs timing
operations. Each is a distributed graph algorithm [1].

We consider a general G block that spreads such information
across a network as, possibly non-Euclidean, distances of
devices from a source set, broadcasts information from a set
of sources to nearest devices, generates pathways away from
hazardous areas or creates spanning trees used by C-blocks to
apprise leaders of the net resources in a network, [2]. Unlike
games networks these algorithms are cooperative.

The stability analysis of this block is limited to self-
stablization [1], that too under the assumption that all states
lie in Noetherian rings and are thus a priori bounded. Un-
like global uniform asymptotic stability (GUAS) [3], self-
stabilization has no notion of robustness to persistent pertur-
bations although these are inevitable under feedback. Such
feedback compositions are natural in device coordination. For
example, [4] describes a setting where a controller provides a
resource allocation plan to distributed services, by accepting
load information as input in a feedback loop with G and C
blocks. Mobility makes persistent perturbations ubiquitous in
open systems: Algorithms that estimate distances from sources
require that devices know their distance from neighbors.
Mobility and localization errors manifest as persistent noise.

Thus we improve this general G-block to allow removal
of the Noetherian assumption, proof of GUAS, and (under
an additional Lipschitz condition) ultimate boundedness in
face of persistent perturbations. Ultimate bounds permit the
use of variants of the small gain theorem [5], or equivalent
passivity theory as in [6] for closed loop analysis. This goes
well beyond our analysis in [4], of the simplest G-block,
the Adaptive Bellman-Ford (ABF) algorithm, which estimates
Euclidean distances of nodes from a source set in a distributed
manner and, unlike the classical Bellman-Ford algorithm [7],
accommodates underestimates. In [8] we have analyzed with-
out proof another special case, which generalizes ABF by
allowing broadcast and other features given in Section II.

A key problem with both ABF and indeed the generalization
in [8] is the rising value problem. All G-block algorithms
generate estimates x̂i(t) that must converge to a value xi. The
rising value problem is when underestimates (i.e. x̂i(t) < xi)
may rise very slowly. The more general G-block given in [1]
and studied here removes this problem. Though proved to be
self-stabilizing under a Noetherian assumption we explain in
Section II-B that it is not robust to perturbations. We improve
this G-block so that it can cope with non-negative numbers

Authorized licensed use limited to: Raytheon Technologies. Downloaded on September 30,2022 at 13:51:55 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3140253, IEEE
Transactions on Automatic Control

without assuming a priori that they are in a bounded set and by
introducing three design parameters that make the algorithm
robust to persistent perturbations. As with most dynamical
systems, we argue that these design choices compete between
robustness and convergence speed. Greater amelioration of the
rising value problem yields less robustness.

The vast literature of multi-agent systems, [9], [10], [11],
[12], [13], [14], [15], [16], [17], comprising e.g., distributed
filtering, consensus and formation control, also considers dis-
tributed algorithms. Distributed filtering, e.g., [9] of course
considers performance under persistent noise as does [11].
Further, [15] and [17] consider persistent link losses and
show that provided connectivity is maintained over every fixed
interval, convergence still occurs. To our knowledge, the only
paper, apart from our work in [8], [18], that proves ultimate
boundedness is [10]. However, [10] does not provide the
ultimate bound. Unlike [15] and [17], perturbations considered
by us are on edge weights and we do quantify the ultimate
bounds. Most proximate to the problem considered here is
the path finding literature, e.g. [12], where the underlying
assumption is that perturbations vanish in the relevant part
of the network, before the objective is achieved. This is in
contrast to this paper where the perturbations are persistent.

Section II has the algorithm, assumptions and motivating
applications. Section III examines stationary points. Section IV
proves GUAS and gives ultimate bounds proportional to bound
on the perturbations. Section V discusses design choices.
Section VI gives simulations. Section VII concludes.

II. ALGORITHM

In this section, we present a general G-block that spreads
information through a network in a distributed fashion. Section
II-A describes a special case shown to be GUAS in [8], with
proofs omitted, plus examples and a shortcoming. Section
II-B then presents a more general algorithm that removes
this deficiency, and Section II-C provides assumptions and
definitions that will be used for proofs in subsequent sections.

A. The Spreading block of [8]
Consider an undirected graph G = (V,E) with nodes in

V = {1, 2, · · · , N} and edge set E. Nodes i and k are
neighbors if they share an edge. Denote N (i) as the set of
neighbors of i. The goal of the algorithm is to spread the
information xi ≥ 0 to node i. The simplest example of xi = di
is the distance of node i from a set of sources. This can be
done with ABF, [4], that updates the distance estimate d̂i(t)
of di. In this case, suppose eik > 0 is the edge length between
i and k and the signature of node i, obeys si = 0 if i is a
source and si =∞ otherwise. Then as for a source j, dj = 0,
ABF proceeds as

d̂i(t+ 1) =

{
0 si = 0

mink∈N (i)

{
d̂k(t) + eik

}
si =∞ . (1)

Observe, with x̂i(t) = d̂i(t), (1) is a special case of the G-
block in [8] where:

x̂i(t+ 1) = min

{
min

k∈N (i)
{f (x̂k(t), ēik(t))} , si

}
,∀t ≥ t0.

(2)

with initial estimates x̂i(t0) ≥ 0. For ABF,
f(x̂k(t), eik) = x̂k(t) + eik. (3)

As in ABF source nodes have si = 0, under x̂i(t0) ≥ 0, the
outer minimum ensures that all sources have d̂i(t) = x̂i(t) =
0. Likewise, as non-source nodes in ABF have infinite si, (2)
reduces to the second bullet of (1) for such nodes. As noted
in the introduction, among other things this generalization
captures potential non-Euclidean distance metrics.

The ēik(t) define such structural aspects as edge lengths
between neighbors; si ≥ 0, may be either finite or infinite.
Due to the outer minimum in (2), si is the maximum value that
x̂i(t) can acquire after the initial time. The argument t in ēik(t)
anticipates analysis when there are persistent perturbations in
them. In particular, we assume that perturbations are around
the nominal values eij i.e.

0 < emin ≤ ēij(t) = eij + εij(t) (4)

|εij(t)| ≤ ε < emin. (5)
We permit

εij(t) 6= εji(t), (6)
though we require

emin < eij = eji. (7)
Such perturbations could reflect noise, localization error, or
(if coherent) movement of devices. The asymmetry in (6)
recognizes that ēik(t) is the noisy estimate of eik seen by
i rather than k. The function f(·, ·) is progressive i.e.

f(a, b) > a+ σ, σ > 0, (8)
and monotonic in the first variable, i.e.

f(a1, b) ≥ f(a2, b), if a1 ≥ a2. (9)
and is finite for finite a and b. Note (3) obeys both. The
initialization in (2) ensures that x̂i(t) ≥ 0, for all t ≥ t0.
Define S∗ as the set of nodes with finite maximum values si:

S∗ = {i ∈ V |si <∞}. (10)
We will assume that this set is nonempty. The state x̂i(t) is the
estimate of the xi to be spread to node i, in the perturbation
free case of ε = 0 and are the stationary values of (2):

xi = min

{
min

k∈N (i)
{f (xk, eik)} , si

}
,∀ i ∈ V. (11)

We show in Section III) that the xi are unique, finite, with
xi = si for at least one i.

In (1) all nodes with finite signatures have distance estimates
equaling si, in particular zero. Figure 1 presents another
example of (3) where this need not be the case. Here, node A
(red) is a high-speed gateway with sA = 1, node D (purple)
is a low-speed gateway with sD = 5, and the others are non-
gateways with si =∞. Through (2), all nodes try to route to
external networks through the shortest effective path. After 3
rounds, all nodes, including the low-speed link, converge to
route through the high-speed link. In this case the stationary
state of the low-speed link is xD = 4 and does not equal
si = 5 even though si is finite. Should the high-speed link
represented by node A disappear, then the state estimate of D
does converge to its maximum value 5, while those of nodes
B and C converge to 7 and 6, respectively, i.e. nodes reroute
through the still available low-speed link.

2
Authorized licensed use limited to: Raytheon Technologies. Downloaded on September 30,2022 at 13:51:55 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3140253, IEEE
Transactions on Automatic Control

1 1 1
A B C D

2 0 1 1

t = 0

1 1 1
A B C D

1 2 1 2

t = 1

1 1 1
A B C D

1 2 3 2

t = 2

1 1 1
A B C D

1 2 3 4

t = 3

x̂A= x̂B= x̂C= x̂D=

Fig. 1: Non-zero si representing external gateways of a tactical
wireless network: red and purple nodes are high and low speed
external links, respectively, while blue are nodes without external
links. Black numbers represent edge weights eik, green numbers
represent state estimates x̂i. After 3 rounds, all nodes, including the
low-speed link, have converged to route through the high-speed link.

In the previous examples f(a, b) is linear and increasing
in b. A specialization of (2) violating both these properties
finds the most probable path (MPP) from each node in a
network to a source. In this case eik represents the probability
of successful traversal or delivery between neighbors i and j.
The stationary value xi is the smallest probability of failure
in delivery from node i to the source. In this case xi = 0 for
sources. Assuming independence, for all other nodes

xi = min
k∈N (i)

{1− (1− xk)eik}. (12)

The sequence of minimizing nodes k then indicates the MPP
from node i to any source and can be computed using (2) with

f(x̂k(t), eik) = 1− (1− x̂k(t))eik. (13)
If 0 < σ ≤ eik < 1− σ, this is progressive and increasing in
x̂k(t), though decreasing in eik.

A key shortcoming of (2), however, is that underestimates
can rise very slowly in the presence of small eik. Consider for
example (1) with nodes 1 and 2 having the smallest estimates
and sharing a short edge e. At successive instants d̂1(t+ 1) =
d̂2(t) + e and d̂2(t + 1) = d̂1(t) + e, i.e. each rises in small
increments of e (and as shown in [4]) converge slowly. The
generalization below accelerates this slow convergence.

B. A more general spreading block
A more general G-block, given in [1], ameliorates this rising

value problem by speeding up the rise in x̂i(t). Specifically, it
introduces an auxiliary state x̃i which is updated in a manner
similar to (2), though on the basis of the immediate past value
of neighboring x̂k(t) rather than x̃k(t). Thus,

x̃i(t+ 1) = min

{
min

k∈N (i)
{f (x̂k(t), ēik(t))} , si

}
,∀t ≥ t0.

(14)
The first argument in f(·, ·) is x̂k rather than x̃k. On the other
hand x̂i(t) is itself raised by a fixed amount, independent of
eij , unless it exceeds a value M or if it is within a dead zone
parameter D of the updated x̃i(t+ 1). Specifically,

x̂i(t+ 1) = F (x̃i(t+ 1), x̂i(t)) (15)
where f(·, ·) remains progressive and monotonic. The function
F (`1, `2) is raising, i.e. for finite M ≥ 0, δ > 0 and D ≥ 0,

F (`1, `2) =

{
`1 `2 ≥M or |`2 − `1| ≤ D
g(`2) otherwise

, (16)

where g(x) is finite for finite x and obeys
g(x) ≥ x+ δ, δ > 0. (17)

The second bullet of (16), speeds the ascent of x̂i(t), and
because of (8) ameliorating the problem of the slow rise in
underestimates experienced by (2). The first bullet renders (14)
identical to (2). As the second bullet of (16) must change
x̂i(t), the stationary point of (14-17) is identical to that of
(11). Thus this algorithm spreads the same information as (2),
while accelerating the rise of underestimates. Observe also
that D =∞ and/or M = 0, reduces (14-17) to (2).

The version of (14-17) in [1] sets the dead zone variable
as D = 0. In face of persistent structural perturbations in eik,
l2 = l1 cannot be sustained. Consequently, regardless of the
size of perturbations, with D = 0, x̂i will regularly rise to the
limit of the modulation threshold M , then fall, and then rise
again. On the other hand we will show that if D is sufficiently
greater than ε, the bound on the perturbation, then (14-17)
will have ultimate bounds proportional to ε. This raises an
essential trade-off. Too large a D slows convergence though
imparts greater robustness to perturbations. Such a compro-
mise is inherent to most dynamic systems. Slower convergence
improves noise performance. Another key difference is that
[1] assumes that x̂i belong to a Noetherian ring with M its
maximal element. This implicitly assumes that the algorithm
is a priori bounded. For distance estimation this means a prior
assumption on the diameter, which is unappealing in the con-
text of open systems. The generalized Adaptive Bellman-Ford
algorithm (GABF), presented and analyzed without proofs in
[18], is a specific example of (15), with f(·, ·) as in (3) with eik
the edge length between i and k, x̂k(t) the distance estimate
of k at time t, si = 0 if i is a source while si =∞ otherwise.

C. Definitions and Assumptions
We merge the analysis without perturbations, i.e. when

ε = 0 in (4), (5) with the perturbation analysis when ε > 0.
The latter requires some additional conditions: First that the
function f(·, ·) is monotonically increasing with respect to its
second argument as well, i.e. f(a, b) obeys

f(a, b1) ≥ f(a, b2), if b1 ≥ b2. (18)
Second, that there exist Li > 0, such that

|f(a, b1)− f(a, b2)| ≤ L1|b1 − b2| (19)

|f(a1, b)− f(a2, b)| ≤ L2|a1 − a2|. (20)
Most perturbation analyses require such Lipschitz conditions.
Formally, the following assumption holds in this paper.

Assumption 1. Graph G is connected, and ēij(t) obey (4-7).
The set S∗ defined in (10) in nonempty and

smin = min
j∈S∗
{sj} ≥ 0, ∀i ∈ V. (21)

Further
Smin = {i ∈ V |si = smin}. (22)

If ε = 0 then f(·, ·) only obeys (8,9). If ε > 0 then f(·, ·)
additionally obeys (18-20).

As in any given iteration the estimated state of a node is
obtained by one of the bullets in (16), at each t, we partition
V into two sets defined below.

3
Authorized licensed use limited to: Raytheon Technologies. Downloaded on September 30,2022 at 13:51:55 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3140253, IEEE
Transactions on Automatic Control

Definition 1. The set A(t) (ABF type nodes) comprises all
nodes that use the first case in (16) to obtain x̂i(t), i.e. in (14),
x̂i(t) = x̃i(t). Define the set of extraordinary nodes E(t) =
V \ A(t) to be those that use the second case in (16).

The next definition defines a (current) constraining node.

Definition 2. For i ∈ A(t), if x̂i(t) = si = xi then i is its own
current constraining, or constraining node at t. Otherwise the
minimizing k 6= i in (14) used to find x̂i(t), is i’s constraining
node at t. If i ∈ E(t), then i is its own constraining node at
t. The constraining node of i at t is said to constrain i at t.

We define S(t) as a subset of S∗ comprising nodes that
acquire their maximum values at time t,

S(t) = {i ∈ S∗ | x̂i(t) = si}, (23)
and we say i is a source at time t if i ∈ S(t). We also need
one other type of partitioning of V.

Definition 3. The set of nodes rooted to sources is R(t+1) =
S(t + 1)

⋃
P (t + 1) with S(t + 1) as in (23) and P (t + 1)

comprising those whose constraining node at t+1 is in R(t).
Further R(t0) = S(t0). The unrooted set is U(t) = V \ S(t).

As U(t+ 1)
⋂
S(t+ 1) = ∅, every node has a constraining

node at every t, and i ∈ R(t+ 1) is either in S(t+ 1) or are
constrained by some j ∈ R(t), each k ∈ U(t + 1) must be
constrained by an ` ∈ U(t). Thus

U(t) = ∅ =⇒ U(t+ 1) = ∅. (24)

III. PROPERTIES OF STATIONARY POINTS

As explained in Section II, (11) are also the stationary values
of (14-17) in the perturbation free case of ε = 0. Observe that
stationary points if they exist comprise two sorts of values.
Those where xi = si. Those where xi < si. We call the
former sources and their set is defined as

S∞ = {i|xi = si}. (25)
Though S∞ ⊂ S∗, as the example in Figure 1 shows, S∞
need not equal S∗. Evidently

xi =

si i ∈ S∞
min

k∈N (i)
{f(xk, eik)} i /∈ S∞ (26)

As shown by example in Section II-A, not all members of S∗
are sources. Like the definition of constraining nodes we now
define true constraining nodes.

Definition 4. In (26), if xi = si, then we say that i is its
own true constraining node. Otherwise, any minimizing k in
the second bullet of (26) is a true constraining node of i. As
i may have more than one true constraining node, its set of
true constraining nodes is designated as C(i).

As f(·, ·) is progressive we have that,
xi > xk, ∀k ∈ C(i) and i /∈ S∞. (27)

We have the following lemma.

Lemma 1. The following hold under Assumption 1 with ε = 0.
(A) Consider any sequence of nodes, without loss of generality
{1, 2, · · · , l} such that i+ 1 ∈ C(i) as defined in Definition 4.
Then this sequence is finite and its last element is in S∞,

defined in (25). (B) The set S∞ is nonempty. (C) The set
Smin ⊂ S∞. (D) All xi in (11) are finite.

Proof. Due to (27) the chain in (A) cannot have cycles. As
there are only N nodes it must end, and the last element l must
be its own true constraining node i.e. l ∈ S∞. This proves (A),
and also (B). Without loss of generality suppose s1 = smin.
To establish a contradiction, suppose 1 /∈ S∞. Then from (A)
there is a sequence of nodes starting from 1 and terminating
in j ∈ S∞, such that each is the true constraining node of its
predecessor. Thus from (27) xj = sj < s1 = smin, violating
the definition of smin, proving (C). To prove (D) consider
i 6= 1. As the graph is connected there is a path from 1 to
i, comprising nodes {1 = l1 → l2 → · · · lk = i.} Then from
(26) for each n ∈ {2, · · · , k} there holds

xln ≤ f(xln−1
, eln,ln−1

).

Due to the fact that f(a, b) is finite for finite a, b, xln is finite
if xln−1

is finite. The result follows as x1 is finite. �

We make another definition for the stability analysis.

1 2

3

11

1

Fig. 2: Illustration of graph where S∞ is not a subset of F0. Here
s1 = 0, s2 = 1 and s3 = ∞. All edge lengths are 1 and f(a, b) =
a + b. In this case x1 = 0, x2 = 1 and x3 = 1. Here 2 ∈ S∞ as
x2 = s2. However, as x2 = x1 + 1, 2 ∈ F1.

Definition 5. We call a path from a node i to j ∈ S∞ a
shortest path, if it starts at i, ends with j ∈ S∞, and each
node in the path is a true constraining node of its predecessor.
We call a shortest path from i the longest shortest path if it
has the most nodes among all shortest paths of i. The set Fi

is the set of nodes whose longest shortest paths to the source
set have i+1 nodes. We call D(G) the effective diameter of G
if the longest shortest path among all i ∈ V has D(G) nodes.

From Lemma 1, the effective diameter is always finite. If
a node i has two shortest paths, one with two and the other
with three nodes, then i /∈ F1 but i ∈ F2. It is tempting
to believe that F0 = S∞. However, the scenario of Figure 2
provides a counterexample. In this case s1 = 0, s2 = 1 and
s3 = ∞. All edge lengths are 1 and f(a, b) = a + b. In this
case x1 = 0, x2 = 1 and x3 = 1. Here 2 ∈ S∞ as x2 = s2.
However, as x2 = x1 + 1, 2 ∈ F1.

Lemma 2. Under the conditions of Lemma 1, consider Fi

given in Definition 5. If for some k ∈ {1, · · · ,D(G)− 1}, Fk

is nonempty then every node in Fk has a true constraining
node in Fk−1. Further Smin ⊂ F0 ⊂ S∞.

Proof. Consider any i ∈ Fk. From Definition 5, starting
from i there is a sequence containing k + 1 nodes to a
j ∈ S∞ in which each node is the true constraining node
of its predecessor. Suppose the second node in this sequence
is l. By definition l is a true constraining node of i. Also by
definition l ∈ Fm, where m ≥ k − 1. If m > k − 1, then for
some M > k, i ∈ FM . This contradicts the assumption that
i ∈ Fk. Thus l ∈ Fk−1. By definition, every node in F0 is

4
Authorized licensed use limited to: Raytheon Technologies. Downloaded on September 30,2022 at 13:51:55 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3140253, IEEE
Transactions on Automatic Control

its own true constraining node as otherwise it will belong to
some Fi, i > 0. Thus from Definition 4, F0 ⊂ S∞.

Finally consider j ∈ Smin. By definition sj = smin ≤ si
for all i. If j ∈ Fk, with k > 0, then there is a sequence
starting from j to an l ∈ S∞, such that each node is the
true constraining of its predecessor. Thus from the progressive
property of f(·, ·), smin = sj ≥ xj > sl, establishing a
contradiction. Thus j ∈ F0 and Smin ⊂ F0. �

These lemmas lead to another critical to our analysis.

Lemma 3. Under the conditions of Lemma 1, with Fi defined
in Definition 5, Fi 6= ∅, ∀ i ∈ {0, 1, · · · ,D(G)− 1}, and for
all i ∈ {0, 1, · · · ,D(G) − 2} each node in Fi+1 has a true
constraining node in Fi.

Proof. Use induction to show that ∀ k ∈ {1, · · · ,D(G)− 1},
Fk 6= ∅. FD(G)−1 6= ∅ by Definition 5. Suppose for some
L ∈ {1, · · · ,D(G)−1}, FL 6= ∅. From Lemma 2 every i ∈ FL

has a true constraining node in FL−1, i.e. FL−1 6= ∅. From
Lemma 2 every i ∈ F1 has a true constraining node in F0

making the latter nonempty. Lemma 2 proves the result. �

We conclude by proving the uniqueness of the xi.

Theorem 1. Under the conditions of Lemma 1, there is a
unique stationary point obeying (11).

Proof. The existence of stationary values is guaranteed by the
fact that (26) is a Bellman’s equation.

As the graph is connected, there is a path from every node
to every other node. Define Pji to be the set of all paths from
j to i, including j = i. Denote such a path P ∈ Pji, e.g.
l0 → l1 → · · · ,→ lL = i, by the ordered set P = {j =
l0, l1, · · · , lL = i}. In particular the path from i to i, will be
Pii = {{i}}. Consider the recursion,

x∗lk(P) =

{
slk k = 0

f(x∗lk−1
(P), elk−1lk) k ∈ {1, · · · , L}

. (28)

For x∗lk(P) to be finite P ∈ Pji with j ∈ S∗. Then, from (9)
and the principle of optimality,

xi = min

{
min
j∈V

{
min
P∈Pji

{x∗i (P)}
}
, si

}
.

Because S∗ is nonempty, V is finite, and f(·, ·) is well defined,
this value is also well defined and unique.

�

IV. STABILITY ANALYSIS

We now prove GUAS with ε = 0 and ultimate boundedness
with ε > 0. The latter result specializes to the former. Even
though it uses (18-20) we show in the proofs in the appendix,
why (18-20) are not needed for ε = 0. We first provide three
key insights into the convergence of x̂i(t) to xi when ε = 0.

The second bullet of (16), increases x̂i(t). Also, because
of (15), the use of the first bullet of (16) forces x̂i(t + 1) =
x̃i(t+1), which due to (14) and (17), must exceed the state of
at least one neighbor. Together these cause all underestimates
to eventually disappear, i.e., for some T and all i and t ≥ T ,
x̂i(t) ≥ xi, i.e., from (9), f(x̂k(t), eik) ≥ f(xk, eik).

Note, ε = 0 implies ēij(t) = eij . Also, ∀ i ∈ F0,
xi = si and in (11), min{mink∈N (i){f(xk, eik)}, si} = si.

Thus, whenever the first bullet of (16) is invoked at i ∈
F0 and t ≥ T , from (15), x̂i(t + 1) = x̃i(t + 1) =
min

{
mink∈N (i) {f (x̂k(t), eik)} , si

}
= si = xi. Hereafter,

the first bullet will be always invoked by i because x̂i(t+1) =
x̃i(t + 1) and x̂i(t) converges to xi. Similarly, as long as
all j ∈ FL have converged, if i ∈ FL+1 invokes the first
case of (16) then x̂i(t) converges to xi. Further, as from (17),
the second bullet of (16) keeps increasing x̂i(t), x̂i(t) must
eventually exceed M , making it invoke the first bullet.

When ε > 0, the ultimate bound on the overestimates are
similarly acquired. The bound on underestimates is obtained
using a shrunken graph G− with

ēij(t) = eij − ε = e−ij . (29)

The estimates X̂i(t) given by (14-16) when run on G−, lower
bound x̂i(t). As G− is static, X̂i(t) converges to the desired
values Xi. Underestimates are bounded by relating Xi to xi

Definition 6. Define G− as G’s shrunken version: ∀i ∈ V
and j ∈ N (i) in G, (29) holds in G−. Also consider (15)
implemented on this shrunken graph, i.e.

X̂i(t+ 1) = F (X̃i(t+ 1), X̂i(t)), X̂i(0) ≤ x̂i(0), (30)

X̃i(t+ 1) = min

{
min

k∈N (i)

{
f
(
X̂k(t), e−ik

)}
, si

}
(31)

As G− is perturbation free, we define Xi as the unique
stationary values in G− to which (30) converges, i.e.

Xi = min

{
min

k∈N (i)
f
(
Xk, e

−
ik

)
, si

}
,∀ i ∈ V. (32)

Also, G− has the effective diameter D(G−) and the source set
S−∞ = {i|Xi = si}, (33)

Evidently, the following holds in G−:
smin ≤ Xi ≤ si, ∀i ∈ V. (34)

Define
Xmax = max

k∈V
{Xk}, (35)

and

T =

⌈
Xmax − x̂min(t0)

min{δ, σ}

⌉
(36)

We prove the elimination of underestimates in U(t0 + T).

Lemma 4. Consider (14)-(16), under Assumption 1 and U(t)
as in Definition 3. Define x̂min(t) = min

j∈U(t)
{x̂j(t)} if U(t) 6=

∅. Then as long as U(t) 6= ∅, there holds:
x̂i(t) ≥ x̂min(t0) + min{σ, δ}(t− t0), ∀i ∈ U(t) (37)

x̂i(t) ≥ Xmax ≥ Xi, ∀i ∈ U(t) and ∀t ≥ t0 + T (38)

We next prove that all x̂i(t) ≥ xi for all in i ∈ R(t).

Lemma 5. Under the conditions of Lemma 4, consider A(t),
E(t), R(t) and Xi as in definitions 1, 3 and 6, respectively.
There holds:

x̂i(t) ≥ Xi, ∀i ∈ R(t). (39)

Consequently, with Lemma 4 and Lemma 5, there holds:
x̂i(t) ≥ Xi, ∀i ∈ V, ∀t ≥ t0 + T. (40)

We now quantify the relation between Xi and xi by using the

5
Authorized licensed use limited to: Raytheon Technologies. Downloaded on September 30,2022 at 13:51:55 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3140253, IEEE
Transactions on Automatic Control

the following function for P ≥ 1:

W (L,P) =
P−1∑
i=0

Li. (41)

Lemma 6. Under Assumption 1, consider ε, W (·.·) and
D(G−) defined in (5), (41) and Definition 6, respectively. Then
for all i ∈ V and t ≥ T + t0, there holds:

xi ≤ Xi +W (L2,D(G−)− 1)L1ε. (42)

With Fi defined in Definition 5, define Ximin as
Ximin = min

j∈Fi

{Xj} (43)

As Smin ⊂ F0 ⊂ S∞, X0min = smin. Define the sequence
alluded to at the begin of this section:

Ti = max

{
0,

⌈
M −Ximin

δ

⌉}
+ 2. (44)

Lemma 7 shows that acceptable behavior under perturbations
requires the dead zone D in (16) to be sufficiently large.

Lemma 7. Consider (14)-(16) under Assumption 1, with ε ≥
0, W (·, ·) as in (5), (41), respectively. Suppose D in (16) obeys
D ≥ (W (L2,D(G−)− 1) +W (L2,D(G)− 1))L1ε (45)

and at a time t′ ≥ t0 + T defined in (36)
x̂i(t) ≤ xi +W (L2, L)L1ε, ∀i ∈ FL, ∀t ≥ t′, (46)

for some L ∈ {0, 1, · · · ,D(G)− 2}. Then with Ti as in (44):
x̂i(t) ≤ xi +W (L2, L+ 1)L1ε, ∀ i ∈ FL+1, t ≥ t′ + TL+1.

The main result proves that the algorithm is ultimately
bounded under bounded persistent perturbations and provides
an upper bound on the time to attain the ultimate bound.

Theorem 2. Under the conditions of Lemma 7, for all i ∈ V ,
t ≥ t0 + T +

∑D(G)−1
i=0 Ti and D as in (45),

|x̂i(t)−xi| ≤ εL1 max
{
W (L2,D(G)− 1),W (L2,D(G−)− 1)

}
.

This is a classical ultimate bound proportional to ε, the
maximum disturbance level. For ε = 0 this reduces to
x̂i(t) = xi for all t ≥ t0 + T +

∑D(G)−1
i=0 Ti and D ≥ 0.

As T +
∑D(G)−1

i=0 Ti is independent of t0 this proves GUAS in
the perturbation free case of ε = 0. As explained in the proofs
in the appendix, (18-20) are not needed when ε = 0.

V. DESIGN CHOICES AND DISCUSSION

Theorem 2 verifies the intuitively clear requirement that the
dead zone D should grow proportionally to the disturbance
bound ε. However, as this is a worst-case analysis, it masks
the full effects of parameters M , δ, and D. Looking beyond
worst-case analysis, however, we can find that choosing these
parameters involves tradeoffs between the convergence speed
of underestimates and overestimates.

The convergence of underestimates is upper bounded by
T in (36), which is in turn determined by (37), and thus
conservatively by the smaller of σ and δ. In practice, if σ
is small and the first bullet of raising is invoked too often
then underestimates rise slowly, i.e. the rising value problem
will persist. If the second bullet of (16) is invoked at most
times and δ � σ then underestimates decline fast. Large D or
small M makes this less likely and slows convergence, while
a large δ ≥M speeds convergence by reducing T and Ti.

For the convergence of overestimates, Ti gives the worst
case time to invoke the first case of (16), whereupon all
elements in Fi converge forthwith. The worst case analysis
quantifies Ti by how long it takes for x̂i(t) to exceed M and
assumes that the second clause of (16) is invoked until this
happens. With a large D, however, this time shortens as the
first bullet is likely to be invoked more quickly.

In most cases, the need to alleviate the rising value problem
is more compelling as overestimates in algorithms like plain
ABF converge in at most D(G) − 1 steps. Accordingly, the
desirability of a smaller dead zone D competes with the
requirement of resilience to persistent perturbations as quanti-
fied by (45). This of course is common to most dynamical
systems where faster convergence generally comes at the
price of reduced resilience. We note, however, the following
appealing fact: both the ultimate bound and the required D are
determined exclusively by the perturbation magnitude ε and
the effective diameters of the original and shrunken graph.

Complementarily, note that in the special case of the algo-
rithm in [8], we effectively have M = 0 and D =∞. In this
case the second bullet of (16) is never invoked. Accordingly,
a small σ leads to large T and T and the rising value
problem. In particular, the algorithm remains GUAS with
the same ultimate bound as (45) is automatically satisfied.
Overestimates however, converge quickly as Ti = 2.

VI. SIMULATIONS

Because of space constraints simulations under pertur-
bations are in https://arxiv.org/pdf/2102.10319.pdf. We first
consider GABF. We use 500 nodes, randomly distributed in
a 4 × 1 km2 area, and communicating within a 0.25 km
radius. One node is designated as a source and initial distance
estimates are in U [0,

√
17]km. Define the greatest overestimate

∆+(t) = max {0,maxi {∆i(t)}} and the least underestimate
∆−(t) = max {0,−mini {∆i(t)}}, with ∆i(t) = d̂i(t) − di
the estimation error of i. We average over 100 runs.

The bottom plots in Figure 3(a) and (b) use M = 5, D = 0,
and δ varying from 0.2M to M . For a fixed M , a smaller δ
slows convergence, as x̂i(t) reaches M slower, while D has
the opposing effect. The middle plots concerns δ = M = 5
and D varying from 0 to 4K, using K = (D(G)+D(G−)−2)ε,
where the average values of ε, D(G) and D(G−) are 2.3×10−3

km and 18.5 and 26.6, respectively. A small D accelerates
convergence of ∆+ as in this case GABF acts more like ABF
where ∆+(t) converges fast. A large D has a negative impact
on the convergence of ∆− as GABF approaches ABF.

The top plots in Figure 3(a) and (b) illustrate the impact of
M when D = 0 and δ = M with M increasing from 4.108
to 4.124 in steps of 0.004. Convergence improves with higher
M . Though Ti in (44) satisfies Ti = 3 for all M , as δ = M ,
overestimates disappear more quickly with larger M because
T in (36) become smaller; ∆− converges in two steps when
M is exceeds both the largest true distance and d̂i(t0).

Figure 4 concerns a nonlinear f(·, ·) in (2), for nodes to
compute paths minimizing exposure to a hazard: 400 nodes
are randomly distributed in a 4 × 4 km2 field except the up-
left corner, communicating over a 0.5 km radius. A source is

6
Authorized licensed use limited to: Raytheon Technologies. Downloaded on September 30,2022 at 13:51:55 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3140253, IEEE
Transactions on Automatic Control

0

5

10

0

5

10

10
0

10
0.5

10
1

10
1.5

10
2

10
2.5

10
3

10
3.5

0

5

10

(a) ∆+(t)

0

1

2

3

0

1

2

3

10
0

10
0.5

10
1

10
1.5

10
2

10
2.5

0

1

2

3

(b) ∆−(t)

Fig. 3: Convergence time for (a) ∆+(t) and (b) ∆−(t) without
perturbations. The bottom plots in (a) and (b) correspond to M = 5,
D = 0 and δ varying from 0.2M to M . The middle plots correspond
to δ = M = 5 and D varying from 0 to 4K. The top plots correspond
to D = 0, δ = M and M varying from 4.108 to 4.124.

(a) The spreading block (2) (b) The general spreading block
(15)-(16)

Fig. 4: In this example, 400 nodes are randomly located in a 4 ×
4 km2 field. There is a source marked by red asterisk located at
(0.3, 0.3), and a 2.5× 2.5 km2 radiation zone in the middle. Color
represents degree of contamination, with a logarithmic scale. While
both spreading block and the general spreading block can achieve the
shortest available path, the fast convergence of the general spreading
block greatly reduces total contamination.

located at (0.3, 0.3), and there exists a 2.5×2.5 km2 radiation
zone centered at (1.95, 1.95). Define M as the set of radioac-
tive nodes. All nodes ever constrained by a i ∈M are deemed
radioactive. We use f(x̂k(t), eik) = x̂k(t) + eik, k /∈ M,
with eik the edge length between i and k. When k ∈ M,
f(x̂k(t), eik) = h(x̂k(t) + 1000eik), where h(a) = a1.5 when
a > 1 and a otherwise; si = 0 if i is a source and∞ otherwise.
This severely penalizes passage through hazards. In particular,
the factor 1000 amplifies the distance. The exponent 1.5 does
so even more when x̂k(t) + 1000eik > 1. In each round a
node i will receive 100∼120 units of radiation dose if it is
radioactive and 0∼1 unit otherwise. Figure 4(a) uses (2), while
Figure 4(b) uses (15)-(16) with D = 0, δ = M > xmax. Nodes
outside the radiation zone never cross over, and nodes inside
take the shortest path of exit. Contamination is greatly reduced
when using (15)-(16), due to faster convergence.

VII. CONCLUSION
We have improved a general algorithm for spreading in-

formation across a network of devices by making it resilient

to perturbations and by removing a prior boundedness as-
sumption. This algorithm, a key building block for aggregate
computing and applicable to a wide range of distributed
systems, has parameters that remove the rising value problem
that appears in some of its special cases, such as ABF.
Unlike ABF, the general algorithm covers a much wider
class of applications with non-Euclidean metrics. We have
proved GUAS and provided ultimate bounds in the face of
persistent network disturbances using an additional Lipschitz
condition. These bounds depend only on the largest pertur-
bation and structural network properties. Finally, we provide
design guidelines demonstrating how algorithm parameters
have competing effects on performance. These results are a
crucial stepping stone in our long term goal of determining
stability conditions for feedback interconnections of aggregate
computing blocks, using possibly new small gain theorems,
[5]. Progress in this program has broad applicability for the
engineering of resilient distributed systems.

REFERENCES

[1] M. Viroli, G. Audrito, J. Beal, F. Damiani, and D. Pianini, “Engineering
resilient collective adaptive systems by self-stabilisation,” ACM Trans-
actions on Modeling and Computer Simulation, pp. 16:1–16:28, 2018.

[2] H. Zainab, G. Audrito, S. Dasgupta, and J. Beal, “Improving collection
dynamics by monotonic filtering,” 2020 IEEE International Conference
on Autonomic Computing and Self-Organizing Systems Companion
(ACSOS-C), 2020.

[3] H. K. Khalil, “Nonlinear systems,” Upper Saddle River, 2002.
[4] Y. Mo, S. Dasgupta, and J. Beal, “Robustness of the Adaptive Bellman-

Ford Algorithm: Global stability and ultimate bounds,” IEEE Transac-
tions on Automatic Control, pp. 4121–4136, 2019.

[5] Z.-P. Jiang, I. M. Mareels, and Y. Wang, “A Lyapunov formulation
of the nonlinear small-gain theorem for interconnected ISS systems,”
Automatica, vol. 32, no. 8, pp. 1211–1215, 1996.

[6] S. Dasgupta, B. D. O. Anderson, and R. Kaye, “Output-error identifi-
cation methods for partially known systems,” Int. J. of Control, 1985.

[7] R. Bellman, “On a routing problem,” Quarterly of applied mathematics,
vol. 16, no. 1, pp. 87–90, 1958.

[8] Y. Mo, S. Dasgupta, and J. Beal, “Robust stability of spreading blocks
in aggregate computing,” in 2018 IEEE Conference on Decision and
Control (CDC), 2018, pp. 6007–6012.

[9] R. Olfati-Saber, “Distributed kalman filtering for sensor networks,” in
2007 46th IEEE Conference on Decision and Control, 2007.

[10] Z. Li, W. Ren, X. Liu, and L. Xie, “Distributed consensus of linear multi-
agent systems with adaptive dynamic protocols,” Automatica, vol. 49,
no. 7, pp. 1986–1995, 2013.

[11] J. Wang, A. Lanzon, and I. R. Petersen, “Robust output feedback con-
sensus for networked negative-imaginary systems,” IEEE Transactions
on Automatic Control, vol. 60, no. 9, pp. 2547–2552, 2015.

[12] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[13] J. Baillieul and A. Suri, “Information patterns and hedging brockett’s
theorem in controlling vehicle formations,” in 42nd IEEE International
Conference on Decision and Control, 2003.

[14] T. H. Summers, C. Yu, S. Dasgupta, and B. D. Anderson, “Control of
minimally persistent leader-remote-follower and coleader formations in
the plane,” IEEE Transactions on Automatic Control, vol. 56, no. 12,
pp. 2778–2792, 2011.

[15] L. Moreau, “Stability of multiagent systems with time-dependent com-
munication links,” IEEE Transactions on Automatic Control, 2005.

[16] T. H. Summers, C. Yu, B. D. Anderson, and S. Dasgupta, “Formation
shape control: Global asymptotic stability of a four-agent formation,” in
Proceedings of the 48h IEEE CDC, 2009.

[17] M. Arcak, “Passivity as a design tool for group coordination,” IEEE
Transactions on Automatic Control, vol. 52, no. 8, pp. 1380–1390, 2007.

[18] Y. Mo, S. Dasgupta, and J. Beal, “Global uniform asymptotic stability
of a generalized adaptive Bellman-Ford algorithm,” in 2019 IEEE 58th
Conference on Decision and Control (CDC), 2019, pp. 1868–1873.

7
Authorized licensed use limited to: Raytheon Technologies. Downloaded on September 30,2022 at 13:51:55 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3140253, IEEE
Transactions on Automatic Control

APPENDIX

Proof of Lemma 4: Because of (24) U(t) can be nonempty
only on a single contiguous time interval commencing at t0.

We prove (37) by induction. As it holds for t = t0, suppose
(37) holds for some t ≥ t0. Consider i ∈ U(t + 1) with
x̂i(t+1) = x̂min(t+1). Then U(t) 6= ∅ and j the constraining
node of i is in U(t). If i ∈ E(t+ 1) in Definition 1 then from
Definition 2, j = i. From the induction hypothesis and (17)

x̂i(t+ 1) = x̂min(t+ 1)

≥ x̂j(t) + δ ≥ x̂min(t) + min{σ, δ}
≥ x̂min(t0) + min{σ, δ}(t+ 1− t0).

If i ∈ A(t+1)∩U(t+1), then, i /∈ S(t+1), i.e. x̂i(t+1) 6= si.
From the induction hypothesis and (14) we have

x̂i(t+ 1) = x̂min(t+ 1) = f(x̂j(t), ēij(t))

≥ x̂j(t) + σ ≥ min{σ, δ}(t+ 1− t0).

Further with (35) and (36), (38) follows.
Proof of Lemma 5: If R(t) 6= ∅, then ∃ t5, t6 such that
∀t0 ≤ t5 ≤ t ≤ t6 and R(t5) = S(t5). As x̂i(t5) = si for all
i ∈ S(t5) = R(t5), from (34) the result holds for t = t5.

Suppose x̂i(t) ≥ Xi for some t5 ≤ t < t6 and all i ∈
R(t). Consider any i ∈ R(t + 1). From Definition 3, either
i ∈ S(t+1) in which case the result holds, or i is constrained
by some j ∈ R(t). If i ∈ A(t + 1), then by the induction
hypothesis, x̂j(t) ≥ Xj . As i /∈ S(t+ 1), there follows:

x̂i(t+ 1) = f(x̂j(t), ēij(t)) ≥ f(Xj , e
−
ij) (47)

≥ Xi (48)
Here if ε > 0, then (47) uses ēij(t) ≥ e−ij for all t and the fact
that f(·, ·) is increasing in each argument. If ε = 0 then only
(9) is needed. Further, (48) uses (32) and the fact that xi = Xi

when ε = 0. If i ∈ E(t+1), then i is its own constraining node
and i ∈ R(t). Thus by our induction hypothesis, x̂i(t) ≥ Xi.
From (17), x̂i(t+ 1) ≥ x̂i(t) + δ > Xi.
Proof of Lemma 6: The result holds when ε = 0 as Xi = xi
and G = G−. For ε > 0, consider nodes n0, n1, · · · , nQ such
that n0 ∈ S−∞, and for all i ∈ {0, . . . , Q − 1}, ni is a true
constraining node of ni+1 in G−. Each node in G− is in one
such sequence. As from Definition 6, Q ≤ D(G−) − 1, the
result holds if

xni −Xni ≤W (L2, i)L1ε, ∀i ∈ {0, · · · , Q}. (49)
Evidently, xn0 ≤ sn0 = Xn0 . Suppose (49) holds for some
i ∈ {0, · · · , T − 1}. As ni and ni+1 are neighbors in both
G and G−, ni is a true constraining node of ni+1 in G− and
xni
≤ Xni

+W (L2, i)L1ε by our induction hypothesis,
xni+1

≤ f(xni
, enini+1

) ≤ f(Xni
+W (L2, i)L1ε, enini+1

)

≤ f(Xni
, enini+1

) + L2W (L2, i)L1ε (50)
= f(Xni

, e−nini+1
+ ε) + L2W (L2, i)L1ε (51)

≤ f(Xni
, e−nini+1

) + L1ε+ L2W (L2, i)L1ε (52)

= Xni+1 +W (L2, i+ 1)L1ε (53)
where (50) uses (20), (51) uses (29), (52) uses (19), and (53)
uses the fact that ni is a true constraining node of ni+1 in G−.
Proof of Lemma 7: Consider i ∈ FL+1. From (16) and (17),
there is a t′ < t ≤ t′ + TL+1 such that i ∈ A(t). This is so
as i ∈ E(t) implies x̂i(t+ 1) ≥ x̂i(t) + δ and at some time in
the interval (t′, t′ + TL+1], x̂i(·) > M . From Lemma 3, there

is a j ∈ FL that is a true constraining node of i in G. Thus
x̂j(t− 1) ≤ xj +W (L2, L)L1ε by (46). When ε > 0,

x̂i(t) = min

{
min

k∈N (i)
{f (x̂k(t− 1), ēik(t− 1))} , si

}
≤ f(x̂j(t− 1), ēij(t− 1))

≤ f(xj +W (L2, L)L1ε, eij + ε) (54)
≤ f(xj , eij) + L2W (L2, L)L1ε+ L1ε (55)
= xi +W (L2, L+ 1)L1ε (56)

where (54) uses (4), (5), (18) and (46), (55) uses (19) and
(20). When ε = 0, (56) holds without (18-20) as f(xj +
W (L2, L)L1ε, eij + ε) = f(xj , eij) = xi.

Similarly, as (46) holds for all t ≥ T + t0 for all j ∈ FL,
x̃i(t+ 1) ≤ xi +W (L2, L+ 1)L1ε. (57)

As t > t0 + T , (40) implies that x̂k(t) ≥ Xk for all k ∈ V .
Frtom (9), (18) and the fact that Xi ≤ si, (32) implies that

x̃i(t+ 1) = min

{
min

k∈N (i)
{f (x̂k(t), ēik(t))} , si

}
≥ min

{
min

k∈N (i)

{
f
(
Xk, e

−
ik

)}
, si

}
= Xi,

i.e. [Xi, xi +W (L2, L+ 1)L1ε] contains both x̂i(t) and
x̃i(t+1). This also holds with ε = 0 as then ēik(t) = eik = e−ik
and Xi = xi. Thus, from (45) and Lemma 6
|x̃i(t+ 1)− x̂i(t)| ≤ |xi +W (L2, L+ 1)L1ε−Xi|

≤ W (L2,D(G−)− 1)L1ε+

W (L2, L+ 1)L1ε ≤ D,
i.e, x̂i(t+ 1) = x̃i(t+ 1). An induction proves the result.
Proof of Theorem 2: From Lemma 6 and (40)
x̂i(t)− xi ≥ −W (L2,D(G−)− 1)L1ε ∀ t ≥ t0 + T, (58)

proving the lower bound on x̂i(t)−xi implicit in the theorem
statement. To prove the upper bound we will first show that
x̂i(t) ≤ xi = xi+W (L2, 0)ε, ∀i ∈ F0, t ≥ t0+T+T0. (59)

Then the repeated application of Lemma 7 will prove that

x̂i(t)− xi ≤W (L2,D(G)− 1)L1ε ∀ t ≥ t0 + T +

D(G)−1∑
i=0

Ti

and thus the theorem.
Consider i ∈ F0. As i ∈ E(t) implies x̂i(t+ 1) ≥ x̂i(t) + δ

from (16), (17) and (44), there is a t0 + T < t ≤ t0 + T + T0
such that i ∈ A(t). As F0 ⊂ S∞, from (26)

x̂i(t) = x̃i(t) ≤ si = xi. (60)
As t > t0 + T , it follows from (40) that x̂k(t) ≥ Xk for
all k ∈ V . As f(·, ·) is monotonically increasing in both its
arguments and Xi ≤ si, we obtain

x̃i(t+ 1) = min

{
min

k∈N (i)
{f (x̂k(t), ēik(t))} , si

}
≥ min

{
min

k∈N (i)

{
f
(
Xk, e

−
ik

)}
, si

}
= Xi (61)

where (61) uses (18), (29) and (32) when ε > 0. When ε = 0
(61) holds without (18) as ēik(t) = eik = e−ik and Xk = xk.
Therefore, [Xi, xi] contains both x̂i(t) and x̃i(t + 1). Then
(45) and Lemma 6 yield
|x̃i(t+ 1)− x̂i(t)| ≤ |xi −Xi| = W (L2,D(G−)− 1)L1ε ≤ D
From (15-16), x̂i(t+1) = x̃i(t+1). An induction proves (59).

8
Authorized licensed use limited to: Raytheon Technologies. Downloaded on September 30,2022 at 13:51:55 UTC from IEEE Xplore. Restrictions apply.

