
WebProto: Aggregate Programming for Everyone
IEEE Self-Adaptive and Self-Organizing Systems 2013 Demonstration

Kyle Usbeck
Raytheon BBN Technologies
Cambridge, MA, USA, 02138
Email: kusbeck@bbn.com

Jacob Beal
Raytheon BBN Technologies
Cambridge, MA, USA, 02138
Email: jakebeal@bbn.com

I. GOAL: MAKE AGGREGATE PROGRAMMING ACCESSIBLE

Developing self-adaptive and self-organizing systems can be
a difficult task, even for experts, because it has traditionally
required programming individual devices in the hope that
they exhibit the desired global behavior. A new and better
approach has been emerging: program the global behavior
and derive the local behaviors—aggregate programming. In
recent years, there have been a number of key advances in
aggregate programming for distributed systems, e.g., [1], [2],
[3], [4], [5]. The tools associated with these projects have
serious shortcomings, however, which typically include:

• High barriers to entry. Most tools require the user
to install some piece of software (where the difficulty
of installation and overall reliability varies highly on
different platforms) and learn its particular usage patterns
and set of quirks.

• Disjoint components. Most distributed algorithm tools
focus on only one aspect (rarely two aspects): language,
simulator, or deployment. It is challenging to construct
a development environment that harmoniously integrates
code-editing, simulation, and deployment.

• Lack of active collaboration frameworks. Sharing the
distributed algorithms with students / colleagues / collab-
orators and reliably / efficiently showcasing their abilities
is difficult in most existing toolkits.

Our aim is to make the state-of-the-art advances in aggre-
gate programming readily available to a broad community of
students, teachers, system programmers, and researchers by
alleviating the shortcomings associated with current aggregate
programing toolkits. This demonstration showcases our new
WebProto software: a free and open-source web application
that provides the Proto aggregate programming platform as
a universally accessible code editor, compiler, and simulator
with an easy-to-use collaboration framework.

WebProto allows any person with a modern browser to
explore aggregate programming and self-organization and to
easily develop novel software based on these approaches.
We illustrate this capability with a web-based tutorial on
Proto. This tutorial includes WebProto examples and exercises,
also demonstrating how WebProto can be used as a simple
platform for developing online curricula. Building on this
demonstration, we hope to encourage broader adoption of
aggregate programming in research, industry, and education.

Fig. 1. Example of WebProto running a program that creates overlapping
“bullseye” patterns around selected devices.

II. WEBPROTO

WebProto is inspired by the example of NetLogo [6], a
widely used educational tool for investigation of agent models
and distributed systems. WebProto aims to provide similar easy
access to the new aggregate-level programming models.

WebProto is built on top of MIT Proto1, the current pri-
mary implementation and distribution of Proto. MIT Proto
comprises four main components: (1) a library of Proto code
for common self-organization primitives, (2) a compiler that
turns Proto code into executable binaries, (3) the Delft virtual
machine for executing binaries, and (4) a fast simulator,
capable of testing scenarios with dozens to thousands of
stationary or mobile devices.

The current distribution of MIT Proto has three main
obstacles with respect to usability and accessibility. First and
foremost, installation of MIT Proto depends on a complicated
bootstrapping via GNU autotools, run by a sequence of
console commands. This presents a formidable obstacle to
the casual user and frequently encounters difficult to debug
problems, particularly on Windows systems, which do not
natively support the GNU toolchain. Second, program editing
and simulation are disconnected workflows: programs are
edited separately as text files, while simulations are invoked
on the command line with a long sequence of configuration

1http://proto.bbn.com/

http://proto.bbn.com/


arguments. Finally, there is no intuitive interface for the
simulator, which is controlled through key-bindings that can
only be discovered in its (separate) PDF manual.

WebProto provides a unified interface that addresses all of
these issues. In the conversion from command-line to web
application, WebProto treats each of the four components
differently. At the center of this conversion is a JavaScript
implementation of the simulator, rebuilt from the ground up
based on WebGL and the three.js library2. To ensure fidelity
between implementations, the compiler and virtual machine
(VM) are kept identical: the compiler is wrapped for execution
as a CGI service, and the VM is compiled to a JavaScript
implementation using emscripten3—note that this does impose
a significant inefficiency, which is being addressed by an
ongoing port of the VM to JavaScript. The self-organizing
library code is untouched, and used by the compiler as usual.

The gap between editing and simulation is bridged by split-
ting the WebProto page between the 3D simulator display and
an Ace code editor4, configured for Proto code. Configuring
and running simulations is done through a a settings pane
and buttons at the top of the screen. When the user runs a
simulation, their code is sent to the compiler web service,
which returns a JSON script. The simulator then interprets
that script into VM code and configures a network of devices
with VM instances executing that code.

All of these components can be configured with extended
URL arguments as well, such that they start in a desired
configuration. Furthermore, WebProto enables both curricu-
lum design and also collaboration between distributed-system
developers with a “Create a Link” button. This button allows
educators or developers to easily record and share programs
and simulator settings by generating a single URL.

WebProto is publicly available two ways: first, we have set
up an instance of WebProto, served at http://proto.bbn.com/
webproto. This service can be used directly, embedded, or
linked from other pages and services. Second, we have added
WebProto as a new component of MIT Proto, available at
http://proto.bbn.com/ as free software under an open license.
Anyone is thus free to contribute improved code to WebProto
and to set up their own instances.

Note also that the editor and compiler, although both used
by the simulator, are set up as independent services so that
they can be used separately as well. For example, the tutorial
described in the next section embeds read-only instances of
the Proto-configured code editor in order to display examples.

III. DEMONSTRATION: THINKING IN PROTO TUTORIAL

The main subject of our demonstration of WebProto is a
tutorial entitled “Thinking in Proto.” This tutorial may be ac-
cessed online at: http://proto.bbn.com/webproto/tutorial.html

The document is an adaptation and update of the prior
offline “Thinking in Proto” tutorial. It begins from the per-
spective of a student who knows little about programming,

2http://threejs.org/
3https://github.com/kripken/emscripten
4http://ace.ajax.org/

!"#$%&'%()*+,-.%/"+0-*1'#%

(+2.33.3%45'&'%6'3.%
7"&8%9:#&*)%8";8-";81#;%

Fig. 2. Part of the “Thinking in Proto” web tutorial, showing embedded
Proto code with automatic syntax highlighting and a link that opens a new
page with an example WebProto simulation using that code.

and then one by one introduces key concepts of Proto and its
continuous space/time approach to aggregate programming.

The online version of the tutorial now includes the following
features based on WebProto:

• Examples link to WebProto simulations configured to
run the example in a new window, so that students can
explore aggregate-programming concepts and algorithms
immediately as they read about them.

• Exercises encourage students to actively participate in the
tutorial by writing code, thus improving comprehension.

Figure 2 shows a snapshot of the tutorial page including
embedded code and a WebProto simulation link. The reader is
strongly encouraged, however, to try the tutorial themselves.

This tutorial is a useful resource in and of itself, making
it possible for people interested in Proto to start learning
and experimenting immediately, without first having to go
through a long and error-prone process of installation. More
importantly, however, it is a demonstration of how our creation
of WebProto can generally lower the barrier of entry for
curriculum development, software engineering, and scientific
investigation in the areas of aggregate programming and
engineered self-organization.

REFERENCES

[1] J. Beal, K. Usbeck, and B. Benyo, “On the evaluation of space-time
functions,” The Computer Journal, 2012.

[2] J. Beal and R. Schantz, “A spatial computing approach to distributed
algorithms,” in 45th Asilomar Conference on Signals, Systems, and
Computers, November 2010.

[3] J.-L. Giavitto, O. Michel, J. Cohen, and A. Spicher, “Computation in
space and space in computation,” Universite d’Evry, LaMI, Evry, France,
Tech. Rep. 103-2004, 2004.

[4] J. Fernandez-Marquez, G. Marzo Serugendo, S. Montagna, M. Viroli, and
J. Arcos, “Description and composition of bio-inspired design patterns:
a complete overview,” Natural Computing, vol. 12, no. 1, pp. 43–67,
2013. [Online]. Available: http://dx.doi.org/10.1007/s11047-012-9324-y

[5] M. Viroli, “Engineering confluent computational fields: from functions to
rewrite rules,” in 6th Spatial Computing Workshop, May 2013.

[6] E. Sklar, “Netlogo, a multi-agent simulation environment,” Artificial life,
vol. 13, no. 3, pp. 303–311, 2007.

http://proto.bbn.com/webproto
http://proto.bbn.com/webproto
http://proto.bbn.com/
http://proto.bbn.com/webproto/tutorial.html
http://threejs.org/
https://github.com/kripken/emscripten
http://ace.ajax.org/
http://dx.doi.org/10.1007/s11047-012-9324-y

	Goal: Make Aggregate Programming Accessible
	WebProto
	Demonstration: Thinking In Proto Tutorial
	References

