
5

A Higher-Order Calculus of Computational Fields

GIORGIO AUDRITO, Dipartimento di Informatica, University of Turin, Italy

MIRKO VIROLI, Dipartimeno di Informatica – Scienza e Ingegneria, Università di Bologna, Italy

FERRUCCIO DAMIANI, Dipartimento di Informatica, University of Turin, Italy

DANILO PIANINI, Dipartimeno di Informatica – Scienza e Ingegneria, Università di Bologna, Italy

JACOB BEAL, Raytheon BBN Technologies, USA

The complexity of large-scale distributed systems, particularly when deployed in physical space, calls for

new mechanisms to address composability and reusability of collective adaptive behaviour. Computational

fields have been proposed as an effective abstraction to fill the gap between the macro-level of such systems

(specifying a system’s collective behaviour) and the micro-level (individual devices’ actions of computation

and interaction to implement that collective specification), thereby providing a basis to better facilitate the

engineering of collective APIs and complex systems at higher levels of abstraction. This article proposes a full

formal foundation for field computations, in terms of a core (higher-order) calculus of computational fields

containing a few key syntactic constructs, and equipped with typing, denotational and operational semantics.

Critically, this allows formal establishment of a link between the micro- and macro-levels of collective adap-

tive systems by a result of computational adequacy and abstraction for the (aggregate) denotational semantics

with respect to the (per-device) operational semantics.

CCS Concepts: • Theory of computation → Distributed computing models; Process calculi; Type

structures; Denotational semantics; Operational semantics; Functional constructs;

Additional Key Words and Phrases: Adequacy, aggregate programming, computational field, core calculus,

full abstraction, spatial computing, type inference system, type soundness

ACM Reference format:

Giorgio Audrito, Mirko Viroli, Ferruccio Damiani, Danilo Pianini, and Jacob Beal. 2019. A Higher-Order Cal-

culus of Computational Fields. ACM Trans. Comput. Logic 20, 1, Article 5 (January 2019), 55 pages.

https://doi.org/10.1145/3285956

1 INTRODUCTION

The increasing availability of computational devices of every sort, spread throughout our living
and working environments, is transforming the challenges in construction of complex software

This work is partially supported by project HyVar (www.hyvar-project.eu, this project has received funding from the

European Union’s Horizon 2020 research and innovation programme under grant agreement No.: 644298), by ICT COST

Action IC1402 ARVI (www.cost-arvi.eu), and by Ateneo/CSP project RunVar.

Authors’ addresses: G. Audrito and F. Damiani, Dipartimento di Informatica, University of Turin, Corso Svizzera 185,

Turin 10149, Italy; emails: giorgio.audrito@gmail.com, ferruccio.damiani@unito.it; M. Viroli and D. Pianini, Diparti-

meno di Informatica – Scienza e Ingegneria, Università di Bologna, Via dell’Università 50, Cesena, 47522, Italy; emails:

mirko.viroli@unibo.it, danilo.pianini@unibo.it; J. Beal, Raytheon BBN Technologies, 10 Moulton Street, Cambridge, MA,

02138, USA; email: jakebeal@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from Permissions@acm.org

© 2019 Association for Computing Machinery.

1529-3785/2019/01-ART5 $15.00

https://doi.org/10.1145/3285956

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

https://doi.org/10.1145/3285956
www.hyvar-project.eu
www.cost-arvi.eu
https://doi.org/10.1145/3285956

5:2 G. Audrito et al.

applications, particularly if we wish them to take full opportunity of this computational infras-
tructure. Large-scale, heterogeneity of communication infrastructure, need for resilience to un-
predictable changes, openness to on-the-fly adoption of new code and behaviour, and pervasive
collectiveness in sensing, planning, and actuation: All these features will soon be the norm in a
great variety of scenarios of pervasive computing, the Internet-of-Things, cyber-physical systems,
and so on. Currently, however, it is extremely difficult to engineer collective applications of this
kind, mainly due to the lack of computational frameworks well suited to deal with this level of com-
plexity in application services. Most specifically, there is need to provide mechanisms by which
reusability and composability of components for collective adaptive behaviour becomes natural
and implicit, such that they can support the construction of layered APIs with formal behaviour
guarantees, sufficient to readily enable the creation of complex applications.

Aggregate computing [9] is a paradigm aiming to address this problem by means of the notion
of computational field [39] (or simply field): This is a global, distributed map from computational
devices to computational objects (data values of any sort, including higher-order objects such as
functions and processes). Computing with fields means computing such global structures, and
defining a reusable block of behaviour means to define a reusable computation from fields to fields:
This functional view holds at any level of abstraction, from low-level mechanisms up to whole
applications, which ultimately work by getting input fields from sensors and processing them to
produce output fields to actuators.

The field calculus [1, 23, 24] is a tiny functional language providing basic constructs to work with
fields. The operational semantics of field calculus can act as blueprint for actual implementations
where myriad devices interact via proximity-based broadcasts. Field calculus provides a unifying
approach to understanding and analysing the wide range of approaches to distributed systems
engineering that make use of computational fields [8, 54]. Recent works have also adopted this field
calculus as a lingua franca to investigate formal properties of resiliency to environment changes
[46, 53] and to device distribution [11].

In this article, we present a higher-order extension of the work in Reference [23] to include
embedded first-class functions, with the primary goal of allowing field computations to handle
functions just like any other value but also making syntax and semantics of the field-based com-
putational model clearer and more coherent. We introduce syntax, typing, denotational semantics,
operational semantics, and properties of the higher-order field calculus, where functions—and,
hence, computational behaviour—can be seen as objects amenable to manipulation just like any
other data structure and can hence be injected at runtime during system operation, spread around
the network, and be executed by all (or some) devices, which then coordinate on the collective
computation of the new service specified by the injected function.

A key insight and technical result of this article is that the notoriously difficult problem of
reconciling local and global behaviour in a complex adaptive system [8, 54] can be connected to a
well-known problem in programming languages: correspondence between denotational and oper-
ational semantics. On the one hand, in field calculus, denotational semantics characterises compu-
tations in terms of their global effect across space (available devices) and time (device computation
events)—i.e., the macro level. On the other hand, operational semantics gives a transition system
dictating each device’s individual and local computing/interactive behaviour—i.e., the micro level.
Correspondence between the two, formally proved in this article via computational adequacy and a
form of abstraction (cf. References [20, 52]) that we call computational abstraction, thus provides a
formal micro–macro connection: One designs a system considering the denotational semantics of
programming constructs and an underlying platform running the distributed interpreter defined
by the operational semantics guarantees a consistent execution. This is a significant step towards

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

A Higher-Order Calculus of Computational Fields 5:3

effective methods for the engineering of self-adaptive systems, achieved thanks to the standard
theory and framework of programming languages.

The remainder of this article is organised as follows. Section 2 introduces the computational
model, syntax, informal semantics, and monomorphic typing of the proposed calculus. Denota-
tional and operational semantics of the calculus are given in Section 3 and Section 4, respectively—
notably, the two sections may be read in either order. Section 5 refines the monomorphic typing
given in Section 2 and introduces a variant of the Hindley-Milner type system that corresponds
to the refined typing. Section 6 uses the refined typing to prove properties of the two semantics,
including computational adequacy and abstraction. Finally, Section 7 reviews related work and
Section 8 concludes and discusses future directions.

Appendix A gives the proofs of the main results, and Appendix B gives a pervasive computing
example.

This article is an extended version of the work in Reference [24], adding a reduced (yet more ex-
pressive) and reworked set of constructs, the observation that domain restriction (the if-construct
in Reference [24]) can be encoded by means of an aggregate function call, a type system, denota-
tional semantics, and computational adequacy and abstraction results.

2 THE HIGHER-ORDER FIELD CALCULUS

We begin by presenting the essential elements of the proposed calculus, the higher-order field cal-

culus (HFC), as extended and refined from Reference [24],1 a tiny functional calculus capturing
the essential elements of field computations, much as λ-calculus [17] captures the essence of func-
tional computation and FJ [34] the essence of class-based object-oriented programming. Given the
key importance of higher-order features, especially in the toolchain under construction [50], in the
following we sometimes refer to this calculus as simply the field calculus, especially when there
is no confusion with the work in Reference [23], which did not include higher-order features and
which this work is intended to supersede.

2.1 Computational Model

To better understand the formal underpinnings to come, we begin by discussing the assumed com-
putational model, in which a given program P is executed by a network of devices, the network
being defined by a dynamic neighboring relation that represents physical or logical proximity. The
defining property of fields is that they allow us to consider a computation from two different view-
points: local and global. From the standard “local” viewpoint, a computation is seen as occurring
in single devices on a round-based scheme, with a fair and unsynchronized scheduling of device
computation rounds across the network. In each round, a device:

(1) sleeps for some time until it wakes up;
(2) gathers information about messages received from neighbours while sleeping, in the form

of neighbouring fields ϕ mapping neighbour device identifiers δ (i.e., unique numbers in a
denumerable set D) to values v;

(3) perceives contextual information (e.g., through sensors);
(4) retrieves information that has been stored in the local memory of the device at the end of

the previous round;
(5) performs an evaluation of the program P, hence manipulating the data values received

from neighbours, perceived from the context, or retrieved from the local memory;

1The version of the HFC presented in this article is a minor refinement of the version of HFC presented in Reference [24].

The new version adopts a different syntax (in Reference [24] a Lisp-like syntax was used) and is parametric in the set of

the modeled data values (in Reference [24] Booleans, numbers, and pairs were explicitly modeled).

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

5:4 G. Audrito et al.

(6) finally, stores some data value (to be used in the next round) in the local store, emits a
message to all neighbours with information about the outcome of computation to enable
coordination, produces a value as output (that might be used, e.g., to feed actuators); and

(7) goes back to sleep.

In further discussion in this article, we say “device δ fires” to mean that device δ performs the
steps (2)–(6) at a particular round.

From the “aggregate” (or “global”) viewpoint [56], computation is seen as occurring on the over-
all network of interconnected devices, interpreted as a single spatial computing machine. The data
abstraction manipulated is hence a whole distributed space-time field evolution Φ, a data structure
mapping computation events ϵ (i.e., points in space-time where and when a device evaluates its
program) to associated data values.2 Field computations then take field evolutions as input (e.g.,
from sensors) and produce new field evolutions as outputs (e.g., to feed actuators).

For example, the input of a computation might be a field evolution of temperatures, as perceived
by sensors at each device in the network, and its output might be a Boolean field that maps to True
where and when temperature is greater than 25◦C, and to False elsewhere. In a more involved
example, the output might map to True only those devices whose distance is less than 50m from
some device where temperature was greater than 25◦C for the last 60s.

A snapshot of the state of the network at a particular time is modeled by the concept of a
computational field, mapping device identifiers to values. Computational fields may, of course,
change over time (e.g., as inputs change or the computation progresses) and in general are not
sufficient to fully define the behaviour of an aggregate program, as it may depend on the history
of the computational field and its corresponding computation events (i.e., the whole field evolution
structure). However, for the relevant class of self-stabilising aggregate programs P, the behaviour
on field evolutions can be “induced” (at the limit) by a spatial-only behaviour on computational
fields [22, 53]. In those cases the computational field abstraction turns out to be quite valuable,
allowing one to ignore the time-related fine event structure. In this article, we will not explore
how this abstraction can be used to define limit behaviour of programs, but we will sometimes use
it for presentation purposes, when investigating the behaviour of time-independent constructs.

Remark 1 (On field-like notions). Notice that the three related notions of computational field,
neighbouring field, and field evolution are all distinct. A computational field ψ is a mapping from
devices to values, that (at a given time) maps each device in the network to the value produced
by its most recent firing. A neighbouring field ϕ is a situated value stored in a single device sum-
marising received messages (at a given time), and a collection of such fields may be viewed in the
aggregate as a “computational field of neighbouring fields” across the network. A field evolution

Φ, by contrast, is a space-time object with single computation events ϵ (corresponding to device
fires) in its domain (instead of devices δ).

2.2 Syntax

Based on the above computational model, the field calculus adopts a functional approach by which
overall system behaviour can be declaratively specified and composed in terms of computations
resulting in field evolutions.

2Note that this viewpoint can embrace both discrete domains (e.g., networks of devices) and continuous domains (e.g., the

environment in which a computation acts); in this article, however, we will restrict ourselves to treating fields with discrete

domains. For a discussion of the relationship between computation on discrete and continuous domains, see References [11,

12].

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

A Higher-Order Calculus of Computational Fields 5:5

Fig. 1. Syntax for higher-order field calculus.

Figure 1 presents the syntax of the proposed higher-order field calculus. Following Refer-
ence [34], the overbar notation denotes metavariables over sequences and the empty sequence is
denoted by •: For example, for expressions, we let e range over sequences of expressions, written
e1, e2, . . . en (n ≥ 0).

A program P consists of a sequence of function declarations and of a main expression e. A func-
tion declaration F defines a (possibly recursive) function. It consists of the name of the function d,
of n ≥ 0 variable names x representing the formal parameters, and of an expression e representing
the body of the function.

Expressions e are the main entities of the calculus and always model an entire field evolution:
The outcome of the evaluation of a closed expression e at a given event gives a value, so we can
select a (space-time) domain De and collect the values obtained in all events in that domain De and
by doing so form a field evolution over De, representing a time-varying distributed structure.

Syntactically, an expression can be a variable x, used as function formal parameter; an anony-

mous function expression (x)
τ
=> e; a value v (possibly of functional type); a branching expres-

sion if (e) {e} else {e}; a function call e(e); a rep-expression rep(e0){(x) => e1} modelling time
evolution; or an nbr-expression nbr{e}modelling device-to-neighbourhood interaction. Let the set
of free variables in an expression e be denoted by FV(e),3 say, that an expression e is closed if
FV(e) = •, and assume the main expression of any program must be closed. In Section 2.3, we in-
formally describe the meaning of these constructs, while the full formal treatment of denotational
and operational semantics will be given in the remainder of the article.

An anonymous function is an expression (x)
τ
=> e, where x are the formal parameters, e is the

body, and τ is a tag. Tags τ do not appear in source programs: When the evaluation starts each
anonymous function expression (x) => e occurring in the program is converted into a tagged
anonymous function expression by giving it a tag that is uniquely determined by its syntactical
representation, i.e., e1 = (x′) => e′ and e2 = (x′′) => e′′ get the same tag if and only if they are
syntactically equal (modulo renaming of bound variables).4 As we will see in Section 2.3, tags are
used to define the semantics of function call. In the remainder of this article, we will use the phrase
name of a function to refer both to the name of a user-defined or built-in function and to the tag
of an anonymous function.

3This set is defined as usual, given that the only binding construct is (x) => e (occurring both alone or inside a rep),

which binds occurrences of x in e.
4If e1 and e2 contain free variables, then being syntactical equal implies that each of these variables is bound both in e1

and e2 by the same binder in the surrounding context. Recall that the whole program do not contain free variables, so the

variables that are free in e1 and e2 are bound in the whole program—and the tags are given considering the whole program.

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

5:6 G. Audrito et al.

A value can be either a neighbouring field value ϕ or a local value �. At a given event where a
device δ fires, a local value represents data produced by δ , whereas a neighbouring field value is a
map associating local values � to neighbours of δ . Neighbouring field values are generally used to
describe the outcome of some form of device-to-neighbour interaction as described below (sharing
of values as of construct nbr, or sensing of the local environment, e.g., to estimate distances to
neighbours). As such, neighbouring field values are not allowed to appear in source programs but

only be computed dynamically during computation rounds. On the contrary, local values � can be
denoted to represent a constant-valued field evolution that maps each event to that value (e.g.,
value 1 represents a field evolution mapping each event to 1).

Given that the calculus is higher-order, a local value can be

• either a data value c(�1, . . . , �m), consisting of a data-constructor c of arity m ≥ 0 ap-
plied to m local value arguments �1, . . . , �m—data values, simply written c when m = 0,
can be Booleans True and False, numbers, strings, or structured values like pairs (e.g.,
Pair(3, Pair(False, 5))) or lists (e.g., Cons(2, Cons(4, Nil)));

• or a function value f, consisting of either a built-in function name b, a declared function
name d, or a closed anonymous function.

It should be noted that for the purpose of defining a foundational calculus, data-expressions and
built-in functions representing purely functional operators could be dropped: however, we have
decided to include them since they simplify using the calculus to formalise non-trivial examples.
Furthermore, built-in functions on neighbouring field values are crucial in determining the expres-
siveness of the language: If no such operators are given, then no effective communication between
devices is possible. As a reasonably complete basis, in the remainder of this article we assume that
the following operators (reminiscent of Reference Dean and Ghemawat [27]) are available:

• map-hood(f,ϕ1, . . . ,ϕn), which applies then-ary (n ≥ 0) function f pointwise to given fields
ϕ1, . . . ,ϕn , returning a new field as output—note that this requires that ϕ1, . . . ,ϕn must all
have the same domain; and

• fold-hood(f,ϕ), which reduces a neighbouring field ϕ to a single value by repeatedly ap-
plying function f over the multi-set of values mapped to by devices in ϕ.

More details on built-in functions are given in Section 2.4.

2.3 Informal Semantics

While values trivially result in a field that is constant in both space and time, the other four kinds
of expression (nbr-expressions, rep-expressions, branching, and function calls) represent the core
field manipulation constructs provided by the calculus. The value produced by evaluating such an
expression at each event may depend on both the particular device that is evaluating it, and also
on the last events of its neighbours (i.e., the events whose output messages reached the current
device in its previous sleeping phase).

(1) Time evolution: rep(e0){(x) => e} is a “repeat” construct for dynamically changing
fields—note that, since the anonymous function (x) => e is part of the syntax of the
rep-expression, it is not given a tag. At each asynchronous computation round each de-
vice δ yields, as value of the rep-expression, the result of the application of the anonymous
function (x) => e to the value of the rep-expression at the previous round—whenever
the rep-expression has not been evaluated in the previous round (e.g., in the first round,
or when the rep-expression occurs in a branch of an if-expression that was not taken
in the previous round), then the anonymous function (x) => e is applied to the value

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

A Higher-Order Calculus of Computational Fields 5:7

of the initialization expression e0. For instance, rep(0){(x) => +(x, 1)} counts how many
rounds each device has computed.

(2) Neighbouring field construction: nbr{e} models device-to-neighbour interaction by rep-
resenting a field evolution of neighbouring field values: Each event is associated to a
value ϕ, which in turn maps neighbour devices δ to their most recent available value
of e (e.g., obtained via periodic broadcast, as discussed in Section 2.1). Such neighbouring
field values can then be manipulated and summarised with built-in functions. For instance,
min-hood(nbr{e}) maps each device to the minimum value of e across its neighbourhood.

(3) Domain restriction: if (e0) {e1} else {e2} is a lazy-evaluating branch construct, comput-
ing e1 on the devices in the restricted domain DTrue where e0 is true, and e2 on the devices
in its complement DFalse, similar to branches in most common programming languages.
However, in field calculus branching has peculiar consequences: As a device δ in DFalse

does not compute e1, it also
• does not evaluate any nbr-expression e′ contained in e1, making impossible for δ ’s

neighbours in DTrue to obtain δ ’s value for e′; conversely, nbr-expressions e′′ contained
in e2 are not shared from DTrue to DFalse; and

• if δ evaluated e1 instead of e2 in its previous round, all rep-expressions in e2 start from
scratch (i.e., are evaluated by considering the values of their initialization expressions);
similarly, the values stored for rep-expressions in e1 are lost so that, in the first subse-
quent round in which e1 will be evaluated on δ , those rep-expressions will also start
from scratch.

It follows that the evaluation of e1 and e2 proceeds in the corresponding subdomainsDTrue

or DFalse in isolation, without any possible communication between the two branches.
This process, which we call clustering, is a necessary consequence of a lazy branching
construct in a compositional language with implicit message-passing through value shar-
ing (e.g., nbr-expressions). However, it is also a crucial feature of a spatial language, as it
allows one to easily and efficiently restrict computations to subdomains in a declarative
way, an important building block for many practical application scenarios.

(4) Function call: e(e1, . . . , en) models a function call, where n ≥ 0 and e evaluates to a field
of function values. If the field is not constant, then the application is evaluated separately
in each cluster (subdomain of events where e evaluates to function values with the same
name5), acting as a multi-way branch similar to how branching is described for domain
restriction. As before, this feature is necessary as values of nbr-expressions in functions
different than the current one cannot be evaluated and hence are not available to be shared.
Either way, we reduce to the case where the field obtained from e is a constant function
f over a certain domain, and there can be two cases:
• If f is a built-in function b, then e(e1, . . . , en) maps each device to the result of applying

b to the values at the same device of its n ≥ 0 arguments e1, . . . , en . Note that b can be a
pure operator, involving neither state nor communication (e.g., mathematical functions
like addition, comparison, and sine)—for instance, +(1, 2) is the expression evaluating
to the constant-valued computational field 3, also written 1 + 2 for readability as for
any other binary built-in function. Alternatively, b can be an environment-dependent

operator, modelling a sensor—for instance, 0-ary sns-temp returns the local value of
temperature in each device δ where the built-in function call is evaluated, and the 0-
ary nbr-range operator returns (in each device δ where the built-in function call is

5Recall that the name of a function can be either the name of a declared/built-in function or the tag of an anonymous

function (see the explanation in Section 2.2).

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

5:8 G. Audrito et al.

evaluated) a neighbouring field value mapping neighbours of δ to estimates of their
current distance from δ .

• If f is not a built-in function, then it can be a declared function d with corresponding

declaration def d(x1, . . . , xn) {e}, or an anonymous function value (x1, . . . , xn)
τ
=> e;

then, expression e(e1, . . . , en) maps an event to the result of evaluating the closed ex-
pression e0 obtained from the body e of the function f by replacing the occurrences of
the formal parameters x1, . . . , xn with the values of the expressions e1, . . . , en .

Remark 2 (On function equality). The semantic of function call given above considers two func-
tion values f1 and f2 as “equal” when they have the same name. This design choice is carried
over in the meaning of the built-in operator = when applied to function values f1 and f2, so that
=(f1, f2) holds precisely when f1 and f2 have the same name.6 For built-in functions and declared
functions this notion of equality (provided by the built-in operator =) coincides with syntacti-
cal equality (considering names as part of the syntax). This is not true for anonymous function
values: although different occurrences of the same anonymous function expression (x) => e in
a source program get the same tag (see Section 2.2), syntactically equal anonymous functions
containing a non-closed anonymous function subexpression may evaluate to syntactically differ-
ent anonymous function values that have the same tag (and are therefore considered as equal
by the built-in operator =). For example, any occurrence of the anonymous function expression
e′ = (x1) => (x2) => min-hood(nbr{x1}) in a program yields the anonymous function value

f = (x1)
τ1
=> (x2)

τ2
=> min-hood(nbr{x1}) that, when applied to the two different values 3 and 4,

returns two syntactically different anonymous function values:

• f1 = f(3) = (x2)
τ2
=> min-hood(nbr{3})

• f2 = f(4) = (x2)
τ2
=> min-hood(nbr{4})

such that =(f1, f2) holds. It is worth observing that this semantics of function call ensures that
curried functions behave as their non-curried counterparts. For example the following four pro-
grams:

• P1 = e′(sns-temp()) (True)
• P2 = ((x1, x2) => min-hood(nbr{x1})) (sns-temp(), True)
• P3 = def d(x1, x2) {min-hood(nbr{x1})} d(sns-temp(), True)
• P4 = def d(x1) {(x2) => min-hood(nbr{x1})} d(sns-temp()) (True)

all behave in the same way (they map each device to the minimum temperature in its neighbour-
hood). We remark that disallowing the equality operator on functions, or changing the definition
of function call and functional equality with stricter notions (for instance, assigning a different tag
to each occurrence of an anonymous function expression in the source program), would preserve
the properties of the calculus and, in particular, the correspondence between its operational and
denotational semantics, but reserve exploration of these options for future work.

Functional values allow code to be dynamically injected, moved, and executed in network
(sub)domains. Namely: (i) functions can take functions as arguments and return a function
as result (higher-order functions); (ii) (anonymous) functions can be created “on the fly”;

6In ML-like languages [42], there is no equality operator for function values. However, since the alignment process of

the field calculus induces a notion of equality for function values, we decided to adopt it as the semantics of the built-in

operator = on function values.

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

A Higher-Order Calculus of Computational Fields 5:9

(iii) functions can be moved between devices (via the nbr construct); and (iv) the function one
executes can change over time (via the rep construct).

In this section, we have described the various constructs working in isolation: More involved
examples dealing with combinations of constructs will be given in later sections, when the deno-
tational and operational semantics are discussed.

Remark 3 (On if-expressions). Any if-expression e = if (e0) {e1} else {e2} can be equiva-
lently rewritten through a function call. If e1 and e2 are not syntactically equal, then e can be
rewritten as:

mux(e0, () => e1, () => e2) (),

where function mux is a built-in function multiplexer that takes three arguments (a Boolean and
two other arguments that must be of the same type) and returns the second argument if the first
argument is True and the third argument otherwise. If e1 and e2 are syntactically equal, then we
need to use the following more general rewriting to ensure that the two function calls are kept
distinct:

mux(e0, () => snd(pair(True, e1)), () => snd(pair(False, e2))) (),

where the built-in function pair builds a pair7 and the built-in function snd extracts the second
component of a pair. In the remainder of this article, we will thus omit to give the typing, opera-
tional and denotational semantics of if statements, and instead consider them as syntactic sugar
for the expression above. We retain the if construct in our syntax, however, for its familiarity,
convenience, and intuitive value in examples.

Remark 4 (On termination). As our syntax allows recursive functions, termination of a device
firing is clearly not decidable. In the rest of the article, we assume without loss of generality for
the results of this article that a decidable subset of the termination fragment is considered. Such a
fragment could be identified, e.g., by means of some static analysis technique for termination (see,
e.g., Reference [30]).

2.4 A Monomorphic Type System for HFC

In this section, we introduce a type system for assigning a monomorphic type to the main ex-

pression e of an HFC program P = F e. This type system will be used (in Section 3) to ground the
denotational semantics of the calculus. We first consider the typing rules for expressions e (in
Section 2.4.1) and then the typing rules for user-defined functions and programs (in Section 2.4.2).

2.4.1 Monomorphic Typing for Expressions. The monomorphic version of the type system TAλ

for the lambda calculus [33] can be straightforwardly extended to cover the peculiar constructs of
field calculus.

The syntax of types is given in Figure 2 (top). A type T is either a local type or a field type. A
local type L is either a built-in type B (numbers, Booleans, pairs, lists etc.), or the type of a function

(T) → T (possibly of arity zero). Note that a function always has local type, regardless of the local
or field type of its arguments. A field type F is the type field(L) of a neighbouring field whose

range contains values of local type L. Given L = L1, . . . , Ln (n ≥ 0), we write field(L) as short for
field(L1), . . . , field(Ln).

7We have used the built-in function pair instead of the data-constructor Pair since e1 and e2 might not be values, and

data-constructors must be applied to values.

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

5:10 G. Audrito et al.

Fig. 2. Monomorphic typing for HFC expressions.

Type environments, ranged over byM and written x : T , are used to collect type assumptions
for program variables (i.e., the formal parameters of functions and the variables introduced by the

rep-construct). Local-type-set environments, ranged over by S and written g : Lset, are used to as-
sociate a suitable non-empty set of function types Lset to each data constructor, built-in function
or user-defined function g. In particular, the distinguished built-in local-type-set environment S0

associates to each data constructor c a non-empty set of typesS0 (c) of the form (L) → L (i.e., func-
tion types that do not involve field types) and to each built-in function b a non-empty set S0 (b)
of function types—Figure 3 shows the set of types for the data constructors and built-in functions
used throughout this article.8 We distinguish the built-in functions in pure (their evaluation only
depends on arguments) and non-pure (their evaluation can depend on the specific device and on
its physical environment, like, e.g., for sensors). Notice that the built-in function map-hood ac-
cepts a first function argument of type (L1, . . . , Ln) → L (n ≥ 0), followed by n arguments of type
field(L1), . . . , field(Ln), respectively.

The typing rules are given in Figure 2 (bottom). The typing judgement for expressions is of the
form “S;M � e : T ”, to be read: “e has type T under the type-set assumptions S (for data con-
structors, built-in and defined functions) and the type assumptionsM” (for the program variables
occurring in e).

As a standard syntax in type systems [34], given T = T1, . . . , Tn and e = e1, . . . , en (n ≥ 0), we

write S;M � e : T as short for S;M � e1 : T1 · · · S;M � en : Tn . Note that the type rules are
syntax directed, so they straightforwardly describe a type inference algorithm, and that there is
no need for a rule typing neighbouring field values ϕ, since they are not allowed to appear in
source programs.

Rule [M-VAR] (for variables) is standard: It looks up the type assumptions for x inM.
Rule [M-DAT] (for data values) allows us to assign to the data constructor c any type in S0 (c)

that meets the types of the given arguments, which need to be (local) values—the latter allows
us to recognize whether a well-typed expression is a value by only checking its outermost data

8Notice that type-sets in S0 are allowed to be infinite (even though finitely presented), whereas type-sets assigned to

user-defined functions are always finite.

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

A Higher-Order Calculus of Computational Fields 5:11

Fig. 3. Local type sets for the data constructors and built-in functions used throughout this article.

constructor, which is convenient for later proofs. Notice that different occurrences of c in an
expression e may be assigned different types. For convenience of presentation, in the following
we assume that every constructor c comes with an associated built-in function bc that behaves
like (x) => c(x) and is such that S0 (bc) = S0 (c).

Rule [M-FLD] (for field values) assigns type field(L) to ϕ = δ �→ � if each �i has type L.
Rule [M-N-FUN] (for built-in and user-defined function names) allows assignment of the built-in or

user-defined function g to any of the types in S (g). Notice that different occurrences of g in an
expression e may be assigned different types.

Rule [M-A-FUN] (for anonymous functions) and Rule [M-APP] (for function applications) are standard.
Rule [M-REP] (for rep-expressions) ensures that both the variable x, its initial value e1 and the body

e2 have the same type.
Rule [M-NBR] (for nbr-expressions) ensures that the body e of the expression has a local type. This

prevents the attempt to create a “field of fields” (i.e., a neighbouring field value that maps device
identities to neighbouring field values).

Notation 5 (Built-in functions on fields). We use the convention that if b is a built-in unary

operator with local argument and return type, b[f] denotes the corresponding operator on neighbour-

ing field values that applies b pointwise to its argument. In other words: b[f](ϕ), which is equivalent

to map-hood(b,ϕ), at any device maps a neighbour δ to the result of applying b to the value of ϕ at

δ . If b is a multi-ary operator, then a notation such as b[f, l] or b[l, f, f] is used to specify which pa-

rameters have to be promoted to neighbouring field values. For instance, at each device, +[f, f](ϕ1,ϕ2)
gives a neighbouring field value mapping a neighbour δ to the sum of values of ϕ1 and ϕ2 at δ . Typing

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

5:12 G. Audrito et al.

of such extended operators is defined accordingly, e.g.,

S0 (pair[l, f]) = {(L1, field(L2)) → field(pair(L1, L2)) | L1, L2 local types}
S0 (pair[f, f]) = {(field(L1), field(L2)) → field(pair(L1, L2)) | L1, L2 local types}.

2.4.2 Monomorphic Typing for User-defined Functions and Programs. The type system in the
previous section can be straightforwardly extended to cover defined functions and whole programs
by means of the following rules.

[M-FUNCTION]

S, d : {T (1) → T (1) }; x : T
(1) � e : T (1) · · · S, d : {T (m) → T (m) }; x : T

(m) � e : T (m) m ≥ 1

S � def d(x) {e} : {T (1) → T (1), . . . , T
(m) → T (m) }

[M-PROGRAM]

Fi = (def di (_) _) Si−1 � Fi : Lseti Si = Si−1, di : Lseti (i ∈ 1 . . .n)
Sn ; ∅ � e : T

S0 � F1 · · · Fn e : T

Rule [M-FUNCTION] allows assignment of a user-defined function def d(x) {e} to a non-empty set of
types. Rule [M-PROGRAM] allows assignment of a non empty-set of types to each of the user-defined
functions, and then assigns to the program the type of its main expression.

Remark 6 (On typing user-defined functions). To simplify the presentation, we do not consider
the issue of typing mutually recursive user-defined functions, which can be addressed by exploit-
ing standard techniques (see, e.g., Reference [42]). In Section 5, we will present a variant of the
Hindley-Milner type system [21] that types a program P = F1 · · · Fn e (n ≥ 0) by first assigning a
type scheme to each used defined function Fi (1 ≤ i ≤ n), and then using these type schemes to
assign a type to each occurrence of a name of the user-defined function in the main expression
e. Furthermore, this type system will enforce some additional restrictions that (in Section 6) will
be used to prove properties of well-typed programs—as we will show in Section 5, the type sys-
tem presented in this section allows assignment to the main expression e of a program of all the
monomorphic types that can be assigned to it by the type system of Section 5.

Example 2.1. As an illustration of the syntax, semantics, and typing just discussed, consider the
following simple program:

The first line defines a function counter, which uses rep to count the number of rounds that the
function has been executed at each device (see Section 2.3, discussion on time evolution). The sec-
ond defines a higher-order function lowest-nbr, which takes a function fun as input, evaluates
it, shares the results of evaluation with each device’s neighbourhood (see neighbouring field con-

struction), and returns the lowest neighbouring value. Finally, the main expression makes use of
these user-defined functions in a branching statement (see domain restriction), where any device
that has executed less than 10 times returns zero, while all others call lowest-nbr on uid built-in
function, returning the lowest unique identifier of any device that has executed at least 10 times in
their neighbourhood. Applying the monomorphic type system, we may identify this program as
one that can be consistently typed, with the function counter having type () → num, the function

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

A Higher-Order Calculus of Computational Fields 5:13

lowest-nbr having type (() → num) → num (actually, it has any type of the form (() → L) → L,
where L is a local type), and the overall program having a type of num.

3 DENOTATIONAL SEMANTICS

In this section, we introduce a denotational semantics for the field calculus. In designing this se-
mantics, we are posed with an additional challenge with respect to the denotational semantics
for lambda calculus or ML-like programming languages (see among many [40, 47, 60]): several
devices and firing events are involved in the computation, possibly influencing each other’s out-
comes. Even though this scenario seems similar to classical concurrent programming (see, e.g.,
References [5, 25]), it cannot be treated using the same tools because of two crucial differences:

• communication within a computational round is strongly connected with the underlying
space-time properties of the physical world in which devices are located;

• the whole outcome of the computation is not a single value, but a field of spatially and
temporally distributed values.

To reflect these characteristics of field calculus, the denotational semantics of an expression is given
in terms of the resulting field evolution (see Remark 1). That is, a space-time field, formalised as
a partial mapping from the “evolving” domain (the set of participating devices may change over
time) to values. The domain is defined as a set of (firing) events, each carrying a node identifier and
equipped with a neighbour relationship modelling causality, i.e., reachability of communications.
Values are defined analogously to ML-like languages, with the addition of neighbouring fields
and formulating functions as mathematical operators on field evolutions instead of single values
(which is necessary, because the computation of a function might involve state communication
among devices or events).

This semantics is nicely compositional, allowing one to formalise each construct separately.
Furthermore, it represents the global result of computation as a single “space-time object”, the field
evolution, thus giving a perspective that is more proper for the designer of a computation and more
convenient in proving certain properties of the calculus—the operational semantics (Section 4)
is instead more useful in designing a platform for the equivalent distributed execution of field
computations on actual devices.

3.1 Preliminary Definitions

Recall that we let D be the set of devices, ranged over by meta-variable δ ; we now also let E be the
set of events, ranged over by meta-variable ϵ . An event models a firing in a network, and is labeled
by a device identifier δϵ . We use E to range over subsets of E. We assume that each ϵ incorporates
all the relevant information about the corresponding event, e.g., the involved device and its sensor
state at the time the event happened.

We model the neighbour relationship as a global-level, fixed predicate neigh(ϵ, ϵ ′) that holds if
the device at ϵ is aware of the result of computation at ϵ ′. This relationship is based on the topology
and time evolution of involved devices, hence we require that neigh(ϵ, ϵ ′) satisfies the following
properties:

(1) the graph on E induced by neigh is a well-founded DAG (i.e., a directed acyclic graph such
that each node can be reached by a finite set of nodes,9 called the backward star of the
node);

9This prohibits computations that extends indefinitely in the past (without a start), but does not rule out the possibility of

computations over an infinite amount of time in the future or involving an infinite number of devices. Even though such

computations are not physically realisable, they are sometimes convenient to model limit behaviour of discrete systems.

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

5:14 G. Audrito et al.

Fig. 4. A sample neighbourhood graph on four asynchronously firing devices. The neighbours of the green

event ϵ = ϵ3 are shown in red, forming a neighbourhood over devices 2, 3, and 4.

(2) every ϵ ′ linked from ϵ has a different label δϵ ′ , that is, there exists no ϵ ′, ϵ ′′ such that
ϵ ′ � ϵ ′′, δϵ ′ = δϵ ′′ and both neigh(ϵ, ϵ ′) and neigh(ϵ, ϵ ′′) hold; and

(3) every ϵ ′ is linked from at most one ϵ with the same label δϵ = δϵ ′ , that is, there exists no
ϵ0, ϵ1 such that δϵ0 = δϵ1 = δϵ ′ and both neigh(ϵ0, ϵ

′) and neigh(ϵ1, ϵ
′) hold.

Property 1 ensures that neigh is causality-driven, property 2 that the neighbours of an event ϵ
are indexed by devices, and property 3 that restricting neigh to a single device we obtain a set of
directed paths (thus modeling that the firing of a device is aware of either its immediate predecessor
on the same device or nothing).

Figure 4 shows a sample neighbourhood graph involving four devices, each firing from four to
six times. Notice that device 2 is rebooted after its second firing, and that the set of neighbouring
devices changes over time for each device, in particular, device 4 drops its connection with device
2 from its fourth firing on. This can be explained by assuming devices to be moving in space—
though movement is not represented in Figure 4. Nonetheless, the depicted graph satisfies all of
the three above mentioned properties.

For all ϵ and δ , we define ϵδ as the latest event at δ that ϵ can be aware of, namely the one
satisfying δ = δϵ δ and neigh(ϵ, ϵδ) if δ � δϵ , or ϵδ = ϵ in case δ = δϵ . Notice that if ϵδ exists, it is
unique by property 2. We use ϵ− to denote the previous event of ϵ at the same device if it exists.
These notations are exemplified in Figure 4 for event ϵ = ϵ3. We also define E− (ϵ) where E ⊆ E

as the neighbourhood of E, namely, the set of devices δ such that ϵδ exists in E. For example,
E− (ϵ) = {2, 3, 4} for the green event ϵ = ϵ3 in the picture above.

We chose such a generic approach to model neighbouring to abstract from the particular condi-
tions and implementations that might occur in practice when an execution platform has to handle
device to device communication.

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

A Higher-Order Calculus of Computational Fields 5:15

Example 3.1 (Unit-Disc Communication). A typical scenario for the computations we aim at mod-
elling and designing is that of a mobile set of wirelessly communicating devices, such that the
neighbourhood relationship depends primarily on physical position—e.g., devices within a cer-
tain range can communicate. In this case, the predicate neigh(ϵ, ϵ ′) could be defined from a set of
paths P for moving devices, labels tϵ modelling passage of time, a timeout value td, and a predicate
neigh(p,p ′) between positions, where

• neigh(p,p ′) is a global-level, fixed reflexive and symmetric predicate that holds if the two
devices at positions p and p ′ are neighbours.

• P is a mapping from device identifiers δ to space-time paths P . A path P is a continuous
function from R+ (domain) to the set of possible positions (codomain), defined on the union
of a finite number of disjoint closed intervals (the time intervals in which the device is
turned on).10

• td ∈ R+ models a timeout expiration after which non-communicating devices are con-
sidered “removed,” allowing adaptation of the network to device removal and topology
changes.

• neigh(ϵ, ϵ ′) holds if and only if
(1) tϵ ′ ∈ [tϵ − td, tϵ) (i.e., ϵ ′ happened in the time interval of size td before ϵ);
(2) P(δϵ) is defined in the interval [tϵ ′, tϵ] (i.e., δϵ was constantly turned on during the time

between events ϵ ′ and ϵ);
(3) neigh(P(δϵ) (tϵ ′), P(δϵ ′) (tϵ ′)) holds (i.e., the two devices were neighbours when ϵ ′

happened);
(4) there exists no further event ϵ ′′ with δϵ ′′ = δϵ ′ and tϵ ′′ > tϵ ′ satisfying the above condi-

tions (i.e., ϵ ′ is the last firing of δϵ ′ recorded by δϵ before ϵ).

3.2 Denotational Semantics of Types

A necessary preliminary step in the definition of denotational semantics for the field calculus is to
clarify the denotation of types. Following a standard approach, the denotation of a type consists of a
set S such that denotations of expressions of that type are taken from S—denotation of expressions
will be presented in next section. The denotational semantics of a type is given by two intertwined
functions: a function V�·� mapping a type T to a set of local value denotations (i.e., values at
individual devices), and a function T �·� mapping T to a set of field evolutions, ranged over by
meta-variable Φ, assigning local values to every device in each firing event.

If B is a built-in local type, then we assume that V�B� is given. For derived types, V�·� and
T �·� are altogether defined by rules:

T �T� = E �→V�T�
V�field(L)� = D �→V�L�

V�(T1, . . . , Tn) → T� = F × (T �T1� × · · · × T �Tn� ⇀ T �T�),
where E �→ V�T� (respectively, D �→ V�T�) is the set of partial functions from E (respectively,
D) toV�T�, F is a set of function tags uniquely characterizing each function, and T �T1� × · · · ×
T �Tn� ⇀ T �T� (n ≥ 0) is the set of all partial functions f from T �T1� × · · · × T �Tn� to T �T�
that are defined for Φ = Φ1 × · · · × Φn if and only if dom(Φ1) = · · · = dom(Φn) (the domain of com-

putation is coherent among all arguments), and in such case dom(f (Φ)) = dom(Φ) (the domain

of computation is not changed by function application). We use the notation dom(Φ) to denote

dom(Φi) for any Φi in Φ, whenever these domains are assumed to be equal.

10We remark that this definition for paths allows (in an extension of the present language) consideration of devices in

which some stored values are preserved while turned off.

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

5:16 G. Audrito et al.

Remark 7 (Denotational semantics of 0-ary functions). In the denotational semantics of function
types, we assumed that the domain of computation can be extracted from the function arguments

as dom(Φ). However, this is not the case if we allow for 0-ary functions, for which dom(Φ) is
undefined. This issue can be solved by adding a first argument of unit type to each function, which
is thus provided in every corresponding function call. For sake of readability, in the presentation
of the semantics, this additional argument is left implicit.

The denotation of a type T is a set of field evolutions, that is, partial maps from events E to
local value denotations V�T�. This reflects the fact that an expression e evaluates to (possibly
different) local values in each device and event of the computation.

The local value denotation of a field type field(L) is the set of partial functions from devices
to local value denotations, which are intended to map a neighbourhood (or an “aligned subset” of
it: in both cases, a subset of D) to local value denotations of the corresponding local type.

The denotation of a function type (T1, . . . , Tn) → T is instead a set of pairs with the following
two components:

• The function tag in F (e.g., a syntactic function value as in Figure 1), needed to reflect the
choice to compare functions by syntactic equality instead of semantic equality, which would
not allow a computable operational semantics (see Remark 2). In fact, the presence of such
tags is used to grant that two differently specified but identically behaving functions f, f′

get distinct denotations.
• A mapping from input field evolutions in T �T1�, . . . T �Tn� to an output field evolution in
T �T�.

The local execution environment under which the computation of the function is assumed to
happen is implicitly determined as the (common) domain of its input field evolutions; and the
same domain will be retained for the output. This environment can influence the outcome of the
computation through rep and nbr constructs and through non-pure built-in functions.

Since local denotational values are not connected to specific events or domains, the common
domain of the input field evolutions can be any subset of E. In particular, this fact implies that
a field evolution Φ of function type and domain E is built of functions snd(Φ(ϵ)) that can take
arguments of arbitrary domain, including domains E ′ � E. Notice that this property grants that a
local denotational function value can be meaningfully moved around devices (through constructs
nbr, rep).

Notice that the definition ofV�(T1, . . . , Tn) → T� by means of a function on whole field evo-
lutions instead of local denotational values is required by the nature of the basic blocks of the
language (nbr, rep), which cannot be computed pointwise event by event. We also remark that
the denotation of a function type consists of total functions (on given subdomains): this reflects
the assumption that every function call is guaranteed to terminate (see Remark 4).

3.3 Denotational Semantics of Expressions

The denotational semantics of a well-typed expression e of type T in domain E under assumptions

X = x �→ Φ is written E�e�E
X and yields a field evolution in T �T� with domain E. As for the

denotation of types, we assume that the denotations of built-in functions and constructors are
given. In particular, this is represented by the function C�c� inV�L1� × · · · × V�Ln� →V�L�
(n ≥ 0) translating the behaviour of built-in constructors c of type (L1, . . . , Ln) → L;11 and by the
function B�b� in T �T1� × · · · × T �Tn� ⇀ T �T� ((n ≥ 0) translating the behaviour of built-in

11Since a constructor does not depend on the environment, we do not need an element of V�(L) → L� in this case.

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

A Higher-Order Calculus of Computational Fields 5:17

functions b of type (T1, . . . , Tn) → T to denotational values and possibly depending on sensor
values and global environment status.12 Examples of B�b� are given in Section 3.4.

In the remainder of this article, we use λx ∈ D.f to denote the mathematical function with
domain D assigning each x ∈ D to the corresponding value of expression f. We use Φ|E for the
restriction of the field evolution Φ to E, defined by λϵ ∈ E.Φ(ϵ) for denotational values Φ of local
type and by λϵ ∈ E.Φ(ϵ) |E− (ϵ) for denotational values of field type.

The interpretation function E�·� is then defined by the following rules:

E�x�E
X = X (x) |E

E�δ �→ v�E
X = λϵ ∈ E.δ �→ E�v�E

X (ϵ)

E�c(�)�E
X = λϵ ∈ E.C�c�(E���E

X (ϵ))

E�b�E
X = λϵ ∈ E.〈b,B�b�〉

E�d�E
X = λϵ ∈ E.〈d, limn D�d�n〉

E�(x)
τ
=> e�E

X = λϵ ∈ E.〈τ , λΦ ∈ T �T�.E�e�dom(Φ)

X∪x �→Φ
〉

E�e′(e)�E
X = λϵ ∈ E.snd

(
E�e′�E

X (ϵ)
) (
E�e�E

X |E (e′,ϵ)

)
(ϵ)

E�nbr{e}�E
X = λϵ ∈ E.λδ ∈ E− (ϵ).E�e�E

X (ϵδ)

E�rep(e1){(x) => e2}�E
X = limn R�rep(e1){(x) => e2}�n ,

where

• D�d�n is the partial function translating the behaviour of d when recursion is bounded to
depth n, and is defined by rules:

D�d�0 = ∅
D�d�n+1 = λΦ ∈ T �T�.E�body (d)�dom(Φ)

X∪args(d) �→Φ,d�→λϵ ∈E .D�d�n .

• E (e′, ϵ) is equal to {ϵ ′ ∈ E : fst(E�e′�E
X (ϵ ′)) = fst(E�e′�E

X (ϵ))}, that is, to the set of events
in E aligned with ϵ with respect to the computation of e′.

• R�e�n with e = rep(e1){(x) => e2} denotes the rep construct as bounded to n loop steps,
and it is defined by rules:

R�e�0 = E�e1�E
X

R�e�n+1 = E�e2�E
X∪x �→shift(R�e�n,R�e�0),

where

shift(Φ,Φ0) = λϵ ∈ dom(Φ).

{
Φ(ϵ−) ϵ− exists
Φ0 (ϵ) otherwise

“pushes” each value in Φ to the next future event, while falling back to Φ0 for starting events.

The rules above provide a definition of E�·� by induction on the structure of the expressions.
In the remainder of this article, we shall feel free to omit the subscript X whenever X = ∅ and
the superscript E whenever E = E. Notice that syntactic values are always denoted by constant
field evolutions and can be reconstructed from their denotation (with possibly the exception of
constructors).

12We recall that events ϵ are assumed to embed all relevant sensor information.

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

5:18 G. Audrito et al.

The denotation of variables is straightforward, while the denotation of constructors and built-in
functions is abstracted away assuming that corresponding C�c� and B�b� are given. To produce
neighbouring field values with the correct domain, we require that in case the return type T of b

is a field type, then dom(B�b�(Φ)(ϵ)) = E− (ϵ) for all possible Φ in T �T� of domain E and ϵ ∈ E.
Even though most built-in functions (pure operators, local sensors) could be defined pointwise in
the same way constructors are defined, this is not possible for relational sensors (as nbr-range)
thus we opted for a more general and simpler formulation. The denotation of neighbouring field
values is given for convenience, but since neighbouring field values are not allowed to occur in
source programs, this rule is not necessary to denote such programs.

The denotation of defined functions, as usual, is defined as a fixpoint of an iterated process
starting from the function D�d�0 with empty domain. At each subsequent step n + 1, the body
of d is evaluated with respect to the context that associates the name d itself with the previously
obtained functionD�d�n (and the arguments of d with the respective values). We assume that the
resulting functionD�d�n+1 is undefined if it callsD�d�n with arguments outside of its domain. It
follows by easy induction that each such step is a conservative extension, i.e.,D�d�n ⊆ D�d�n+1,
hence the limit of the process is well defined. Since function calls are guaranteed to terminate, this
limit will be a total function as required by the denotation of function types (see Remark 4).

The denotation of a function application e′(e) is given pointwise by event, and applies the sec-
ond coordinate of E�e′�E

X (ϵ) (that is, the mathematical function corresponding to e′) interpreted

in the restricted domain E (e′, ϵ) (computed through the first coordinate of E�e′�E
X) containing ϵ

to the arguments E�e�E
X . Such domain restriction (to devices computing the same function e′) is

needed to prevent interference among non-aligned devices. The importance of this aspect shall be
further clarified in the following sections. As the rule above is formulated, it seems that a whole
field evolution Φ is calculated for each event ϵ , while being used only to produce the local value
Φ(ϵ). However, the whole field evolution is actually used since each event in its domain E (e′, ϵ)
computes the same function on the same arguments, hence producing the same output field evo-
lution. Thus the rule could also be reformulated as follows:

E�e′(e)�E
X =
⋃
ϵ ∈E

snd
(
E�e′�E

X (ϵ)
) (
E�e�E

X |E (e′,ϵ)

)
.

The denotation of construct nbr yields in each event ϵ a neighbouring field of domain E− (ϵ)
mapping to the values of expression e in the corresponding events.

The denotation of construct rep is carried out by a fixpoint process as for recursive functions.
First, a field evolution R�·�0= Φ0 is computed holding the initial values computed by e1 in each
event. At each subsequent step, the results computed by R�·�n = Φ in each event are made avail-
able to their subsequent events through the new assumption x �→ shift(Φ,Φ0) in X . It follows that
once the value at each event in E− (ϵ) stabilizes, the value at ϵ also stabilizes in one more iteration.
Since the events form a well-founded DAG and values at source events (events without prede-
cessor) are steadily equal to the initial value by construction, the whole process stabilizes in each
event after a number of iterations at most equal to the (finite) cardinality of its backwards star (see
Section 3.1), hence the limit of the process is well defined.

3.4 Example

We now illustrate the denotational semantics by applying it to representative example expressions.

Distance-To. For a first example, consider the expression edist , computing the distance of every
device from devices in a given source set indicated by the Boolean-valued field s:

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

A Higher-Order Calculus of Computational Fields 5:19

where min-hood+ is a built-in function that returns the minimum value amongst a device’s neigh-
bours, excluding itself. In formulas, the built-in denotations are as follows:

B�nbr-range� = λ_.λϵ ∈ E.λδ ∈ E
− (ϵ). dist (ϵδ , ϵ)

B�min-hood+� = λΦ ∈ T �field(num)�.λϵ ∈ dom(Φ). min(ran(Φ(ϵ) \ δϵ))

B�+[f,f]� = λΦ ∈ T �field(num)�.λϵ ∈ dom(Φ).λδ ∈ dom(Φ(ϵ)).
Φ1 (ϵ) (δ) + Φ2 (ϵ) (δ)

B�mux[l,l,f]� = λΦ1,Φ2 ∈ T �num�.λΦ3 ∈ T �field(num)�.
λϵ ∈ dom(Φ).λδ ∈ dom(Φ3 (ϵ)).{

Φ2 (ϵ) if Φ1 (ϵ)
Φ3 (ϵ) (δ) otherwise,

where dist is a measure of spatial distance between events.13 Notice that the denotation of +[f,f]
assumes that the two input neighbouring fields always share a common domain to be able to
combine them: We will prove that this property (called domain alignment) holds for a broad class
of programs (including edist) in Section 6.1.

Figure 5 shows the evaluation of the denotational semantics for this expression, as evaluated
with respect to the neighbourhood graph shown in Figure 4. We consider as input a source set s
consisting of device 2 before its reboot, and device 1 beginning at its fourth firing, represented by
the Boolean field evolution Φs, with corresponding environment X = s �→ Φs, shown in the top
left of Figure 5(b). We assume the devices to be moving14 so that their relative distance changes
over time as depicted in the center left of Figure 5(a).

The outermost component of expression edist is a rep construct, thus E�edist�X is calculated via
the following procedure:

• First, R�edist�0 is calculated as E�∞�X = Φ0 (since ∞ is the initial value of the rep-
expression), a constant field evolution.

• This value is then shifted in time (in this case leaving it unchanged, shift(Φ0,Φ0) = Φ0) and
incorporated in the substitution X0 = X ∪ d �→ Φ0. Thus R�edist�1 is calculated as E�e′�X0

giving a new field evolution Φ1. This evaluation is illustrated step-by-step in Figure 5(a) and
(b) top and center, breaking e′ into all its subexpressions.

• The process of shift and evaluation is then repeated: Φ1 is shifted in time (Figure 5(b) bot-
tom left), incorporated in a new substitution X1 = X ∪ d �→ shift(Φ1,Φ0) and E�e′�X1

is

expanded into another field evolution Φ2 (Figure 5(b) bottom center). Shifting and evalua-
tion continues until a fixed point is reached, which in the case of this example happens at
stage n = 4 (Figure 5(c) right).

Notice that due to the characteristics of the rep construct, the values nbr{d} collected from
neighbour devices are not the latest but instead the ones before them (that is, the values fed to
the update function in the latest event). The latest outcome of a rep construct could instead be
obtained via nbr{rep(·){·}}, but this construct is not used here as that would not allow the distance
calculation to propagate across multiple hops in the network. This additional delay sometimes

13We remark that the given denotation of nbr-range reflects a possible implementation, where different implementations

are also possible.
14Note that the x -axis in Figure 5 is indexed by device and not by position.

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

5:20 G. Audrito et al.

Fig. 5. (a) The denotational semantics of a distance-to calculation.

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

A Higher-Order Calculus of Computational Fields 5:21

Fig. 5. (b) The denotational semantics of a distance-to calculation (cont.)

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

5:22 G. Audrito et al.

Fig. 5. (c) The denotational semantics of a distance-to calculation (cont.)

leads to counterintuitive behaviours: for example, the third firing ϵ of device 3 calculates gradient
4.9 obtained through device 4, which however holds value ∞ in its latest firing available to ϵ . In
fact, the value to which ϵ refers to is the previous one, which is equal to 3.0. This behaviour can
slow down the propagation of updates through a network but appears necessary for ensuring both
safe and general composition.

Distance Avoiding Obstacles. The previous example allowed us to show the denotation of data val-
ues (nbr-range, 0), variable lookups (d, s), builtin functions (nbr-range, +[f,f], mux, min-hood+),
nbr and rep constructs. It did not, however, show an example of branching, which in the present
calculi is modeled by function calls e(e) where the functional expression e is not constant.

To illustrate branching, we now expand on the previous example by considering the expression
eavoid that computes the distance of each device from a given source set avoiding some obstacles,
that is, computes shortes paths in the network from the source set not containing any node marked
as “avoid.”

The denotational semantics of eavoid on the sample network in Figure 4 is shown in Figure 6. We
consider as input the same source set source (with corresponding field evolution Φs) as in the
previous example and a set of obstacles avoid corresponding to the first firings of device 3 and
device 2 after its reboot (blue nodes in Figure 6 top left), together enclosed in environment X .

When the field of functions (top left) is called on the argument (top right), the computation
branches in two parts:

• the events holding f , which just compute the constant value∞ (center left);
• the events holding д, which compute a distance from the source set, as in the previous

example (center right).

Notice that since the events holding д compute their distances in isolation, their final values
differ from the ones obtained in the previous example.

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

A Higher-Order Calculus of Computational Fields 5:23

Fig. 6. The denotational semantics of a gradient calculation avoiding obstacles.

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

5:24 G. Audrito et al.

Finally, the two different branches are merged together to form the final outcome of the function
call, in Figure 6 bottom.

4 OPERATIONAL SEMANTICS

In this section, we introduce an operational semantics for the field calculus. In Section 4.1, we
formalize the computation carried out by an individual device at a particular event and then, in
Section 4.2, we formalize the computation carried out by a whole network of devices over time.

This semantics can serve as a specification for implementation of programming languages based
on the calculus.

4.1 Device Semantics (Big-step Operational Semantics)

According to the “local” viewpoint, individual devices undergo computation in rounds. The device

semantics models computation of a device within one round, while the network semantics (in the
next section) describes how the sequence of rounds are related together.

We base operational semantics on the syntax introduced in Section 2.2 (Figure 1). To simplify
the notation, we shall assume a fixed program P. We say that “device δ fires” to mean that the main
expression of P is evaluated on δ at a particular round.

We model device computation by a big-step operational semantics where the result of evalu-
ation is a value-tree θ , which is an ordered tree of values that tracks the results of all evaluated
subexpressions. Intuitively, the evaluation of an expression at a given time in a device δ is per-
formed against the recently-received value-trees of neighbours, namely, its outcome depends on
those value-trees. The result is a new value-tree that is conversely made available to δ ’s neigh-
bours (through a broadcast) for their firing; this includes δ itself, so as to support a form of state
across computation rounds15 (note that any implementation might massively compress the value-
tree, storing only informations about sub-expressions that are relevant for the computation). A
value-tree environment Θ is a map from device identifiers to value-trees, collecting the outcome of

the last evaluation on the neighbours. This is written δ �→ θ as short for δ1 �→ θ1, . . . ,δn �→ θn .
The syntax of value-trees and value-tree environments is given in Figure 7 (first frame). Figure 7

(second frame) defines the auxiliary functions ρ and π for extracting the root value and a subtree of
a value-tree, respectively (further explanations about function π will be given later); the extension
of functions ρ and π to value-tree environments; and the auxiliary functions name, args, and body

for extracting the name, formal parameters, and the body of a (user-defined or anonymous) func-
tion, respectively. The computation that takes place on a single device is formalised by the big-step
operational semantics rules given in Figure 7 (fourth frame). The derived judgements are of the
form δ ; Θ;σ � e ⇓ θ , to be read “expression e evaluates to value-tree θ on device δ with respect to
the value-tree environment Θ and sensor state σ ,” where (i) δ is the identifier of the current device;
(ii) Θ is the neighbouring field of the value-trees produced by the most recent evaluation of (an
expression corresponding to) e on δ ’s neighbours; (iii) σ is a data structure containing enough
sensor information to allow each non-pure built-in to be computed; (iv) e is a runtime expression
(i.e., an expression that may contain neighbouring field values); (v) the value-tree θ represents the
values computed for all the expressions encountered during the evaluation of e—in particular ρ (θ)
is the resulting value of expression e.

The operational semantics rules are based on rather standard rules for functional languages,
extended so as to be able to evaluate a subexpression e′ of e with respect to the value-tree en-
vironment Θ′ obtained from Θ by extracting the corresponding subtree (when present) in the

15As formalised by the network semantics (see Section 4.2), when a device δ is shutdown, data from neighbours are lost as

well as data from δ itself.

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

A Higher-Order Calculus of Computational Fields 5:25

Fig. 7. Big-step operational semantics for expression evaluation.

value-trees in the range of Θ. This process, called alignment, is modeled by the auxiliary function
π , defined in Figure 7 (second frame). The function π has two different behaviours (specified by
its subscript or superscript): πi (θ) extracts the ith subtree of θ ; and π f (θ) that

• if f is a built-in function value b, extracts the last subtree of θ , if it is present and its root is
b; and

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

5:26 G. Audrito et al.

• if f is a non-built-in function value, extracts the last subtree of θ , if it is present and the root
of the second last subtree of θ is a function value with the same name as f.

Rules [E-LOC] and [E-FLD] model the evaluation of expressions that are either a local value or a
neighbouring field value, respectively. For instance, evaluating the expression 1 produces (by rule
[E-LOC]) the value-tree 1〈〉, while evaluating the expression + produces the value-tree +〈〉. Note that
to ensure that domain restriction is obeyed, rule [E-FLD] restricts the domain of the neighbouring
field value ϕ to the domain of Θ augmented by δ .

Rule [E-B-APP] models the application of built-in functions. It is used to evaluate expressions of
the form en+1 (e1 · · · en) such that the evaluation of en+1 produces a value-tree θn+1 whose root
ρ (θn+1) is a built-in function b. It produces the value-tree v〈θ1, . . . ,θn ,θn+1〉, where θ1, . . . ,θn+1

are the value-trees produced by the evaluation of the actual parameters and functional expression
e1, . . . , en+1 (n ≥ 0) and v is the value returned by the function with respect to the current device δ ,
its sensor state σ and the value-tree environment π b (Θ) containing only the value-trees associated

to the evaluation of the built-in b. Rule [E-B-APP] exploits the special auxiliary function �b�Θ,σ
δ

, whose
actual definition is abstracted away, to allow for customised sets of built-in functions. This auxil-

iary function is such that �b�Θ,σ
δ

(v) computes the result of applying built-in function b to values v

with respect to device δ , sensor state σ and value-tree environment Θ. We require that �b�Θ,σ
δ

(v)

always yields values of the expected type T where b has a suitable type (T) → T ∈ S0 (b).
In particular, for the examples in this article, we assume that the built-in 0-ary function uid

gets evaluated to the current device identifier (i.e., �uid�Θ,σ
δ

() = δ) and that mathematical opera-

tors have their standard meaning, which is independent of δ and Θ (e.g., �+�Θ,σ
δ

(1, 2) = 3). We also
assume that map-hood, fold-hood reflect the rules for function application, so that for instance

map-hood(f,δ �→ v) = δ �→ f(v) (where f(vi) is computed w.r.t. the empty value-tree environment

Θ = ∅). The �b�Θ,σ
δ

function also encapsulates measurement variables such as nbr-range and in-
teractions with the external world via sensors and actuators.

For example, evaluating the expression +(1 2) produces the value-tree 3〈1〈〉, 2〈〉,+〈〉〉. The value
of the whole expression, 3, has been computed by using rule [E-B-APP] to evaluate the application of
the sum operator + (the root of the third subtree of the value-tree) to the values 1 (the root of
the first subtree of the value-tree) and 2 (the root of the second subtree of the value-tree). In the
following, for sake of readability, we sometimes write the value v as short for the value-tree v〈〉.
Following this convention, the value-tree 3〈1〈〉, 2〈〉,+〈〉〉 is shortened to 3〈1, 2,+〉.

Rule [E-D-APP] models the application of user-defined or anonymous functions, i.e., it is used to
evaluate expressions of the form en+1 (e1 · · · en) such that the evaluation of en+1 produces a value-
tree θn+1 whose root f = ρ (θn+1) is a user-defined function name or an anonymous function value.
It is similar to rule [E-B-APP]; however it produces a value-tree that has one more subtree, θn+2, which
is produced by evaluating the body of the function f with respect to the value-tree environment
π f (Θ) containing only the value-trees associated to the evaluation of functions with the same
name as f.

To illustrate rule [E-REP] (rep construct), as well as computational rounds, we consider program
rep(0){(x) => +(x, 1)} (cf. Section 2.2). The first firing of a device δ after activation or reset
is performed against the empty tree environment. Therefore, according to rule [E-REP], to evaluate
rep(0){(x) => +(x, 1)} we need to evaluate the subexpression +(0, 1), obtained from +(x,
1) by replacing x with 0, obtaining the value tree 1〈0, 1,+〉. This value-tree is then combined
with the one obtained from the evaluation of the first argument (which is 0) producing the final
value-tree θ = 1〈0, 1〈0, 1,+〉〉. Any subsequent firing of the device δ is performed with respect to
a tree environment Θ that associates to δ the outcome of the most recent firing of δ . Therefore,

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

A Higher-Order Calculus of Computational Fields 5:27

evaluating rep(0){(x) => +(x, 1)} at the second firing requires to evaluate the subexpression
+(1, 1), obtained from +(x, 1) by replacing x with 1, which is the root of θ . Hence the results
of computation are 1, 2, 3, and so on.

Notice that in both rules [E-REP], [E-NBR] we do not assume that Θ is empty whenever it does not
contain δ . This might seem unnatural at first glance, since every time a device is rebooted its first
firing is computed with respect to the empty value-tree environment, and all the subsequent firings
will contain δ their domains. However, this fact is not inductively true for the sub-expressions of
emain: for example, the first time a conditional guard evaluates to True the if-expression will be
evaluated w.r.t. an environment not containing δ but possibly containing other devices whose
guard evaluated to True in their previous round of computation.

Value-trees also support modelling information exchange through the nbr construct, as of rule
[E-NBR]. In this rule, the neighbours’ values for e are extracted into a neighbouring field value as
ϕ = ρ (Θ1). Then ϕ (δ) is updated to the more recent value � = ρ (θ1), as represented by the nota-
tion ϕ[δ �→ �]. Consider the program e′ = min-hood(nbr{sns-num()}), where the 1-ary built-in
function min-hood returns the lower limit of values in the range of its neighbouring field argu-
ment, and the 0-ary built-in function sns-num returns the numeric value measured by a sensor.
Suppose that the program runs on a network of three fully connected devices δA, δB , and δC , where
sns-num returns 1 on δA, 2 on δB , and 3 on δC . Considering an initial empty tree-environment ∅
on all devices, we have the following: The evaluation of sns-num() on δA yields 1〈sns-num〉 (by

rules [E-LOC] and [E-B-APP], since �sns-num�∅,σ
δA

() = 1); the evaluation of nbr{sns-num()} on δA yields

(δA �→ 1)〈1〈sns-num〉〉 (by rule [E-NBR]); and the evaluation of e′ on δA yields

θA = 1〈(δA �→ 1)〈1〈sns-num〉〉, min-hood〉

(by rule [E-B-APP], since �min-hood�∅,σ
δA

(δA �→ 1) = 1). Therefore, after its first firing, device δA pro-

duces the value-tree θA. Similarly, after their first firing, devices δB and δC produce the value-trees

θB = 2〈(δB �→ 2)〈2〈sns-num〉〉, min-hood〉
θC = 3〈(δC �→ 3)〈3〈sns-num〉〉, min-hood〉

respectively. Suppose that device δB is the first device that fires a second time. Then the evaluation
of e′ on δB is now performed with respect to the value tree environment

ΘB = (δA �→ θA, δB �→ θB , δC �→ θC)

and the evaluation of its subexpressions nbr{sns-num()} and sns-num() is performed, respectively,
with respect to the following value-tree environments obtained from ΘB by alignment:

Θ′B = π1 (ΘB) = (δA �→ (δA �→ 1)〈1〈sns-num〉〉, δB �→ · · · , δC �→ · · ·)
Θ′′B = π1 (Θ′B) = (δA �→ 1〈sns-num〉, δB �→ 2〈sns-num〉, δC �→ 3〈sns-num〉).

We have that �sns-num�
Θ′′

B
,σ

δB

() = 2; the evaluation of nbr{sns-num()} on δB with respect to Θ′B
yields ϕ〈2〈sns-num〉〉, where ϕ = (δA �→ 1,δB �→ 2,δC �→ 3); and �min-hood�ΘB,σ

δB

(ϕ) = 1. There-

fore the evaluation of e′ on δB produces the value-tree 1〈ϕ〈2〈sns-num〉〉, min-hood〉. Namely, the
computation at device δB after the first round yields 1, which is the minimum of sns-num across
neighbours—and similarly for δA and δC .

We now present an example illustrating first-class functions. Consider the program
pick-hood(nbr{sns-fun()}), where the 1-ary built-in function pick-hood returns at random a
value in the range of its neighbouring field argument, and the 0-ary built-in function sns-fun
returns a 0-ary function returning a value of type num. Suppose that the program runs again on

a network of three fully connected devices δA, δB , and δC where sns-fun returns �0 = ()
τ0
=> 0 on

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

5:28 G. Audrito et al.

Fig. 8. Small-step operational semantics for network evolution.

δA and δB , and returns �1 = ()
τ1
=> e′ on δC , where e′ = min-hood(nbr{sns-num()}) is the program

illustrated in the previous example. Assume that sns-num returns 1 on δA, 2 on δB , and 3 on δC .
Then after its first firing, device δA produces the value-tree

θ ′A = 0〈�0〈(δA �→ �0)〈�0〈sns-fun〉〉, pick-hood〉, 0〉,

where the root of the first subtree of θ ′A is the anonymous function value �0 (defined above), and
the second subtree of θ ′A, 0, has been produced by the evaluation of the body 0 of �0. After their
first firing, devices δB and δC produce the value-trees

θ ′B = 0〈�0〈(δB �→ �0)〈�0〈sns-fun〉〉, pick-hood〉, 0〉
θ ′C = 3〈�1〈(δC �→ �1)〈�1〈sns-fun〉〉, pick-hood〉,θC 〉,

respectively, where θC is the value-tree for e given in the previous example.
Suppose that device δA is the first device that fires a second time, and its pick-hood selects

the function shared by device δC . The computation is performed with respect to the value tree
environment Θ′A = (δA �→ θ ′A, δB �→ θ ′B , δC �→ θ ′C) and produces the value-tree

1〈�1〈ϕ ′〈�1〈sns-fun〉〉, pick-hood〉,θ ′′A 〉,

where ϕ ′ = (δA �→ �1,δC �→ �1) and θ ′′A = 1〈(δA �→ 1,δC �→ 3)〈1〈sns-num〉〉, min-hood〉, since, ac-
cording to rule [E-D-APP], the evaluation of the body e′ of �1 (which produces the value-tree θ ′′A) is

performed with respect to the value-tree environment π �1 (Θ′A) = (δC �→ θC). Namely, device δA

executed the anonymous function value �1 received from δC , and this was able to correctly align
with execution of �1 at δC , gathering values perceived by sns-num of 1 at δA and 3 at δC .

4.2 Network Semantics (Small-step Operational Semantics)

We now provide an operational semantics for the evolution of whole networks, namely, for mod-
elling the distributed evolution of computational fields over time. Figure 8 (top) defines key syn-
tactic elements to this end. Ψ models the overall status of the devices in the network at a given

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

A Higher-Order Calculus of Computational Fields 5:29

time, as a map from device identifiers to value-tree environments. From it we can define the state
of the field at that time by summarising the current values held by devices as the partial map
from device identifiers to values defined by ϕ (δ) = ρ (Ψ(δ) (δ)) if Ψ(δ) (δ) exists. τ models network

topology, namely, a directed neighbouring graph, as a map from device identifiers to set of iden-
tifiers. Σ models sensor (distributed) state, as a map from device identifiers to (local) sensor state
(as described in the previous section). Then, Env (a couple of topology and sensor state) models
the system’s environment. So, a whole network configuration N is a couple of a status field and
environment.
F (·) in Figure 8 (bottom), rule [N-FIR], is a given filtering operation meant to clear out old stored

values from the value-tree environments in Ψ, usually based on space/time tags attached to value-
trees: an example of such a filter is given in Example 4.1. We use the following notation for status

fields. Let δ �→ Θ denote the map sending each device identifier in δ to the same value-tree en-
vironment Θ. Let Θ0[Θ1] denote the value-tree environment with domain dom(Θ0) ∪ dom(Θ1)
coinciding with Θ1 in the domain of Θ1 and with Θ0 otherwise. Let Ψ0[Ψ1] denote the status field
with the same domain as Ψ0 made of δ �→ Ψ0 (δ)[Ψ1 (δ)] for all δ in the domain of Ψ1, δ �→ Ψ0 (δ)
otherwise.

We define network operational semantics in terms of small-steps transitions of the kind N
act−−→

N ′, where act is either a device identifier in case it represents its firing, or label env to model
any environment change. This is formalised in Figure 8 (bottom). Rule [N-FIR] models a computa-
tion round (firing) at device δ : it takes the local value-tree environment filtered out of old values
F (Ψ)(δ); then by the single device semantics it obtains the device’s value-tree θ , which is used to
update the system configuration of δ ’s neighbours. Recall that the local sensors Σ(δ) are used by

the auxiliary function �b�Θ,σ
δ

that gives the semantics to the built-in functions. Rule [N-ENV] takes

into account the change of the environment to a new well-formed environment Env ′. Let δ be the
domain of Env ′. We first construct a status field Ψ0 associating to all the devices of Env ′ the empty
context ∅. Then, we adapt the existing status field Ψ to the new set of devices: Ψ0[Ψ] automatically
handles removal of devices, map of new devices to the empty context, and retention of existing
contexts in the other devices.

Remark 8 (On device shutdown and boot). The shutdown and the boot of a device δ are modelled
by two applications of rule [N-ENV]: one deleting δ from the domain of the status field and another
inserting it. Note that when a device δ is shutdown, data from neighbours is lost as well as data
from δ itself.

Example 4.1. In a possible implementation (by adding a “time tag” to every value tree tθ and

action label tact) we can define F (Ψ) as the mapping from δ to F (Θ), where

F (Θ) = {δ �→ θ ∈ Θ : tθ ≥ tact − td}

(recall that td is the decay parameter).

Example 4.2 (A continuation of Example 4.1 that requires some notions given in Sec-

tion 3.1). Furthermore, we can proceed in analogy with Example 3.1 and define a sequence of
network evolution rules from a set of paths P together with a neighbouring predicate between
positions and time tags for firings. In particular, we introduce the following:

• an application of Rule [N-ENV] updating with the topology τ given by

τ (δ) = {δ ′ : neigh(P(δ) (t), P(δ ′) (t))}

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

5:30 G. Audrito et al.

for any time t corresponding to an activation change for a device (i.e., a border of an interval
in which a path P(δ) is defined); and

• an application of Rule [N-ENV] as above for any time tϵ corresponding to the firing ϵ of a
device, each of them followed by an application of Rule [N-FIR] on device δϵ .

The above sequence of rule applications is to be intended as sorted time-wise.

5 REFINED TYPING

In this section, we present a variant of the Hindley-Milner type system [21] for the proposed
calculus, that is, a polymorhic refinement of the one presented in Section 2, useful to type non-
trivial specifications.

This type system has four main kinds of types and is designed specifically to guarantee the
following two properties:

Type Preservation For every well-typed closed expression e of type T , if the evaluation of e
on event ϵ yields a result v, then v is of type T .

Domain Alignment For every well-typed closed expression e of type T , if the evaluation of e
at event ϵ yields a neighbouring field value ϕ, then the domain of ϕ consists of the device
δ of event ϵ and of its aligned neighbours, that is, the neighbours that have calculated the
same expression e before the current evaluation started.

Domain alignment is key to guarantee that the semantics correctly relates the behaviour of nbr
and function application: namely, whenever two neighbouring field values are combined in an
expression e, domain alignment grants that they share the same domain (consisting of the cur-
rent device and the neighbours that have calculated the same expression e). Moreover, domain
alignment is required to provide lexical scoping: Without it, information may leak unexpectedly
between devices that are evaluating different functions or may be “blocked” from passing be-
tween devices evaluating the same function. For a formal definition of domain alignment, see
Theorem 6.1.

This section is organized as follows: First, Section 5.1 introduces a refinement of the monomor-
phic type system given in Section 2.4, whose peculiar features are then illustrated in Section 5.2
by means of examples; then, Section 5.3 presents the variant of the Hindley-Milner type system
for HFC and points out that it corresponds to the refined monomorphic type system of Setion 5.1.

5.1 A Refined Monomorphic Type System for HFC

We now present a refined monomorphic type system, which extends the one in Figure 2 with two
additional categories of types (return types and local return types) and several additional restrictions
in the typing rules.

The syntax of types is given in Figure 9 (top), together with a graphical representation of their
inclusion relations. A type T is either a local type or a field type. A local type L is either a built-

in type B (numbers, Booleans, pairs, lists etc.), or the type of a function (T) → R (possibly of
arity zero). Note that a function always has local type, regardless of the local or field type of its
arguments. A return type R is either a local return type, or a field type. Notice that these types
are the only ones allowed to appear on the right-hand side of the → operator, while any type
is allowed on the left-hand side. A local return type S is either a built-in type B or the type of a

function (T) → S (possibly of arity zero). A field type F is the type field(S) of a field whose range
contains values of local return type S. The type system does not contemplate types of the kind
(. . .) → · · · → (. . .) → F (functions that return functions that return neighbouring field values),
since expressions involving such types can be unsafe (as exemplified in the next subsection).

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

A Higher-Order Calculus of Computational Fields 5:31

Fig. 9. Refined monomorphic typing for HFC expressions.

The type rules are given in Figure 9 (bottom). The typing judgement for expressions is of the
form “S;M �′ e : T ”, to be read: “e has type T under the type-set assumptions S (for data con-
structors, built-in and defined functions) and the type assumptionsM” (for the program variables
occurring in e).

Rules [M-VAR’], [[M-DAT’], [[M-FLD’], [M-N-FUN’], and [M-APP’] are analogous to the corresponding rules

in Figure 2, except that constructors are assumed to operate on local return types c : (S) → S, field

values are built from local return types � : S, and functions are assumed to have a legal return type

f : (T) → R.

Rule [M-A-FUN’] (for anonymous functions) ensures that anonymous function expressions (x)
τ
=> e

have return type in R and do not contain free variables of field type to avoid domain alignment
errors (as will be exemplified in Section 5.2).

Rule [M-REP’] (for rep-expressions) ensures that both the variable x, its initial value e1 and the
body e2 have (the same) local return type. In fact, allowing field types might produce domain

mismatches, while a rep-expression of type (T) → F would be a non-constant (thus not safely
applicable) function returning neighbouring field values.

Rule [M-NBR’] (for nbr-expressions) ensures that the body e of the expression has a local return
type. This prevents the attempt to create a “field of fields” (i.e., a neighbouring field value that maps
device identities to neighbouring field values) or a “neighbouring field ϕ of functions returning
neighbouring field values” (as there would be no type-safe way to produce or use a non-constant
such ϕ).

Notice that the present system can be extended to cover defined functions and whole programs
by means of rules analogous to those in Section 2.4.2.

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

5:32 G. Audrito et al.

[M-FUNCTION’]

S, d : {T (1) → R(1) }; x : T
(1) �′ e : R(1) · · · S, d : {T (m) → R(m) }; x : T

(m) �′ e : R(m) m ≥ 1

S �′ def d(x) {e} : {T (1) → R(1), . . . , T
(m) → R(m) }

[M-PROGRAM’]
Fi = (def di (_) _) Si−1 �′ Fi : Lseti Si = Si−1, di : Lseti (i ∈ 1 . . .n)
Sn ; ∅ �′ e : T

S0 �′ F1 · · · Fn e : T

Since each of those rules is a restriction of a corresponding rule in Figure 2, the present type
system gives to any expression a subset of the types given by the type system in Section 2.4.1.

Theorem 5.1 (System �′ refines system �). If S0 �′ P : T, then S0 � P : T.

Proof. See Appendix A.1. �

5.2 Examples

The type system in the previous section enforces some peculiar restrictions, designed to prevent ill-
behaving programs to be typed. We now clarify these peculiar features by means of a few examples.
In the code to come, syntax is coloured to increase readability: grey for comments, red for field
calculus keywords, and blue for functions (both user defined and built in).

In the first-order type system presented in Reference [56] one peculiar check was introduced in
the type system: a conditional if expression could not have field type. In fact, such an expression
produces a field combining two subfields where values, which are neighbouring field values, are
restricted in different ways, each to the neighbours that evaluated the conditional guard in the
same way. Such a combination, hence, is shown to contradict domain alignment as described by the
following example—in the present language conditional branching is modeled by the branching
implicit in function application (see Remark 3), thus similar issues apply to functions returning
neighbouring field values. Consider the expression ewrong:

This expression violates domain alignment, thus provoking conflicts between field domains. When
the conditional expression is evaluated on a device with uid (unique identifier) equals to 1, func-
tion f = (x) => x is obtained whence applied to nbr{0} in the restricted domain of devices who

computed the same f in their last evaluation round, that is the domain {1}. Thus, at device 1 the
function application returns the neighbouring field value ϕ = 1 �→ 0, which cannot be combined
with nbr{uid} whose (larger) domain consists of all neighbours of device 1. A complementary
violation occurs for all neighbors of device 1, which compute a neighbouring field value whose
domain lacks device 1.

However, not all expressions involving functions returning fields are unsafe. For instance, con-
sider the similar expression esafe:

In this case, on every device the same function f = (x) => x is obtained whence applied to nbr{0},
that is, no alignment is required thus the function application returns the whole neighbouring
field value ϕ = nbr{0}, which can be safely combined with nbr{uid}. This suggests that functions

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

A Higher-Order Calculus of Computational Fields 5:33

returning neighbouring field values are safe as long as they evaluate to the same function regardless

of the device and surrounding environment.
The type system presented in the previous Section 5 ensures this distinction. Besides perform-

ing standard checks, the type system performs the following additional checks to ensure domain
alignment:

• Functions returning neighbouring field values are not allowed as return type. That is, all func-
tions (both user defined and built-ins, and as a consequence also rep statements) don’t
return a “function returning neighbouring field values.” This prevents the possibility of hav-
ing a well-typed expression e that evaluates to different functions returning neighbouring
field values on different devices, thus allowing undesired behaviours such as in the example
described above. In fact, if we expand the conditional in ewrong according to Remark 3, then
we obtain

in which both the entire mux expression and both of its two branches have the disallowed
type () → field(num) → field(num).

• In an anonymous function expression (x)
τ
=> e, the free variables y of e that are not in x have

local type. This prevents a device δ from creating a closure e′ = (x)
τ
=> e[y := ϕ] containing

neighbouring field values ϕ (whose domain is by construction equal to the subset of the
aligned neighbours of δ). The closure e′ may lead to a domain alignment error since it may
be shipped (via the nbr construct) to another device δ ′ that may use it (i.e., apply e′ to some
arguments); and the evaluation of the body of e′ may involve use of a neighbouring field

value ϕ in ϕ such that the set of aligned neighbours of δ ′ is different from the domain of ϕ.
For instance, the expression e′wrong:

(where pick-hood is a built-in function that returns the value of a randomly chosen device
among a device neighbours) that should have type num, is ill typed. Its body will fail to
type-check since it contains the function () => min-hood(x + nbr{0}) with free variable x
of field type. This prevents conflicts between field domains since:
• when the expression is evaluated on a device δ , the closure

where ϕ2 is the neighbouring field value produced by the evaluation of nbr{0} on δ
(whose domain consists of the aligned neighbours of the device δ—i.e., the neighbours
that have evaluated a corresponding occurrence of e′wrong in their last evaluation round),
will be made available to other devices; and

• when the expression is evaluated on a device δ ′ that has δ as neighbour and the eval-
uation of the application of pick-hood returns the closure � received from δ ; then the
neighbouring field value ϕ ′1 produced by the evaluation of the subexpression nbr{0} of
� on δ ′ would contain the aligned neighbours of the device δ ′ (i.e., the neighbours that
have evaluated a corresponding occurrence of e′wrong in their last evaluation round) hence
may have a domain different from the domain ofϕ2, leaving the neighbouring field values
mismatched in domain at the evaluation of the sum occurring in � on δ ′.

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

5:34 G. Audrito et al.

• In a rep-expression rep(e1){(x) => e2} it holds that x, e1 and e2 have (the same) local return

type. This prevents a device δ from storing in x a neighbouring field value ϕ that may be
reused in the next computation round of δ , when the set of the set of aligned neighbours
may be different from the domain of ϕ. For instance, the expression e′′wrong:

that should have type num, is ill typed.
• In an nbr-expression nbr{e} the expression e has local type. This prevents the attempt to cre-

ate a “field of fields” (i.e., a neighbouring field value that maps device identifiers to neigh-
bouring field values)—which is pragmatically often overly costly to maintain and commu-
nicate, as well as further complicating the issues involved in ensuring domain alignment.

5.3 Hindley-Milner Typing for HFC

In this section, we present a variant of the Hindley-Milner type system that corresponds to the
refined monomorphic type system introduced in Section 5.1.

The syntax of types and type schemes is given in Figure 10 (top). Types are the same as in the
refined monomorphic typing, with the addition of four kinds of type variables s , r , l , t—similarly
as the Standard ML type system features two kinds (equality and non-equality types [42]). These
different kinds allow functions to behave polymorphically while enforcing the same ad-hoc re-
strictions of the monomorphic type system (necessary to guarantee type preservation and domain
alignment), as shown in Example 5.2. Local type schemes, ranged over by LS, support typing poly-
morphic uses of data constructors, built-in functions and user defined-functions. Namely, for each

data constructor, built-in function or user-defined function g there is a local type scheme ∀tlrs .L,

where t , l , r , and s are all the type variables occurring in the type L, respectively. Each use of g can

be typed with any type obtained from ∀tlrs .L by replacing the type variables t with types, l with
local types, r with return types and s with local return types.

Type environments, ranged over by A, collect type assumptions for program variables, while

Local-type-scheme environments, ranged over by D and written g : LS, collect the local type
schemes for the data constructors and built-in functions together with the local type schemes
inferred for the user-defined functions. In particular, the distinguished built-in local-type-scheme

environment D0 associates a local type scheme to each data constructor c and built-in function
b—Figure 11 shows the local type schemes for the data constructors and built-in functions used
throughout this article (corresponding the set of monomorphic types given in Figure 3).

The typing rules are given in Figure 10 (bottom). The typing judgement for expressions is of the
form “D;A � e : T”, to be read: “e has type T under the local-type-scheme assumptions D and
the type assumptions A.” Note that the type rules are syntax directed, so they straightforwardly
describe a type inference algorithm, and that there is no need for a rule typing neighbouring field
expressions ϕ, since they are not allowed to appear in source programs.

All the expression typing rules except Rule T-DAT] and Rule [T-N-FUN] are analogous to the corre-
sponding ones in the refined monomorphic type system (Figure 9). Rule [T-N-FUN] (for built-in and

user-defined function names) ensures that the local type schemeD (g) = ∀tlrs .L associated to the

built-in or user-defined function name g is instantiated by substituting the type variables t , l r , s
correctly with types in T , L, R, S, respectively. Rule [T-DAT] (for data values) allows us to assign to

the data constructor c any instance of the type scheme type D0 (c) = ∀tlrs .L that meets the types
of the given arguments, which need to be (local) values.

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

A Higher-Order Calculus of Computational Fields 5:35

Fig. 10. Hindley-Milner typing for HFC expressions, function declarations, and programs.

Function declaration typing (represented by judgement “D � F : LS”) and program typing (rep-
resented by judgement “D0 � P : T”) are almost standard and, for what concerns the refinement,
analogous to those defined in Section 5.1. We say that a program P is well typed to mean that
D0 � P : T holds for some type T .

Remark 9 (On automatic type inference). Since the type system in Figure 10 is a customisation of
the Hindley-Milner type system [21] to the field calculus, there is an algorithm (not presented here)
that, given an expression e, type assumptions for its free variables, and type scheme assumptions
for data constructors, built-in and user-defined functions: either fails (if the expression cannot be

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

5:36 G. Audrito et al.

Fig. 11. Local type schemes for the data constructors and the built-in functions used throughout this article.

typed under the given type assumptions) or returns its principal type, i.e., a type such that all the
types that can be assigned to e by the type inference rules can be obtained from the principal
type by substituting type variables with types. This algorithm is based on a unification routine as
in Reference [40], which exists since the type variables t , l , r , s form a Boolean algebra (i.e., s is
exactly the intersection of l and r , while t is their union).

Example 5.2 (Parametric Types). Consider the following variants of an “apply” function with
their corresponding principal types, showing how the range of a type variable is automatically
tuned depending on the contexts in which it is used.

(x, y) => x(y) : ∀tr . ((t) → r , t) → r
(x, y) => x(y + 1) : ∀r . ((num) → r , num) → r
(x, y) => ((z) => x(y)) : ∀tlr . ((l) → r , l) → ((t) → r)
(x, y) => nbr{x(y)} : ∀ts . ((t) → s, t) → field(s)
(x, y) => rep(y){(z) => x(z)} : ∀s . ((s) → s, s) → s

Derivations of these typing judgements can be straightforwardly obtained since the type system
is syntax directed.

The present type system corresponds closely to the refined monomorphic type system pre-
sented in Section 5.1, as they assign the same monomorphic types to expressions and programs.
To formally state this result, we first introduce a convent auxiliary notation: Given a local type

scheme LS = ∀tlrs .L, the set of the monomorphic instances of LS, denoted by MS(LS), is the set of

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

A Higher-Order Calculus of Computational Fields 5:37

monomorphic types defined as follows:

MS(∀tlrs .L) = {L[t := T , l := L, r := R, s := S] | T monomorphic types,

L monomorphic local types,

R monomorphic return types,

S monomorphic local return types}.

Notice that MS(LS) is infinite whenever LS is not monomorphic. Thus, we cannot assume that
a monomorphic environment S corresponds to a type-scheme environment D for user-defined
functions. However, we can assume the correspondence holds for built-in functions, as their type-
sets are allowed to be infinite.

Theorem 5.3 (Hindley-Milner typing � vs monomorphic typing �′). Assume that S0 andD0

have the same domain and for each g in their domain it holds that S0 (g) = MS(D0 (g)). Then, for

any monomorphic type T , it holds that D0 � P : T if and only if S0 �′ P : T.

Proof. See Appendix A.2. �

This above result can be combined with Theorem 5.1 to obtain that any monomorphic type
assigned to an expression e or program P by the present type system can also be assigned to e or
P by the type system in Section 2.4.

6 PROPERTIES OF HFC

In this section, we present the main properties of HFC, namely (1) type preservation and domain
alignment, intuitively meaning that HFC is “safe” in that it maintains lexical scoping in its handling
of fields and computations with fields, and (2) computational adequacy and abstraction, intuitively
meaning that any aggregate-level program described within the denotational semantics is correctly
implemented by the corresponding local actions of the operational semantics.

We remark that throughout this article we assume that the execution of every firing event ϵ
terminates (cf. Remark 4) and is instantaneous and that every event happens at a distinct moment
in time.

6.1 Device Computation Type Preservation and Domain Alignment

Here we formally state the device computation type preservation and domain alignment properties
(cf. Section 5) for the HFC calculus. To state these properties we introduce the notion of well-
formed value-tree environment for an expression.

Given a closed expression e, a local-type-scheme environment D, a type environment A = x :

T , and a type T such thatD;A � e : T holds, the set WFVT (D,A, e) of the well-formed value-trees

for e is inductively defined as follows. θ ∈ WFVT (D,A, e) if and only if v = ρ (θ) has type T and

• if e is a value, θ is of the form v〈〉;
• if e = nbr{e1}, θ is of the form v〈θ1〉;
• if e = rep(e1){(x) => e2}, θ is of the form v〈θ1,θ2〉where θ2 is well-formed for e2 with the

additional assumption x : T ;
• if e = en+1 (e), θ is of one of the following two forms:

—v〈θ ,θn+1〉 where f = ρ (θn+1) is a built-in function,

—v〈θ ,θn+1,θn+2〉 where f is not a built-in function and θn+2 is well-formed with respect to

en+2 = body (f) with the additional assumptions that args(f) : T
′

where e : T
′
.

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

5:38 G. Audrito et al.

In the above definition, θi is always assumed to be in the corresponding WFVT (D,A, ei).
The set WFVTE(D,A, e) of the well-formed value-tree environments for e is such that Θ ∈
WFVTE(D,A, e) if and only if Θ = δ �→ θ , where each θi is in WFVT (D,A, e).

As these notions are defined, we can now formally state the type preservation and domain
alignment properties (cf. Section 5).

Theorem 6.1 (Device computation type preservation and domain alignment). LetA = x :

T, D; ∅ � v : T, so that length(v) = length(x). If D;A � e : T, Θ ∈ WFVTE(D,A, e) and δ ; Θ;σ �
e[x := v] ⇓ θ , then:

(1) θ ∈ WFVT (D,A, e),
(2) D; ∅ � ρ (θ) : T, and

(3) if ρ (θ) is a neighbouring field value ϕ then dom(ϕ) = dom(Θ) ∪ {δ }.

Proof. See Appendix A.3. �

6.2 Computational Adequacy and Abstraction

We are now able to prove that the denotational semantics introduced in Section 3 is computa-
tionally adequate and satisfies a form of abstraction, that we call computaional abstraction, with
respect to the operational semantics introduced in Section 4. We prove these properties for pro-
grams that are well typed with respect to type system given in Section 5—because of Theorem 5.3
we can consider only monomorphic types for expressions.

The notions of adequacy and abstraction are presented in literature in many (slightly) different
forms (see, e.g., References [20, 52]), none of them fitting without modifications into the setting of
HFC. According to Reference Curien [20], given a typed sequential language admitting function
types and function application, we say that:

• The denotational semantics is computationally adequate iff for any closed expression e and
value v of observable type T , e evaluates to v (operationally) if and only if �e� = �v� (de-
notationally).

• Two possibly non-closed expressions e1, e2 are operationally equivalent (in formulas, e1 =op

e2) iff for all contexts C (terms with a hole) such that C[ei] has observable type, C[e1]
evaluates to v if and only if C[e2] evaluates to v.

• Full abstraction holds iff given any two possibly non-closed expressions e1, e2, their deno-
tations coincide if and only if they are operationally equivalent:

�e1� = �e2� ⇔ e1 =op e2.

The left-to-right direction is called adequacy and is a consequence of computational ade-
quacy for compositional semantics, whereas the other direction is the hard one.

These notions need to be adjusted for the field calculus to accommodate for the influence of the
environment and of the previous rounds of computations. Idea for achieving this is to add a “for
all environments” quantifier inside any operational or denotational statement.

Consider a program emain interpreted both

• operationally through a sequence of transitions that we refer as operational evolution;
• denotationally through a set of events (with their associated information and neighbours

function) and corresponding constructor and built-in interpretation functions C�·�,B�·�,
which we refer as denotational environment.

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

A Higher-Order Calculus of Computational Fields 5:39

Assume that each event ϵ is in bijection with one occurrence of a transition
δϵ−−→. Let Ψϵ , τϵ ,

Σϵ denote the value of the status field, topology, and sensor map just before the occurrence cor-
responding to ϵ . Let Θϵ = F (Ψϵ) (δϵ), σϵ = Σϵ (δϵ) denote the value-tree environment and sensor
state used in the computation of the firing corresponding to ϵ , and let θϵ denote the outcome of
this computation.

We say that the denotational environment is coherent with the operational evolution of a net-
work if and only if:

(1) For each ϵ in E, Θϵ =
{
δϵ ′ �→ θϵ ′ : neigh(ϵ, ϵ ′)

}
. This is equivalent to the assertion that for

each ϵ , ϵ ′ in E, neigh(ϵ, ϵ ′) holds if and only if:
• δϵ ∈ τϵ ′ (δϵ ′);
• there is no further ϵ ′′ between ϵ ′ and ϵ such that δϵ ′ = δϵ ′′ and δϵ ∈ τϵ ′′ (δϵ ′′);
• F (Ψϵ) does not filter out ϵ ′ (referring to Example 4.1: tϵ ′ ≥ tϵ − td).

(2) C�c� is such that E�c(�)�E (ϵ) = C�c�(E���E (ϵ)) for all E ⊆ E and ϵ ∈ E.
(3) B�b� operates pointwise on its arguments (i.e., does not incorporate communication be-

tween events) and correctly translates the behaviour of �b�Θ,σϵ

δϵ

, that is:

E��b�Θ,σϵ

δϵ

(v)�E (ϵ) = B�b�
(
E�v�E

)
(ϵ)

for all values v of the correct type and E = {ϵ ′ ∈ E
− (ϵ) : δϵ ′ ∈ dom(Θ)}.16

We remark that the possible implementations outlined in Examples 3.1 and 4.1 are coherent.
Given this coherence condition, we can prove that computational adequacy holds in its strongest
possible form, where every type is assumed to be observable.

Theorem 6.2 (Computational Adeqacy). Assume that the denotational environment is coher-

ent with the operational evolution of the network and e is well typed (that is, D; ∅ � e : T).

Then E�e�E (ϵ) = E�vϵ �E (ϵ) for each ϵ in E, where vϵ = ρ (θϵ) is the operational outcome of ex-

pression e in fire ϵ .

Proof. See Appendix A.4. �

Let us now consider how full abstraction can be formulated for field calculus, through the fol-
lowing two predicates:

• e1 �op e2 for closed field calculus expressions ei if and only if e1 and e2 evaluate to the
same values in each firing of any possible operational evolution;

• e1 =op e2 for possibly non-closed field calculus expressions ei iff for all contextsC such that
C[ei] has observable type,C[e1] andC[e2] evaluate to the same values in each firing of any
possible operational evolution.

Even though relation =op mirrors more closely the classical notions of full abstraction, it is not
suitable to be used since the field calculus operational semantics includes checks for syntactic
equality.

Proposition 6.3 (Syntactic Eqality). Let e1, e2 be possibly non-closed field calculus expres-

sions. Then e1 =op e2 if and only if e1 = e2 (syntactically).

Proof. See Appendix A.4. �

16We recall that B�b� is based on the sensor information contained in events ϵ , while �b�Θ,σ
δ

is similarly based on the

sensor state σ .

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

5:40 G. Audrito et al.

Proposition 6.3 implies that the only fully abstract semantics (in a classical sense) for a field
calculus is the trivial semantics �e� = e. Furthermore, it implies that common equivalences in
classical scenarios do not hold in this case:

• It is not true that computational adequacy implies the left-to-right direction of full abstrac-
tion while the right-to-left direction is the hard one. Instead, the right-to-left direction is
trivial (much unlike the PCF case [48]) and the left-to-right direction is false for any deno-
tational semantics other than the trivial semantics.

• It is also not true that =op for closed expressions is equivalent to �op , as it would be in a
classical scenario.

Altogether, these observations suggest that the best formulation of abstraction we can have for
a field calculus is the following computational abstraction property:

∀E.E�e1�E = E�e2�E ⇔ e1 �op e2,

where E is meant to include all the informations about the denotational environment and e1, e2

are closed expressions. The operational and denotational semantics hereby presented satisfy com-
putational abstraction, provided that it holds for values of built-in local type. We say that built-in

constructors are faithful iff any two syntactically different expressions c(�), c′(�
′
) necessarily de-

note different objects.17

Theorem 6.4 (Computational abstraction). Suppose that constructors for built-in local types

are faithful. Then for every closed expressions e1, e2, the following holds:

∀E. E�e1�E = E�e2�E ⇔ e1 �op e2,

where E includes all the informations about the denotational environment and e1 �op e2 if and only

if e1 and e2 evaluate to the same values in each firing of any possible operational evolution.

Proof. See Appendix A.4. �

6.3 Applications of Computational Abstraction

Thanks to the computational abstraction result, the denotational semantics can be used to formu-
late and prove conveniently intuitive facts about the calculus, which are then automatically true
for practical implementations of HFC (which are built through the operational semantics). Few
examples of such facts follows.

Alignment. Given any expression e of field type, E�e�E (ϵ) is a neighbouring field with domain
E− (ϵ), provided that built-in functions with field return type respect this condition. This fact can
be easily checked in the rule for nbr. In the case of function application, notice that e′ has to be a

value since it has type (T) → F . Thus E (e′, ϵ) = E and the thesis follows by inductive hypothesis
using nbr and built-in functions as base case.

Restriction. Given any expression e0 executed in domain E and V = E�e0�E (ϵ) for some ϵ ∈ E,
we say that (E�e0�E)−1 (V) = E (e0, ϵ) is a cluster. We say that function call has the restriction
property to mean that well-typed expression e0 (e1, . . . , en) computes in isolation in each such
cluster.

Namely, given e0 and any of its clusters E (e0, ϵ), let e1, . . . , en and e′1, . . . , e
′
n be such that the

denotation of ei coincides with that of e′i on E (e0, ϵ), that is E�ei �E |E (e0,ϵ) = E�e′i �E |E (e0,ϵ) . Then

E�e0 (e1, . . . , en)�E (ϵ) = E�e0 (e′1, . . . , e
′
n)�E (ϵ) for any ϵ ∈ E (e0, ϵ).

17This property fails, for example, if we include constructors Succ, Pred for type num. However, it can hold for example if

we assume to have a distinguished constructor n for every integer n.

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

A Higher-Order Calculus of Computational Fields 5:41

This means that computation of e0 inside cluster E (e0, ϵ) is independent of the outcome of
computation outside it, and of events outside it. This fact reflects the intuition beyond function
application given in Section 2 and implies the analogous property for the first-order calculus with
conditionals (since the conditional expression can be simulated by function application).

rep-expressions. Consider an expression e = rep(e1){(x) => e2} and suppose that ϵ is a
“source” event in E, that is, there exists no ϵ ′ in E such that neigh(ϵ, ϵ ′). Then E�e�E (ϵ) =
E�((x) => e2) (e1)�E .

Furthermore, assume now that e does not contain nbr statements or non-pure operators and ϵ
is any event in E. Then E�e�E (ϵ) = E�e�E′ (ϵ), where E ′ is the subset of E containing only the
events on device δϵ .

7 RELATED WORK

The work on field calculus presented in this article builds on a sizable body of prior work. We
begin with a general review of works on the programming of aggregates, and following this, we
compare this article with previous work by the same authors.

7.1 Macro-Programming and the Aggregation Problem

One of the key challenges in software engineering for collective adaptive systems is that such
systems frequently comprise a potentially high number of devices (or agents) that need to interact
locally (e.g., interacting by proximity as in wireless sensor networks), either of necessity or for
the sake of efficiency. Such systems need to carry on their collective tasks cooperatively, and to
leverage such cooperation to adapt to unexpected contingencies such as device failures, loss of
messages, changes to inputs, modification of network topology, and so on. Engineering locally-
communicating collective systems has long been a subject of interest in a wide variety of fields,
from biology to robotics, from networking to high-performance computing, and many more.

Despite the diversity of fields involved, however, a uniting has been the search for appropriate
mechanisms, models, languages and tools to organise cooperative computations as carried out by
a potentially vast aggregation of devices spread over space.

A general survey of work in this area may be found in References [8, 54], which we summarise
and complement here. Across the multitude of approaches that have been developed in the past, a
number of common themes have emerged, and prior approaches may generally be understood as
falling into one of several clusters in alignment with these themes:

• Foundational approaches to group interaction: These approaches present mathematically
concise foundations for capturing the interaction of groups in complex environments, most
often by extending the archetypal process algebra π -calculus, which originally models flat
compositions of processes. Such approaches include various models of environment struc-
ture (from ”ambients” to 3D abstractions) [15, 16, 43], shared-space abstractions by which
multiple processes can interact in a decoupled way [13, 55], and attribute-based models
declaratively specifying the target of communication so as to dynamically create ensem-
bles [26].

• Device abstraction languages: These approaches allow a programmer to focus on cooperation
and adaptation by making the details of device interactions implicit. For instance, TOTA [39]
allows one to program tuples with reaction and diffusion rules, while in the SAPERE ap-
proach [58] such rules are embedded in space and apply semantically, and the στ -Linda
model [57] manipulates tuples over space and time. Other examples include MPI [41],
which declaratively expresses topologies of processes in supercomputing applications,

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

5:42 G. Audrito et al.

NetLogo [51], which provides abstract means to interact with neighbours following the
cellular automata style, and Hood [59], which implicitly shares values with neighbours;

• Pattern languages: These approaches provide adaptive means for composing geometric
and/or topological constructions, though with little focus on computational capability. For
example, the Origami Shape Language [44] allows the programmer to imperatively specify
geometric folds that are compiled into processes identifying regions of space, Growing Point
Language [19] provides means to describe topologies in terms of a “botanical” metaphor
with growing points and tropisms, ASCAPE [35] supports agent communication by means
of topological abstractions and a rule language, and the catalogue of self-organisation pat-
terns in Reference [28] organises a variety of mechanisms from low-level primitives to com-
plex self-organization patterns.

• Information movement languages: These are the complement of pattern languages, pro-
viding means for summarising information obtained from across space-time regions of
the environment and streaming these summaries to other regions, but little control over
the patterning of that computation. Examples include TinyDB [38] viewing a wireless
sensor network as a database, Regiment [45] using a functional language to be com-
piled into protocols of device-to-device interaction, and the agent communication language
KQML [29].

• Spatial computing languages: These provide flexible mechanisms and abstractions to explic-
itly consider spatial aspects of computation, avoiding the limiting constraints of the other
categories. For example, Proto [7] is a Lisp-like functional language and simulator for pro-
gramming wireless sensor networks with the notion of computational fields, and MGS [32]
is a rule-based language for computation of and on top of topological complexes.

Overall, the successes and failures of these language suggest, as observed in Reference [9], that
adaptive mechanisms are best arranged to be implicit by default, that composition of aggregate-
level modules and subsystems must be simple, transparent, and result in highly predictable be-
haviours, and that large-scale collective adaptive systems typically require a mixture of coordina-
tion mechanisms to be deployed at different places, times, and scales.

7.2 Aggregate Computing with Fields

At the core of the approach presented in this article is a shift from individual devices computing
single values, to whole networks computing fields, where a field is a collective structure that maps
each device in some portion of the network to locally computed values over time. Accordingly,
instead of considering computation as a process of manipulating input events to produce output
events, computing with fields means to take fields as inputs and produce fields as outputs.

This change of focus has a deep impact when it comes to the engineering of complex applications
for large networks of devices, in which it is important that the identity and position of individual
devices should not exert a significant influence on the operation of the system as a whole. Ap-
plying the field approach to building such systems, one can create reusable distributed algorithms
and define functions (from fields to fields) as building blocks, structure such building blocks into
libraries of increasing complexity, and compose them to create whole application services [9] up to
a point in which the focus on individual agent behaviour completely vanishes. This compositional
stacking of increasingly complex distributed algorithms is at the core of the aggregate comput-

ing paradigm [9] and can be taken even further by proving that the “building block” algorithms
satisfy certain properties preserved by functional compositions, such as self-stabilisation [53] or
consistency with a continuum model [11], thus implying the same properties hold for applications
composed using those building blocks [9].

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

A Higher-Order Calculus of Computational Fields 5:43

The calculus that we present in this article is a higher-order extension of the work in Reference
[23] to include embedded first-class functions, with the primary goal of allowing field computa-
tions to handle functions just like any other value while clarifying syntax and semantics of the
field-based computational model. This extension hence provides a number of advantages:

• Functions can take functions as arguments and return a function as result (higher-order
functions). This is key to defining highly reusable building block functions, which can then
be fully parameterised with various functional strategies.

• Functions can be created “on the fly” (anonymous functions). Among other applications,
such functions can be passed into a system from the external environment, as a fields of
functions considered as input coming a sensor modelling humans adding new code into a
device while the system is operating.

• Functions can be moved between devices in the same way our calculus allows values to
move, which allows one to express complex patterns of code deployment across space and
time.

• Similarly, in our calculus a function value is naturally interpreted as a field of functions
(possibly created on the fly and then shared by movement to all devices), and can be used
as an “aggregate function” operating over a whole spatial domain.

The last feature is critical: In considering fields of function values, we took the elegant approach
in which making a function call acts as a branch, with each function in the range of the field applied
only on the subspace of devices that hold that function, allowing different pieces of code to be
executed without unwanted interactions. When the field of functions is constant, this implicit
branch reduces to be precisely equivalent to a standard function call. This means that we can
view ordinary evaluation of a function f as equivalent to creating a function-valued field with
a constant value f , then making a function call applying that field to its argument fields. This
elegant transformation is one of the key insights of this article, enabling first-class functions to be
implemented with relatively minimal complexity. This interpretation of function calls as branching
also turns out to be very flexible, as it generally allows the dynamic partitioning of the network
into subspaces, each executing a different subprogram, and such programs can be even dynamically
injected into some device and then be diffused around.

8 CONCLUSION AND FUTURE WORK

Conceiving emerging distributed systems in terms of computations involving aggregates of de-
vices, and hence adopting higher-level abstractions for system development, is a thread that has
recently received a good deal of attention, as discussed in Section 7. Those that best support self-
organisation approaches to robust and environment-independent computations, however, have
generally lacked well-engineered mechanisms to support openness and code mobility (injection,
update, etc.). Our contribution has been to develop a core calculus, building on the work presented
in Reference [56], that for the first time smoothly combines self-organisation and code mobility, by
means of the abstraction of a “distributed function field.” This combination of first-class functions
with the domain-restriction mechanisms of field calculus allows the predictable and safe compo-
sition of distributed self-organisation mechanisms at runtime, thereby enabling robust operation
of open pervasive systems. Furthermore, the simplicity of the calculus enables it to easily serve as
both an analytical framework and a programming framework, and we have already incorporated
this into Protelis [50], thereby allowing these mechanisms to be deployed both in simulation and
in actual distributed systems.

Future plans include consolidation of this work, by extending the calculus and its concep-
tual framework, to support an analytical methodology and a practical toolchain for system

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

5:44 G. Audrito et al.

development, as outlined in References [10] and [9]. We aim to apply our approach to support
various application needs for dynamic management of distributed processes [6], which may also
impact the methods of alignment for anonymous functions. We also plan to isolate fragments of
the calculus that satisfy behavioural properties such as self-stabilisation, quasi-stabilisation to a
dynamically evolving field, or density independence, following the approach of References [53]
and [22]. Finally, these foundations can be applied in developing APIs enabling the simple con-
struction of complex distributed applications, building on the work in References [2–4, 9, 53] to
define a layered library of self-organisation patterns, and applying these APIs to support a wide
range of practical distributed applications.

APPENDIXES

A PROOFS OF THE MAIN RESULTS

Supplementary materials, including proofs of the main results and a pervasive computing example,
are available in the online version of this article.

A.1 Refined Monomorphic Typing (Proof of Theorem 5.1)

Restatement of Theorem 5.1 (System �′ refines system �). If S0 �′ P : T, then S0 � P : T.

Proof. Just observe that every derivation of S;M �′ e : T is also a derivation of S;M � e : T ,
since each rule of �′ is a restriction of the corresponding rule of � and similarly for user-defined
function declarations and programs. �

A.2 Hindley-Milner Typing vs. Monomorphic Typing (Proof of Theorem 5.3)

We say that a monomorphic type-set environment S is an instantiation of a type-scheme envi-
ronment D if and only if dom(S) = dom(D) and for each g in dom(S), S (g) ⊆ MS(D (g)). Fur-
thermore, we say that S is a full instantiation of D if additionally S (g) = MS(D (g)) for each g
in their (common) domain. Finally, we say that a monomorphic type T ′ is an instantiation of a

(possibly) parametric type T if T ′ = T [t := T , l := L, r := R, s := S] and that a monomorphic type
environmentM is an instantiation of a type environment A if and only if dom(M) = dom(A)
and for each x in dom(M),M (x) ∈ MS(A (x)).

Lemma A.1 (From monomorphic typing �′ to Hindley-Milner typing �). Assume that S0 is

a full instantiation of D0 and S is an instantiation of D with S0 ⊆ S, D0 ⊆ D. Then:

(1) S;M �′ e : T implies D;M � e : T for any monomorphic T ;

(2) S �′ F : Lset implies D � F : LS, for some LS such that Lset ⊆ MS(LS);
(3) S0 �′ P : T implies D0 � P : T.

Proof. We prove (1)–(3) by simultaneous induction on the syntax of the involved expressions.

(1) e = c(�) is a data expression. Since S0 (c) = MS(D0 (c)), Rules [M-DAT’] and [T-DAT] assign

the same monomorphic types (S) → S to c (left premise). By inductive hypothesis, they

also assign the same monomorphic types to � (right premise), concluding the proof. e = g
is a user-defined function. Rule [M-N-FUN’] assigns to g every type in S (g), while Rule [T-N-

FUN] assigns to g every type in MS(D (g)) ⊇ S (g), concluding the proof. e is not a data

expression nor a user-defined function. The thesis follows since Rules [M-VAR’], [M-A-FUN’], [M-

APP’], [M-REP’], [M-NBR’] are syntax-directed and identical to rules [T-VAR], [T-A-FUN], [T-APP], [T-REP],
[T-NBR].

(2) Assume that F is defd(x){e} and S �′ F : Lset. Then by Rule [M-FUNCTION’], we

have that S, d : (T) → R; x : T �′ e : R for each (T) → R ∈ Lset. It follows that

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

A Higher-Order Calculus of Computational Fields 5:45

D, d : (T) → R; x : T � e : R by inductive hypothesis (point 1), hence D � F : (T) → R

by Rule [T-FUNCTION]. Let LS be the principal type assigned to F: then every other type

assignable to F (including every (T) → R ∈ Lset) is in MS(LS), concluding the proof.
(3) Let P be F1 · · · Fne. Since Rule [M-PROGRAM’] is identical to Rule [T-PROGRAM], we can use the

inductive hypothesis (point 2) to prove by induction on i ≤ n that dom(Si) = dom(Di)
and ∀g ∈ dom(Si).Si (g) ⊆ MS(Di (g)). Thus by inductive hypothesis (point 1), Sn ; ∅ �′
e : T implies that Dn ; ∅ � e : T concluding the proof. �

Lemma A.2 (From Hindley-Milner typing � to monomorphic typing �′). Assume that S0 is

a full instantiation of D0 and D0 ⊆ D. Then:

(1) D;A � e : T implies that for each T ′ instantiation of T , there exist S,M instantiations of

D,A such that S0 ⊆ S and S;M � e : T ′.
(2) D � F : LS implies that for each finite Lset ⊆ MS(LS), there exists S instantiation ofD such

that S0 ⊆ S and S �′ F : Lset.

(3) D0 � P : T implies that for each T ′ instantiation of T , S0 �′ P : T ′.

Proof. We prove (1)–(3) by simultaneous induction on the syntax of the involved expressions.

(1) Let T ′ = T [t := T , l := L, r := R, s := S] andA′ be obtained fromA through the same sub-
stitutions, so that D;A′ � e : T ′.
e = c(�) is a data expression. Let (S) → S be (an instantiation of) the type assigned to c by

Rule [T-DAT] (left premise) in D;A′ � e : T ′. Since S0 is a full instantiation of D0, (S) →
S ∈ S0 (c) and S0; ∅ �′ � : S. By Rule [M-DAT’], the thesis holds for any S,M instantiations
of D,A′ such that S0 ⊆ S.
e = g is a user-defined function. Let S be any instantiation of D such that T ′ ∈ S (g) and
S0 ⊆ S. Then the thesis follows by Rule [M-N-FUN’].
e is not a data expression nor a user-defined function. By inductive hypothesis, let Si ,Mi

for i ≤ m be instantiations ofD,A that translate the ith premise of the last rule to �′. For
each i , letM′

i ⊆ Mi be collecting the type assumptions actually used in the ith premise.
Since all the rules are syntax-directed, the M′

i are distinct and any M ⊇ ⋃i≤mMi in-
stantiation of A translates each premise to �′. Let S be an instantiation of D such that
S (g) ⊇ ⋃i≤m Si (g) for all g ∈ dom(D). Then, the thesis holds for S,M since Rules [M-

VAR’], [M-A-FUN’], [M-APP’], [M-REP’], [M-NBR’] are identical to rules [T-VAR], [T-A-FUN], [T-APP], [T-REP],
[T-NBR].

(2) Assume that F is defd(x){e} and Lset = {T (1) → R(1), . . . , T
(m) → R(m) }. By inductive hy-

pothesis (point 1), there are instantiations Si of D with S0 ⊆ Si such that:

Si , d : {T (i) → R(i) }; x : T
(i) �′ e : R(i) .

Then the thesis holds for any S instantiation of D such that S (g) ⊇ ⋃i≤m Si (g) for all g
in dom(D).

(3) Let P be F1 · · · Fnewith Fi = defdi (_){_}, and letDi for i = 0 . . .n be the local type-scheme
environments appearing in Rule [T-PROGRAM]. By inductive hypothesis (point 1), letS′n be an
instantiation ofDn containingS0 such thatS′n ; ∅ �′ e : T ′. By inductive hypothesis (point
2), let S′i for i = n − 1 . . . 0 be an instantiation of Di containing S0 such that S′i �′ Fi+1 :
Lseti+1 where Lseti+1 =

⋃
j=i+1...n S′j (di+1). Since the only instantiation of D0 containing

S0 is S0, it follows that S′0 = S0. Let Si for i = 1 . . .n be S0 ∪ {dj �→ Lset j : j = 1 . . . i}.
Since S′i is a point-wise subset of Si , Si �′ Fi+1 : Lseti+1 as well. Thus, the thesis follows
by Rule [T-PROGRAM]. �

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

5:46 G. Audrito et al.

Restatement of Theorem 5.3 (Hindley-Milner typing � vs. monomorphic typing �′). As-

sume that S0 and D0 have the same domain and for each g in their domain it holds that S0 (g) =
MS(D0 (g)). Then, for any monomorphic type T , it holds that D0 � P : T if and only if S0 �′ P : T.

Proof. Straightforward by Lemma A.1 and Lemma A.2. �

A.3 Device Computation Type Preservation and Domain Alignment

(Proof of Theorem 6.1)

Restatement of Theorem 6.1 (Type Preservation and Domain Alignment). Let A = x : T,

D; ∅ � v : T, so that length(v) = length(x). If D;A � e : T, Θ ∈ WFVTE(D,A, e) and δ ; Θ;σ �
e[x := v] ⇓ θ , then:

(1) θ ∈ WFVT (D,A, e),
(2) D; ∅ � ρ (θ) : T, and

(3) if ρ (θ) is a neighbouring field value ϕ then dom(ϕ) = dom(Θ) ∪ {δ }.

Observe that the typing rules (in Figure 10) and the evaluation rules (in Figure 7) are syntax
directed. Then the proof can be carried out by induction on the syntax of expressions, while using
the following standard lemmas.

Lemma A.3 (Substitution). LetA = x : T, B; ∅ � v : T. IfD;A � e : T, thenD; ∅ � e[x := v] :
T.

Proof. Straightforward by induction on application of the typing rules for expressions in
Figure 10. �

Lemma A.4 (Weakening). Let D′ ⊇ D, A′ ⊇ A be such that dom(D′) ∩ dom(A′) = ∅. If

D;A � e : T, then D′;A′ � e : T.

Proof. Straightforward by induction on application of the typing rules for expressions in
Figure 10. �

Proof of Theorem 6.1. We proceed proving points (1)–(3) by simultaneous induction on the
syntax of expression e (given in Figure 1).

• e = ϕ: This case is not allowed to appear in source programs.

• e = c(�) | b | d | (x)
τ
=> e: In this case, e[x := v] = v is a local value hence θ = v〈〉 by

rule [E-LOC]. Thus θ is well-formed for e and ρ (θ) = v has type T by the Substitution Lemma.
• e = x: In this case, e[x := v] is trivially a value of the correct type T , hence θ = v〈〉 is well-

formed for e. If T is a local type, then we are done. If T is a field type, then we know by
induction hypothesis that ϕ = v has domain dom(Θ′) ∪ {δ } for some Θ′ including Θ as a
subtree (pointwise). Thus dom(ϕ) ⊇ dom(Θ) ∪ {δ }, hence we can apply rule [E-FLD] to obtain
that ϕ has domain exactly dom(Θ) ∪ {δ }.

• e = en+1 (e): In this case, either rule [E-B-APP] or [E-D-APP] applies, depending on whether en+1

evaluates to a built-in function or not. In both cases, the resulting value-tree θ is easily
checked to be well-formed for e, and type preservation holds by induction hypothesis to-
gether with standard arguments on typing of function applications.

If e has field type, then we also need to check that dom(ρ (θ)) = dom(Θ) ∪ {δ }. In this

case, en+1 is of type (T) → F , which is not a return type: thus, en+1 cannot be of the form
rep, nbr, c(. . .) or e′(e′), since all these constructs are only given return types. It follows
that en+1 is in fact equal to a value f, hence no alignment with neighbours is required,
directly concluding the proof whenever f is not a built-in function. If instead f is a built-in

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

A Higher-Order Calculus of Computational Fields 5:47

function, then the thesis follows from the assumptions on the interpretation function �b�Θ,σ
δ

(i.e., that fields returned have domain dom(Θ)).
• e = nbr{e1}: In this case, rule [E-NBR] applies, thus θ = ϕ〈θ1〉, where ϕ = ρ (π1 (Θ))[δ �→

ρ (θ1)]. Then θ is well-formed for e, and ϕ has type T = field(T1) where e1 : T1. Further-
more, dom(ϕ) = dom(Θ) ∪ {δ } as required.

• e = rep(e1){(x) => e2}: In this case, rule [E-REP] applies, thus θ = �2〈θ1,θ2〉 is well-formed
for e (where �i , θi follows the notation in Figure 7, rule [E-REP]). By induction hypothesis,
�1 = ρ (θ1) has the same type as e1, which is T . If δ � dom(Θ), then �0 = �1 also has type
T . Otherwise, since Θ is well-formed for e, π2 (Θ) is well-formed for e2 with the additional
assumption that x : T , and by induction hypothesis �0 = ρ (π2 (Θ))(δ) has the same type as
e2, which is also T . Then by the Substitution Lemma, e2[x := �0] also has type T hence by
induction hypothesis the same does �2 = ρ (θ2), concluding the proof. �

A.4 Computational Adequacy and Abstraction (Proof of Theorem 6.2,

Proposition 6.3 and 6.4)

Restatement of Theorem 6.2 (Computational Adeqacy). Assume that the denotational en-

vironment is coherent with the operational evolution of the network and e is well typed (that is,

D; ∅ � e : T).

Then E�e�E (ϵ) = E�vϵ �E (ϵ) for each ϵ in E, where vϵ = ρ (θϵ) is the operational outcome of

fire ϵ .

To carry on the induction on the structure of e, we shall prove the following strengthened
version instead.

Lemma A.5. Assume that the denotational environment is coherent with the operational evolution

of the network and e is a well-typed expression with free variables x (that is, D; x : T � e : T). Let

X = x �→ Φ and uϵ be such that Φi (ϵ) = E�uϵ
i � (ϵ) for all i and events ϵ .

Then E�e�X (ϵ) = E�vϵ � (ϵ) for each ϵ in E, where vϵ = ρ (θϵ) is the operational outcome of fire ϵ
evaluating e[x := uϵ].

Proof. First, recall that coherence of denotational and operational environments implies that
for each fire ϵ , Θϵ = {δϵ ′ �→ θϵ ′ : neigh(ϵ, ϵ ′)}. We prove the assertion simultaneously for all possi-
ble (pairs of coherent) environments, set of assumptions and event ϵ , by induction on the structure
of e.

• e = xi : In this case, e[x := uϵ] = uϵ
i = vϵ and by hypothesis Φi (ϵ) = E�uϵ

i � (ϵ) =
E�vϵ � (ϵ).

• e = c(�) | ϕ | b | d: Since e is already a value, vϵ = e and the thesis follows.

• e = (x)
τ
=> e: Since both the operational and denotational semantics compare anony-

mous function values through their name τ alone, the substitutions X do not affect the
interpretations of e (which is already a value), and the thesis follows.

• e = nbr{e1}: By inductive hypothesis, E�e1�X (ϵ) = E�vϵ
1 � (ϵ) for each ϵ in E, where vϵ

1 =

ρ (θϵ
1) is the (operational) outcome of e1[x := uϵ] in fire ϵ . By rule [E-NBR], we have that

vϵ = {δϵ ′ �→ vϵ ′
1 : (ϵ ′ = ϵ) ∨ (neigh(ϵ, ϵ ′) ∧ δϵ ′ � δϵ)}

and

E�vϵ � (ϵ) = {δϵ ′ �→ E�vϵ ′
1 � (ϵ) : (ϵ ′ = ϵ) ∨ (neigh(ϵ, ϵ ′) ∧ δϵ ′ � δϵ)}.

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

5:48 G. Audrito et al.

On the other hand, E�e�X (ϵ) is

E�nbr{e1}�X (ϵ) = λδ ∈ E− (ϵ).E�e1�X (ϵδ)

= λδ ∈ E− (ϵ).E�vϵ δ

1 � (ϵδ)

= {δ �→ E�vϵ δ

1 � (ϵ) : (ϵδ = ϵ) ∨ (neigh(ϵ, ϵδ) ∧ δ � δϵ)} = E�vϵ � (ϵ).

• e = rep(e1){(y) => e2}: Recall that by rule [E-REP], vϵ is the evaluation of e2[x := uϵ , y :=

vϵ−] if ϵ− exists, e2[x := uϵ , y := vϵ
1] otherwise. We prove by induction on n that if ϵ has at

most n predecessors (i.e., ϵ− can be applied at most n times) then E�vϵ � (ϵ) = R�e�n+1 (ϵ).
The thesis will then follow for n greater than the number of events.
If n = 0, then by induction hypothesis on both e1 and e2[x := uϵ , y := vϵ

1]:

E�vϵ � (ϵ) = E�e2�X∪y�→E�e1�X
(ϵ) = R�e�1 (ϵ).

If n > 0, then vϵ− has at most n − 1 predecessors thus we can apply the inductive hypothesis

on n − 1 and e2[x := uϵ , y := vϵ−] to obtain:

E�vϵ � (ϵ) = E�e2�X∪y�→shift(R�e�n,R�e�0) (ϵ) = R�e�n+1 (ϵ).

• e = en+1 (e): Suppose that e evaluates to vϵ and en+1 to fϵ in event ϵ . Notice that by in-
duction hypothesis, E�vϵ � (ϵ) = E�e�X (ϵ) and E�fϵ � (ϵ) = E�en+1�X (ϵ).

If fϵ is a built-in function b, then by rule [E-B-APP] b(vϵ) (hence e[x := uϵ]) evaluates in ϵ

to the result vϵ of �b�π b (Θϵ),σϵ

δϵ

(vϵ), calculated in the restricted environment Θ′ϵ = π b (Θϵ).

The value-tree environments {Θ′ϵ ′ : fϵ ′ = b} together define an operational environment
Envb consisting only of those devices and events that agree on the evaluation of en+1. In
fact, such restricted environment is coherent with the restricted denotational environment
E(en+1, ϵ):

E(en+1, ϵ) = {ϵ ′ : E�en+1�X (ϵ ′) = E�en+1�X (ϵ)}

= {ϵ ′ : E�fϵ ′� (ϵ ′) = E�b� (ϵ)}

= {ϵ ′ : E�fϵ ′� = E�b� } = {ϵ ′ : fϵ ′ = b}

where we used the inductive hypothesis and the facts that denotations of values are con-
stant field evolutions and that function denotations coincide if and only if the functions are

syntactically equal (in order). The thesis then follows from coherence of B�b� with �b�Θ,σ
δ

,
together with the induction hypothesis on e1, . . . , en .

If fϵ is an anonymous function, then by rule [E-D-APP] fϵ (vϵ) (hence e[x := uϵ]) evaluates in
ϵ to the result vϵ of body (fϵ)[args(fϵ) := vϵ] as calculated in Θ′ϵ = π fϵ (Θϵ). As for built-in

functions, the operational environment Envfϵ = {Θ′ϵ ′ : fϵ ′ = fϵ } is coherent with the re-
stricted denotational environment E(en+1, ϵ). Thus we can apply the induction hypothesis
on e in E and on body (fϵ)[args(fϵ) := vϵ] in E(en+1, ϵ) to obtain:

E�vϵ � (ϵ) = E�body (fϵ)�E(en+1,ϵ)

args(fϵ) �→E�e�E

X
|E(en+1,ϵ)

(ϵ)

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

A Higher-Order Calculus of Computational Fields 5:49

On the other hand,

E�e�X (ϵ) = snd
(
E�en+1�X (ϵ)

) (
E�e�X |E(en+1,ϵ)

)
(ϵ)

= snd (E�fϵ � (ϵ))
(
E�e�X |E(en+1,ϵ)

)
(ϵ)

=

(
λΦ.E�body (fϵ)�dom(Φ)

args(fϵ) �→Φ

) (
E�e�X |E(en+1,ϵ)

)
(ϵ)

= E�body (fϵ)�E(en+1,ϵ)

args(fϵ) �→E�e�E

X
|E(en+1,ϵ)

(ϵ) = E�vϵ � (ϵ)

completing the proof in this case.
If fϵ is a user-defined function, then we prove by further induction on n that E�vϵ � (ϵ)

is equal to Vn = E�body (fϵ)�E(en+1,ϵ)

args(fϵ) �→E�e�E

X
|E(en+1,ϵ),fϵ �→D�fϵ �n

(ϵ) whenever the recursive

depth of the function call is bounded by n. The thesis will then follow by passing to the
limit (and expanding the denotation of e as for anonymous functions).

If n = 0, then the evaluation of body (fϵ)[args(fϵ) := vϵ] does not involve further evalu-
ation of the defined function fϵ . This also holds on the denotational side, giving that

V0 = E�body (fϵ)�E(en+1,ϵ)

args(fϵ) �→E�e�E

X
|E(en+1,ϵ)

(ϵ) = E�vϵ � (ϵ)

If instead n > 0, then the evaluation of body (fϵ)[args(fϵ) := vϵ] involves evaluation of fϵ

with recursive depth bounded by n − 1. Thus by inductive hypothesis we can denote each
such call with D�fϵ �n−1 and the thesis follows. �

Restatement of Proposition 6.3 (Syntactic Eqality). Let e1, e2 be possibly non-closed field

calculus expressions. Then e1 =op e2 if and only if e1 = e2 (syntactically).

Proof. The right-to-left direction is trivial. Assume then that e1 � e2 and let x be the list of free
variables FV(e1) ∪ FV(e2). Consider the following context of observable type num:18

Notice that function countneigh ignores its argument while always returning the number of
aligned neighbours. In any operational evolution where device δ = 0 is connected to other
devices:

• in C[e1], the two branches of the mux operator are syntactically identical hence all devices
are aligned and the total number of neighbours is computed in each device;

• in C[e2], the two branches are different hence device δ = 0 does not have aligned neigh-
bours, computing 0, which is less than the total number of neighbours.

It follows that e1 �op e2 concluding the proof. �

Restatement of Theorem 6.4 (Computational abstraction). Suppose that constructors for

built-in local types are faithful. Then for every closed expressions e1, e2, the following holds:

∀E.E�e1�E = E�e2�E ⇔ e1 �op e2.

18The innermost occurrence of countneigh allows for sound typing in case e1, e2 are not of a return type, so that they

cannot be directly closed.

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

5:50 G. Audrito et al.

where E includes all the informations about the denotational environment and e1 �op e2 if and only

if e1 and e2 evaluate to the same values in each firing of any possible operational evolution.

Proof. First notice that given any two values v1, v2 of the same type E�v1�E = E�v2�E if and
only if v1 = v2. If v1, v2 are functions, then it holds since the denotation includes the function tag
(i.e., the syntactic expression itself). If v1, v2 are constructor expressions, then it holds by hypoth-

esis. If v1, v2 are neighbouring field values, then it holds since E�δ �→ ��E = λϵ .δ �→ E���E (ϵ)
and we already proved the equivalence for local values. From this equivalence and computational
adequacy we can prove the computational abstraction property as follows.

Suppose that e1 and e2 have the same denotation in every denotational environment and fix an
operational environment Env, in which e1, e2 evaluate to v1

ϵ , v2
ϵ in fire ϵ . Then given a denotational

environment E that is coherent with Env, we have that E�e1�E = E�e2�E . By adequacy, it follows
that E�v1

ϵ �
E (ϵ) = E�v2

ϵ �
E (ϵ) hence v1

ϵ = v2
ϵ for all ϵ . Thus e1 and e2 evaluate to the same value

in every fire ϵ and the left-to-right part of the proof is concluded.
For the converse implication, suppose that there exists a denotational environment E such that

e1 and e2 have denotations that differ in ϵ . Let Env be an operational environment coherent with
E, in which e1, e2 evaluate to v1, v2 in fire ϵ . By adequacy,

E�v1�E (ϵ) = E�e1�E (ϵ) � E�e2�E (ϵ) = E�v2�E (ϵ)

hence v1 � v2 concluding the proof. �

B A PERVASIVE COMPUTING EXAMPLE

We now illustrate the application of field calculus, with a focus on first-class functions, using a
pervasive computing example. In this scenario, people wandering a large environment (like an
outdoor festival, an airport, or a museum) each carry a personal device with short-range point-
to-point ad-hoc capabilities (e.g., a smartphone sending messages to others nearby via Bluetooth
or Wi-Fi). All devices run a minimal “virtual machine” that allows runtime injection of new pro-
grams: any device can initiate a new distributed process (in the form of a 0-ary anonymous func-
tion), which the virtual machine spreads to all other devices within a specified range (e.g., 30m).
For example, a person might inject a process that estimates crowd density by counting the num-
ber of nearby devices or a process that helps people to rendezvous with their friends, with such
processes likely implemented via various self-organisation mechanisms. The virtual machine then
executes these using the first-class function semantics above, providing predictable deployment
and execution of an open class of runtime-determined processes.

B.1 Virtual Machine Implementation

The complete code for our example is listed in Figure 12. We use the following naming conventions
for built-ins: functions sns-* embed sensors that return a value perceived from the environment
(e.g., sns-injection-point returns a Boolean indicating whether a device’s user wants to inject
a function); functions *-hood yield a local value � obtained by aggregating over the neighbour-
ing field value ϕ in the input (e.g., sum-hood sums all values in each neighbourhood); functions
*-hood+ behave the same but exclude the value associated with the current device; and built-in
functions Pair, fst, and snd respectively create a pair of locals and access a pair’s first and second
component.

The first two functions in Figure 12 implement frequently used self-organisation mechanisms.
As already discussed, function distance-to, also known as gradient [18, 37], computes a field
of minimal distances from each device to the nearest “source” device (those mapping to true

in the Boolean input field). Note that the process of estimating distances self-stabilises into the

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

A Higher-Order Calculus of Computational Fields 5:51

Fig. 12. Virtual machine code (top) and application-specific code (bottom).

desired field of distances, regardless of any transient perturbations or faults [36]. The second self-
organisation mechanism, gradcast, is a directed broadcast, achieved by a computation identical
to that of distance-to, except that the values are pairs (note that Pair[f,f] produces a neigh-
bouring field of pairs, not a pair of neighbouring fields), with the second element set to the value
of v at the source: min-hood operates on pairs by applying lexicographic ordering, so the second
value of the pair is automatically carried along shortest paths from the source. The result is a field
of pairs of distance and most recent value of v at the nearest source, of which only the value is
returned.

The latter two functions in Figure 12 use these self-organisation methods to implement our
simple virtual machine. Code mobility is implemented by function deploy, which spreads a 0-ary
function g via gradcast, keeping it bounded within distance range from sources, and holding
0-ary function no-op elsewhere. The corresponding field of functions is then executed (note the
double parenthesis). The virtual-machine then simply calls deploy, linking its arguments to

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

5:52 G. Audrito et al.

sensors configuring deployment range and detecting who wants to inject which functions (and
using ()=>0 as no-op function).

In essence, this virtual machine implements a code-injection model much like those used in a
number of other pervasive computing approaches (e.g., [14, 31, 39])—though of course it has much
more limited features, since it is only an illustrative example. With these previous approaches,
however, all code shares the same (global) lexical scope and cannot have its network domain exter-
nally controlled: this means that injected code may spread through the network unpredictably and
may interact unpredictably with other injected code that it encounters. The extended field calculus
semantics that we have presented, however, thanks to the restriction property (Section 6.3), en-
sures that injected code moves only within the range specified to the virtual machine and remains
lexically isolated from different injected code, so that no variable can be unexpectedly affected by
interactions with neighbours.

B.2 Simulation of Example Application

We further illustrate the example in a simulated scenario, considering a museum whose docents
monitor their efficacy in part by tracking the number of patrons nearby while they are working.
To monitor the number of nearby patrons, each docent’s device injects the following anonymous
function (of type: () → num):

This function is an anonymous version of the track-count function example in Section 7.2, us-
ing the same low-pass filtering of summation of a potential field to the docent, except that since
the function cannot have any arguments, the Boolean fields indicating locations of patrons and
docents are instead acquired via virtual sensors. In particular, in the converge-sum function, each
device’s local value is summed with those identifying it as their parent (their closest neighbour
to the source, breaking ties with device unique identifiers from built-in function uid), resulting
in a relatively balanced spanning tree of summations with the source at its root. This very simple
version of summation is somewhat noisy on a moving network of devices [53], so its output is
passed through a simple low-pass filter, the function low-pass, also defined in Figure 12(bottom),
to smooth its output and improve the quality of estimate.

Figure 13(a) shows a simulation of a docent and 250 patrons in a large 100 × 30m museum gallery.
Of the patrons, 100 are a large group of school-children moving together past the stationary do-
cent from one side of the gallery to the other (thus causing a coherent rise and fall in local crowd
density), while the rest are wandering randomly. In this simulation, people move at an average
1m/s, the docent and all patrons carry personal devices running the virtual machine, executing
asynchronously at 10Hz, and communicating via low-power Bluetooth to a range of 10m—hence,
hop-by-hop communication is needed for longer range interaction. The simulation was imple-
mented using the Alchemist [49] simulation framework and the Protelis [50] incarnation of field
calculus, updated to the extended version of the calculus presented in this article.

In this simulation, at time 10s, the docent injects the patron-counting function with a range of
25m, and at time 70s removes it. Figure 13(a) shows two snapshots of the simulation, at times 11s
(top) and 35s (bottom), while Figure 13(b) compares the estimated value returned by the injected
process with the true value. Note that upon injection, the process rapidly disseminates and begins
producing good estimates of the number of nearby patrons, then cleanly terminates upon removal.

All together, these examples illustrate how the field calculus and its safety properties allow com-
plex distributed applications to be safely and elegantly implemented with compact code, including
higher-order operations like process management and runtime deployment of applications in an
open environment.

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

A Higher-Order Calculus of Computational Fields 5:53

Fig. 13. (a) Two snapshots of museum simulation: patrons (grey) are counted (black) within 25m of the

docent (green). (b) Estimated number of nearby patrons (grey) vs. actual number (black) in the simulation,

during the period where the docent is running the patron counting function (between two dashed lines).

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for many insightful comments and suggestions.

REFERENCES

[1] Giorgio Audrito, Jacob Beal, Ferruccio Damiani, and Mirko Viroli. 2018. Space-time universality of field calculus.

In Proceedings of the Coordination Models and Languages (COORDINATION’18), Lecture Notes in Computer Science,

Vol. 10852. Springer, 1–20. DOI:https://doi.org/10.1007/978-3-319-92408-3_1

[2] Giorgio Audrito, Roberto Casadei, Ferruccio Damiani, and Mirko Viroli. 2017. Compositional blocks for optimal self-

healing gradients. In Proceedings of the 11th IEEE International Conference on Self-Adaptive and Self-Organizing Sys-

tems. IEEE, 91–100. DOI:https://doi.org/10.1109/SASO.2017.18

[3] Giorgio Audrito, Ferruccio Damiani, and Mirko Viroli. 2017. Optimally-self-healing distributed gradient structures

through bounded information speed. In Proceedings of the Coordination Models and Languages, Proceedings (CO-

ORDINATION’17), Lecture Notes in Computer Science, Vol. 10319. Springer, 59–77. DOI:https://doi.org/10.1007/

978-3-319-59746-1_4

[4] Giorgio Audrito, Ferruccio Damiani, and Mirko Viroli. 2018. Optimal single-path information propagation in gradient-

based algorithms. Sci. Comput. Program. 166 (2018), 146–166. DOI:https://doi.org/10.1016/j.scico.2018.06.002

[5] Jos C. M. Baeten, Twan Basten, Twan Basten, and M. A. Reniers. 2010. Process Algebra: Equational Theories of Com-

municating Processes. Vol. 50. Cambridge University Press. DOI:https://doi.org/10.1017/CBO9781139195003

[6] Jacob Beal. 2009. Dynamically defined processes for spatial computers. In Proceedings of the Spatial Computing Work-

shop. IEEE, New York, NY, 206–211. DOI:https://doi.org/10.1109/SASOW.2010.74

[7] Jacob Beal and Jonathan Bachrach. 2006. Infrastructure for engineered emergence on sensor/actuator networks. IEEE

Intell. Syst. 21, 2 (Mar./Apr. 2006), 10–19. DOI:https://doi.org/10.1109/MIS.2006.29

[8] Jacob Beal, Stefan Dulman, Kyle Usbeck, Mirko Viroli, and Nikolaus Correll. 2013. Organizing the aggregate: Lan-

guages for spatial computing. In Formal and Practical Aspects of Domain-Specific Languages: Recent Developments,

Marjan Mernik (Ed.). IGI Global, 436–501. DOI:https://doi.org/10.4018/978-1-4666-2092-6.ch016

[9] Jacob Beal, Danilo Pianini, and Mirko Viroli. 2015. Aggregate programming for the internet of things. IEEE Comput.

48, 9 (2015). DOI:https://doi.org/10.1109/MC.2015.261

[10] Jacob Beal and Mirko Viroli. 2014. Building blocks for aggregate programming of self-organising applications. In

Proceedings of the 8th IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops. IEEE,

8–13. DOI:https://doi.org/10.1109/SASOW.2014.6

[11] Jacob Beal, Mirko Viroli, Danilo Pianini, and Ferruccio Damiani. 2016. Self-adaptation to device distribution changes

in situated computing systems. In Proceedings of the IEEE Conference on Self-Adaptive and Self-Organising Systems

(SASO’16). IEEE Computer Society, 60–69. DOI:https://doi.org/10.1109/SASO.2016.12

[12] Jacob Beal, Mirko Viroli, Danilo Pianini, and Ferruccio Damiani. 2017. Self-adaptation to device distribution in the

internet of things. ACM Trans. Auton. Adapt. Syst. 12, 3 (Sep. 2017), 12:1–12:29. DOI:https://doi.org/10.1145/3105758

[13] Lorenzo Bettini, Viviana Bono, Rocco De Nicola, Gian Luigi Ferrari, Daniele Gorla, Michele Loreti, Eugenio Moggi,

Rosario Pugliese, Emilio Tuosto, and Betti Venneri. 2003. The Klaim project: Theory and practice. In Proceedings of

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

https://doi.org/10.1007/978-3-319-92408-3_1
https://doi.org/10.1109/SASO.2017.18
https://doi.org/10.1007/978-3-319-59746-1_4
https://doi.org/10.1007/978-3-319-59746-1_4
https://doi.org/10.1016/j.scico.2018.06.002
https://doi.org/10.1017/CBO9781139195003
https://doi.org/10.1109/SASOW.2010.74
https://doi.org/10.1109/MIS.2006.29
https://doi.org/10.4018/978-1-4666-2092-6.ch016
https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1109/SASOW.2014.6
https://doi.org/10.1109/SASO.2016.12
https://doi.org/10.1145/3105758

5:54 G. Audrito et al.

the Global Computing 2003, Lecture Notes in Computer Science, Vol. 2874. Springer, 88–150. DOI:https://doi.org/10.

1007/978-3-540-40042-4_4

[14] William Butera. 2002. Programming a Paintable Computer. Ph.D. Dissertation. MIT, Cambridge.

[15] Luca Cardelli and Philippa Gardner. 2010. Processes in space. In Proceedings of the 6th Conference on Com-

putability in Europe, Lecture Notes in Computer Science, Vol. 6158. Springer, 78–87. DOI:https://doi.org/10.1007/

978-3-642-13962-8

[16] Luca Cardelli and Andrew D. Gordon. 2000. Mobile ambients. Theor. Comput. Sci. 240, 1 (Jun. 2000), 177–213.

DOI:https://doi.org/10.1016/S0304-3975(99)00231-5

[17] Alonzo Church. 1932. A set of postulates for the foundation of logic. Ann. Math. 33, 2 (1932), 346–366. DOI:https://

doi.org/10.2307/1968337

[18] Lauren Clement and Radhika Nagpal. 2003. Self-assembly and self-repairing topologies. In Proceedings of the Workshop

on Adaptability in Multi-Agent Systems, RoboCup Australian Open.

[19] Daniel Coore. 1999. Botanical Computing: A Developmental Approach to Generating Inter Connect Topologies on an

Amorphous Computer. Ph.D. Dissertation. MIT, Cambridge, MA.

[20] Pierre-Louis Curien. 2007. Definability and full abstraction. Electr. Notes Theor. Comput. Sci. 172 (2007), 301–310.

DOI:https://doi.org/10.1016/j.entcs.2007.02.011

[21] Luis Damas and Robin Milner. 1982. Principal type-schemes for functional programs. In Proceedings of the Symposium

on Principles of Programming Languages (POPL’82). ACM, 207–212. DOI:https://doi.org/10.1145/582153.582176

[22] Ferruccio Damiani and Mirko Viroli. 2015. Type-based self-stabilisation for computational fields. Logical Methods

Comput. Sci. 11, 4 (Dec. 2015). DOI:https://doi.org/10.2168/LMCS-11(4:21)2015

[23] Ferruccio Damiani, Mirko Viroli, and Jacob Beal. 2016. A type-sound calculus of computational fields. Sci. Comput.

Program. 117 (2016), 17–44. DOI:https://doi.org/10.1016/j.scico.2015.11.005

[24] Ferruccio Damiani, Mirko Viroli, Danilo Pianini, and Jacob Beal. 2015. Code mobility meets self-organisation: A

higher-order calculus of computational fields. In Proceedings of the Formal Techniques for Distributed Objects, Com-

ponents, and Systems (FORTE’15), Lecture Notes in Computer Science, Vol. 9039. Springer, 113–128. DOI:https://

doi.org/10.1007/978-3-319-19195-9_8

[25] J. W. de Bakker and Jeffery I. Zucker. 1982. Denotational semantics of concurrency. In Proceedings of the 14th Annual

ACM Symposium on Theory of Computing. ACM, 153–158. DOI:https://doi.org/10.1145/800070.802188

[26] Rocco De Nicola, Gianluigi Ferrari, Michele Loreti, and Rosario Pugliese. 2013. A language-based approach to au-

tonomic computing. In Proceedings of the Formal Methods for Components and Objects (FMCO’11), Lecture Notes in

Computer Science, Vol. 7542. Springer, 25–48. DOI:https://doi.org/10.1007/978-3-642-35887-6_2

[27] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified data processing on large clusters. Commun. ACM

51, 1 (2008), 107–113. DOI:https://doi.org/10.1145/1327452.1327492

[28] Jose Luis Fernandez-Marquez, Giovanna Di Marzo Serugendo, Sara Montagna, Mirko Viroli, and Josep Lluís Arcos.

2013. Description and composition of bio-inspired design patterns: A complete overview. Nat. Comput. 12, 1 (2013),

43–67. DOI:https://doi.org/10.1007/s11047-012-9324-y

[29] Tim Finin, Richard Fritzson, Don McKay, and Robin McEntire. 1994. KQML as an agent communication language. In

Proceedings of the 3rd International Conference on Information and Knowledge Management (CIKM’94). ACM, 456–463.

DOI:https://doi.org/10.1145/191246.191322

[30] William I. Gasarch. 2015. Proving programs terminate using well-founded orderings, Ramsey’s theorem, and matrices.

Adv. Comput. 97 (2015), 147–200. DOI:https://doi.org/10.1016/bs.adcom.2014.12.002

[31] David Gelernter. 1985. Generative communication in Linda. ACM Trans. Program. Lang. Syst. 7, 1 (1985), 80–112.

DOI:https://doi.org/10.1145/2363.2433

[32] Jean-Louis Giavitto, Christophe Godin, Olivier Michel, and Przemyslaw Prusinkiewicz. 2002. Computational Models

for Integrative and Developmental Biology. Technical Report 72-2002. Univerite d’Evry, LaMI.

[33] J. Roger Hindley. 1997. Basic Simple Type Theory. Cambridge University Press. DOI:https://doi.org/10.1017/

CBO9780511608865

[34] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. 2001. Featherweight Java: A minimal core calculus for Java

and GJ. ACM Trans. Program. Lang. Syst. 23, 3 (2001), 396–450. DOI:https://doi.org/10.1145/503502.503505

[35] M. E. Inchiosa and M. T. Parker. 2002. Overcoming design and development challenges in agent-based modeling using

ASCAPE. Proc. Natl. Acad. Sci. U.S.A. 99, 3 (2002), 7304. DOI:https://doi.org/10.1073/pnas.082081199

[36] Shay Kutten and Boaz Patt-Shamir. 1997. Time-adaptive self stabilization. In Proceedings of the ACM Symposium on

Principles of Distributed Computing. ACM, 149–158. DOI:https://doi.org/10.1145/259380.259435

[37] Frank C. H. Lin and Robert M. Keller. 1987. The gradient model load balancing method. IEEE Trans. Softw. Eng. 13, 1

(1987), 32–38. DOI:https://doi.org/10.1109/TSE.1987.232563

[38] Samuel R. Madden, Robert Szewczyk, Michael J. Franklin, and David Culler. 2002. Supporting aggregate queries over

ad-hoc wireless sensor networks. In Proceedings of the Workshop on Mobile Computing and Systems Applications. IEEE.

DOI:https://doi.org/10.1109/MCSA.2002.1017485

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

https://doi.org/10.1007/978-3-540-40042-4_4
https://doi.org/10.1007/978-3-540-40042-4_4
https://doi.org/10.1007/978-3-642-13962-8
https://doi.org/10.1007/978-3-642-13962-8
https://doi.org/10.1016/S0304-3975(99)00231-5
https://doi.org/10.2307/1968337
https://doi.org/10.2307/1968337
https://doi.org/10.1016/j.entcs.2007.02.011
https://doi.org/10.1145/582153.582176
https://doi.org/10.2168/LMCS-11(4:21)2015
https://doi.org/10.1016/j.scico.2015.11.005
https://doi.org/10.1007/978-3-319-19195-9_8
https://doi.org/10.1007/978-3-319-19195-9_8
https://doi.org/10.1145/800070.802188
https://doi.org/10.1007/978-3-642-35887-6_2
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1007/s11047-012-9324-y
https://doi.org/10.1145/191246.191322
https://doi.org/10.1016/bs.adcom.2014.12.002
https://doi.org/10.1145/2363.2433
https://doi.org/10.1017/CBO9780511608865
https://doi.org/10.1017/CBO9780511608865
https://doi.org/10.1145/503502.503505
https://doi.org/10.1073/pnas.082081199
https://doi.org/10.1145/259380.259435
https://doi.org/10.1109/TSE.1987.232563
https://doi.org/10.1109/MCSA.2002.1017485

A Higher-Order Calculus of Computational Fields 5:55

[39] Marco Mamei and Franco Zambonelli. 2009. Programming pervasive and mobile computing applications: The TOTA

approach. ACM Trans. Softw. Eng. Method. 18, 4 (2009), 1–56. DOI:https://doi.org/10.1145/1538942.1538945

[40] José Meseguer, Joseph A. Goguen, and Gert Smolka. 1989. Order-sorted unification. J. Symbol. Comput. 8, 4 (1989),

383–413. DOI:https://doi.org/10.1016/S0747-7171(89)80036-7

[41] Message Passing Interface Forum 2009. MPI: A Message-Passing Interface Standard Version 2.2. Message Passing Inter-

face Forum.

[42] Robin Milner. 1997. The Definition of Standard ML: Revised. MIT press.

[43] Robin Milner. 2006. Pure bigraphs: Structure and dynamics. Inf. Comput. 204, 1 (2006), 60–122. DOI:https://doi.org/

10.1016/j.ic.2005.07.003

[44] Radhika Nagpal. 2001. Programmable Self-Assembly: Constructing Global Shape Using Biologically-inspired Local In-

teractions and Origami Mathematics. Ph.D. Dissertation. MIT, Cambridge, MA.

[45] Ryan Newton and Matt Welsh. 2004. Region streams: Functional macroprogramming for sensor networks. In Proceed-

ings of the Workshop on Data Management for Sensor Networks. ACM, 78–87. DOI:https://doi.org/10.1145/1052199.

1052213

[46] Yuichi Nishiwaki. 2016. Digamma-calculus: A universal programming language of self-stabilizing computational

fields. In Proceedings of the IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops

(eCAS’16). IEEE. DOI:https://doi.org/10.1109/FAS-W.2016.51

[47] Atsushi Ohori. 1989. A simple semantics for ML polymorphism. In Proceedings of the 4th International Conference

on Functional Programming Languages and Computer Architecture. ACM, 281–292. DOI:https://doi.org/10.1145/99370.

99393

[48] C.-H. Luke Ong. 1995. Correspondence between operational and denotational semantics: The full abstraction problem

for PCF. Handbook of Logic in Computer Science 4 (1995), 269–356.

[49] Danilo Pianini, Sara Montagna, and Mirko Viroli. 2013. Chemical-oriented simulation of computational systems with

Alchemist. J. Simul. 7, 3 (2013), 202–215. DOI:https://doi.org/10.1057/jos.2012.27

[50] Danilo Pianini, Mirko Viroli, and Jacob Beal. 2015. Protelis: Practical aggregate programming. In Proceedings of the

ACM Symposium on Applied Computing 2015. ACM, 1846–1853. DOI:https://doi.org/10.1145/2695664.2695913

[51] Elizabeth Sklar. 2007. NetLogo, a multi-agent simulation environment. Artif. Life 13, 3 (2007), 303–311. DOI:
https://doi.org/10.1162/artl.2007.13.3.303

[52] Allen Stoughton. 1988. Fully Abstract Models of Programming Languages. Pitman.

[53] Mirko Viroli, Giorgio Audrito, Jacob Beal, Ferruccio Damiani, and Danilo Pianini. 2018. Engineering resilient col-

lective adaptive systems by self-stabilisation. ACM Trans. Model. Comput. Simul. 28, 2 (2018), 16:1–16:28. DOI:
https://doi.org/10.1145/3177774

[54] Mirko Viroli, Jacob Beal, Ferruccio Damiani, Giorgio Audrito, Roberto Casadei, and Danilo Pianini. 2018. From

field-based coordination to aggregate computing. In Proceedings of the Coordination Models and Languages (CO-

ORDINATION’18), Lecture Notes in Computer Science, Vol. 10852. Springer, 252–279. DOI:https://doi.org/10.1007/

978-3-319-92408-3_12

[55] Mirko Viroli, Matteo Casadei, Sara Montagna, and Franco Zambonelli. 2011. Spatial coordination of pervasive services

through chemical-inspired tuple spaces. ACM Trans. Auton. Adapt. Syst. 6, 2 (Jun. 2011), 14:1–14:24. DOI:https://doi.

org/10.1145/1968513.1968517

[56] Mirko Viroli, Ferruccio Damiani, and Jacob Beal. 2013. A calculus of computational fields. In Proceedings of the Ad-

vances in Service-Oriented and Cloud Computing (Communications in Computer and Information Science), Vol. 393.

Springer, 114–128. DOI:https://doi.org/10.1007/978-3-642-45364-9_11

[57] Mirko Viroli, Danilo Pianini, and Jacob Beal. 2012. Linda in space-time: An adaptive coordination model for mobile

ad-hoc environments. In Proceedings of the Coordination Models and Languages (COORDINATION’12), Lecture Notes

in Computer Science, Vol. 7274. Springer, 212–229. DOI:https://doi.org/10.1007/978-3-642-30829-1_15

[58] Mirko Viroli, Danilo Pianini, Sara Montagna, Graeme Stevenson, and Franco Zambonelli. 2015. A coordination model

of pervasive service ecosystems. Sci. Comput. Program. 110 (2015), 3–22. DOI:https://doi.org/10.1016/j.scico.2015.06.

003

[59] Kamin Whitehouse, Cory Sharp, Eric Brewer, and David Culler. 2004. Hood: A neighborhood abstraction for sensor

networks. In Proceedings of the 2nd International Conference on Mobile Systems, Applications, and Services. ACM Press.

DOI:https://doi.org/10.1145/990064.990079

[60] Glynn Winskel. 1993. The Formal Semantics of Programming Languages—An Introduction. MIT Press.

Received October 2016; revised October 2018; accepted October 2018

ACM Transactions on Computational Logic, Vol. 20, No. 1, Article 5. Publication date: January 2019.

https://doi.org/10.1145/1538942.1538945
https://doi.org/10.1016/S0747-7171(89)80036-7
https://doi.org/10.1016/j.ic.2005.07.003
https://doi.org/10.1016/j.ic.2005.07.003
https://doi.org/10.1145/1052199.1052213
https://doi.org/10.1145/1052199.1052213
https://doi.org/10.1109/FAS-W.2016.51
https://doi.org/10.1145/99370.99393
https://doi.org/10.1145/99370.99393
https://doi.org/10.1057/jos.2012.27
https://doi.org/10.1145/2695664.2695913
https://doi.org/10.1162/artl.2007.13.3.303
https://doi.org/10.1145/3177774
https://doi.org/10.1007/978-3-319-92408-3_12
https://doi.org/10.1007/978-3-319-92408-3_12
https://doi.org/10.1145/1968513.1968517
https://doi.org/10.1145/1968513.1968517
https://doi.org/10.1007/978-3-642-45364-9_11
https://doi.org/10.1007/978-3-642-30829-1_15
https://doi.org/10.1016/j.scico.2015.06.003
https://doi.org/10.1016/j.scico.2015.06.003
https://doi.org/10.1145/990064.990079

