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Abstract. Amorphous computing considers the problem of controlling
millions of spatially distributed unreliable devices which communicate
only with nearby neighbors. To program such a system, we need a high-
level description language for desired global behaviors, and a system to
compile such descriptions into locally executing code which robustly cre-
ates and maintains the desired global behavior. I survey existing amor-
phous computing primitives and give desiderata for a language describing
computation on an amorphous computer. I then bring these together in
Amorphous Medium Language, which computes on an amorphous com-
puter as though it were a space-filling computational medium.

1 Introduction

Increasingly, we are faced with the prospect of programming spatially embedded
mesh networks composed of huge numbers of unreliable parts. Projects in such
diverse fields as sensor networks (e.g. NEST [12]), peer-to-peer wireless (e.g.
RoofNet [2]), smart materials (e.g. smart dusts [17, 26]), and biological com-
putation [18, 29, 30] all envision deployed networks of large size (ranging from
thousands to trillions of nodes) where only nodes nearby in space can commu-
nicate directly, and the network as a whole approximates the physical space
through which it is deployed.

Any such large spatially embedded mesh network may be considered an amor-
phous computer. Amorphous computing studies the problem of controlling these
networks from a perspective of group behavior, taking inspiration from biologi-
cal processes such as morphogenesis and regeneration, in which unreliable simple
processing units (cells) communicating locally (e.g. with chemical gradients) ex-
ecute a shared program (DNA) and cooperate to reliably produce an organism’s
anatomy.

Controlling an amorphous computer presents serious challenges. Spatially
local communication means networks may have a high diameter, and large num-
bers of nodes place tight constraints on sustainable communication complexity.
Moreover, large numbers also mean that node failures and replacements are a
continuous process rather than isolated events, threatening the stability of the
network. If we are to program in this environment, we need high-level program-
ming abstractions to separate the behaviors being programmed from the net-
working and robustness issues involved in executing that program on a spatially
embedded mesh network.
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Let us define an amorphous medium to be a hypothetical continuous com-
putational medium filling the space approximated by an amorphous computer.
I propose that this is an appropriate basis for abstraction: high-level behavior
can then be described in terms of geometric regions of the amorphous medium,
then executed approximately by the amorphous computer.

In support of this hypothesis, I first detail the amorphous computing scenario,
then survey existing amorphous computing primitives and describe how they
can be viewed as approximating the behavior of an amorphous medium. I then
present the Amorphous Medium Language, which describes program behavior in
terms of nested processes occupying migrating regions of the space in which the
network is embedded, describe AML’s key design elements — spatial processes,
active process maintenance, and homeostasis — and illustrate the language by
means of examples.

2 The Amorphous Computing Scenario

The amorphous computing engineering domain presents a set of challenging re-
quirements and prohibitions to the system designer, forcing confrontation of
issues of robustness, distribution, and scalability. These constraints derive much
of their inspiration from biological systems engaged in morphogenesis and regen-
eration, which must be accomplished by coordinating extremely large numbers
of unreliable devices (cells).

The first and foremost requirement is scalability: the number of devices
may be large, anywhere from thousands to millions or even billions. Biological
systems, in fact, may comprise trillions of cells. Practically, this means that an
algorithm is reasonable only if its per-device asymptotic complexity (e.g. space
or bandwidth per device) are polynomial in log n (where n is the number of
devices) — and any bound significantly greater than O(lg n) should be treated
with considerable suspicion. Further, unlike ad-hoc networking and sensor net-
works scenarios, amorphous computing generally assumes cheap energy, local
processing, and storage — in other words, as long as they do not have a high
per-device asymptotic complexity, minimizing them is not of particular interest.

The network graph is determined by the spatial distribution of the devices
in some Euclidean space, which collaborate via local communication. Devices
are generally immobile unless the space in which they are embedded is moved
(e.g. cutting and pasting ”smart paper”)1. A unit disc model is often used to
create the network, in which a bidirectional link exists between two devices if
and only if they are less than distance r apart. Local communication implies that
the network is expected to have a high diameter, and, assuming a packet-based
communication model, this means that the time for information to propagate
through the network depends primarily on the number of hops it needs to travel.
Local communication also means that communication complexity is best mea-

1 Note that mobile devices might be programmed as immobile virtual devices [13,14].
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sured by maximum communication density — the maximum bandwidth
required by a device — rather than by number of messages.

Due to the number of devices potentially involved, the system must not de-
pend on much care and feeding of the individual devices. In general, it is assumed
that every device is identically programmed, but that there can be a small
amount of differentiation via initial conditions. Once the system is running,
however, there is no per-device administration allowed.

There are strict limitations on the assumed network infrastructure. The sys-
tem executes with partial synchrony — each device may be assumed to have
a clock which ticks regularly, but the clocks may show different times, run at
(boundedly) different rates, and have different phases. In addition, the system
may not assume complex services not presently extended to the amorphous do-
main — this is applied particularly to mean no global naming, routing, or
coordinate service may be assumed.

Finally, in a large, spatially distributed network of devices, failures are not
isolated events. Due to the sheer number of devices, point failures are best mea-
sured by an expected rate of device failure. This suggests also that methods
of analysis like half-life analysis [21] will be more useful than standard f -failure
analysis. In addition, because the network is spatially embedded, outside events
may cause failure of arbitrary spatial regions — larger region failures are
assumed to occur less frequently. Generally stopping failures have been used, in
which the failing device or link simply ceases operating. Finally, maintenance
requires recovery or replacement of failed devices: in either case, the effect is
that new devices join the network either individually or as a region.

3 Amorphous Computing Mechanisms

Several existing amorphous computing algorithms will serve as useful primitives
for constructing a language. Each mechanism summarized here has been im-
plemented as a code module and demonstrated in simulation. Together they
are a powerful toolkit from which primitives for high-level languages can be
constructed.

3.1 Shared Neighborhood Data

This simple mechanism allows neighboring devices to communicate by means
of a shared-memory region, similar to the systems described in [7, 32]. Each
device maintains a table of key-value pairs which it wishes to share (for example,
the keys might be variable names and the values their bindings). Periodically
each device transmits its table to its neighbors, informing them that it is still a
neighbor and refreshing their view of its shared memory. Conversely, a neighbor
is removed from the table if more than a certain time has elapsed since its last
refresh. The module can then be queried for the set of neighbors, and the values
its neighbors most recently held for any key in its table.

Shared neighborhood data can also be viewed as a sample of the amorphous
medium within a unit neighborhood. Aggregate functions of the neighborhood
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data (e.g. average or maximum) are then approximations of the same functions
on a neighborhood of the amorphous medium.

Maintaining shared neighborhood data requires storage and communication
density proportional to the number of values being stored, size of the values, and
number of neighbors.

3.2 Regions

The region module maintains labels for contiguous sets of devices, approximat-
ing connected regions of the amorphous medium, using a mechanism similar to
that in [31]. A Region is defined by a name and a boolean membership function.
When seeded in one or more devices, a Region spreads via shared neighborhood
data to all adjoining devices that satisfy the membership test. When a Region is
deallocated, a garbage collection mechanism spreads the deallocation through-
out the participating devices, attempting to ensure that the defunct Region is
removed totally.

Note that failures or evolving system state may separate a Region into dis-
connected components. While these are still logically the same Region, and
may rejoin into a single connected component in the future, information will
not generally pass between disconnected components. As a result, the state of
disconnected components of a Region may evolve separately, and in particular
garbage collection is only guaranteed to be effective in a connected component
of a Region.

Regions are organized into a tree, with every device belonging to the root
Region. In order for a device to be a member of a Region, it must also be
a member of that Region’s parent in the tree. This implicit compounding of
membership tests allows Regions to exhibit stack-like behavior which will be
useful for establishing execution scope in a high-level language.

Maintaining Regions requires storage and communication density propor-
tional to the number of Regions being maintained, due to the maintenance of
shared neighborhood data. Garbage collecting a Region requires time propor-
tional to the diameter of the Region.

3.3 Gossip

The gossip communication module [6] propagates information throughout a Re-
gion via shared neighborhood data, after the fashion of flooding algorithms [22].
Gossip is all-to-all communication: each item of gossip has a merge function
that combines local state with neighbor information to produce a merged whole.
When an item of gossip is garbage-collected, the deallocation propagates slowly
to prevent regrowth into areas which have already been garbage-collected.

Gossip requires storage and communication density proportional to the num-
ber and size of gossip items being maintained in each Region of which a device
is a member, due to the maintenance of shared neighborhood data. Garbage col-
lecting an item of gossip takes time proportional to the diameter of the region.
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3.4 Consensus and Reduction

Non-failing devices participating in a strong consensus process must all choose
the same value if any of them choose a value, and the chosen value must be held
by at least one of the participants. Reduction is a generalization of consensus in
which the chosen value is an aggregate function of values held by the participants
(e.g. sum or average) — as before, all non-failing devices complete the operation
holding the same value.

The Paxos consensus algorithm [20] has been demonstrated in an amorphous
computing context [6], but scales badly. A gossip-based algorithm currently un-
der development promises much better results: it appears that running a robust
reduction process on a Region may require only storage and communication den-
sity logarithmic in the diameter of the Region and time linear in the diameter
of the Region.

3.5 Read/Write Atomic Objects

Atomic consistency means that all transactions with an object can be viewed as
happening in some order, even if they overlap in time. If we designate a Region
of an amorphous medium as a read/write atomic object, then reading or writing
values at any point in the Region produces a consistent view of the value held
by the Region over time.

Using consensus and reduction, quorum-based atomic transactions can be
supported by a reconfigurable set of devices [23,15]. This has been demonstrated
in simulation for amorphous computing [6], and scales as the underlying consen-
sus and reduction algorithms do.

3.6 Active Gradient

An active gradient [9, 11, 8] maintains a hop-count upwards from its source or
sources — a set of devices which declare themselves to have count value zero —
giving an approximation of radial distance in the amorphous medium, useful for
establishing Regions. Points in the gradient converge to the minimum hop-count
and repairs their values when they become invalid. The gradient runs within a
Region, and may be further bounded (e.g. with a maximum number of hops).
When the supporting sources disappear, the gradient is garbage-collected; as
in the case of gossip items, the garbage collection propagates slowly to prevent
unwanted regrowth into previously garbage collected areas. A gradient may also
carry version information, allowing its source to change more smoothly. Figure 1
shows an active gradient being used to maintain a line.

Maintaining a gradient requires a constant amount of storage and communi-
cation density for every device in range of the gradient, and garbage collecting
a gradient takes time linear in the diameter of its extent.

3.7 Persistent Node

A Persistent Node [4] is a robust mobile virtual object that occupies a ball
in the amorphous medium (See Figure 2). A Persistent Node is a read/write
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(a) Before Failure (b) After Repair

Fig. 1. A line being maintained by active gradients, from [8]. A line (black) is con-
structed between two anchor regions (dark grey) based on the active gradient emitted
by the right anchor region (light grays). The line is able to rapidly repair itself following
failures because the gradient actively maintains itself

object supporting conditionally atomic transactions. A variant guaranteeing
atomic transactions has been developed [6], which trades off liveness in favor
of consistency and costs more due to underlying consensus and reduction algo-
rithms.

A Persistent Node is implemented around an active gradient flowing outward
from its center. All devices within r hops (the Persistent Node’s core) are identi-
fied as members of the Persistent Node, while a heuristic calculation flows inward
from all devices within 2r hops (the reflector) to determine which direction the
center should be moving. The gradient is bounded to kr hops (the umbra), so
every device in this region is aware of the existence and location of the Persistent
Node. If any device in the core survives a failure, the Persistent Node will rebuild
itself, although if the failure separates the core into disconnected components,
the Persistent Node may be cloned. If the umbras of two clones come in contact,
however, they will resolve back into a single Persistent Node via the destruction
of one clone.

Persistent Nodes are useful as primitives for establishing regions, much like
active gradients. A Persistent Node, however, can change its position within a
larger region in response to changing conditions.

Maintaining a Persistent Node requires storage and communication density
linear in the size of the data stored by it. A Persistent Node moves and repairs
itself in time linear in its diameter.

3.8 Hierarchical Partitioning

A Region can be partitioned through the use of Persistent Nodes: [5] nodes of
a characteristic radius are generated and allowed to drift, repelling one another,
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Reflector

Umbra

Core

Fig. 2. Anatomy of a Persistent Node. The innermost circle is the core (black), which
arts as a virtual node. Every device within middle circle is in the reflector (light grey),
which calculates which direction the Persistent Node will move. The outermost circle
(dark grey) is the umbra (k=3 in this example), which knows the identity of the
Persistent Node, but nothing else

until every device in the Region is near some Persistent Node, and devices choose
a node with which to associate, with some hysteresis. A set of partitions with
exponentially increasing diameter can generate clustering relations which form a
hierarchical partition of the Region. Although the partitions are not nested, the
clusters which they generate are, and the resulting structure is highly resilient
against failures — unlike other clustering algorithms, partitioning on the basis
of persistent nodes bounds the extent of address changes caused by a failure
linearly in the size of a circumscription of the failure. Figures 3 and 4 show an
example of partitioning.

Maintaining a hierarchical partition takes storage and communication loga-
rithmic in the diameter of the Region being partitioned, and creating the parti-
tion takes time log-linear in the diameter.
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(a) Level 1 (b) Level 2 (c) Level 3

Fig. 3. Hierarchical partitioning via Persistent Nodes for a simulation with 2000 de-
vices. There are five levels in the resulting hierarchy. The top and bottom levels of
the hierarchy are uninteresting, as the top has every particle in the same group and
the bottom has every particle in a different group; these images show the middle three
levels of the hierarchy, with each ith level node a different color, and thick black lines
showing the approximate boundaries. The logical tree is shown in Figure 4

.127 .733.458

.992

.054 .697 .183.493 .699 .429 .939 .945 .521 .893 .814 .808 .885

Fig. 4. A hierarchy tree produced by the hierarchical partitioning shown in Figure 3.
The numbers are the names of Persistent Nodes in the top three levels; the level 1
nodes are shown as black dots and the 2000 leaf nodes are not explicitly enumerated

4 Amorphous Medium Language

I want to be able to program an amorphous computer as though it is a space
filled with a continuous medium of computational material: the actual executing
program should produce an approximation of this behavior on a set of discrete
points. This means that there should be no explicit statements about individual
devices or communication between them. Instead, the language should describe
behavior in terms of spatial regions of the amorphous medium, which I will take
to be the manifold induced by neighborhoods in the amorphous computer’s mesh
network.

The program should be able to be specified without knowledge of the partic-
ular amorphous medium on which it will be run. Moreover, the geometry and
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topology of the medium should be able to change as the program is executing,
through failure and addition of devices, and the running program adjust to its
new environment gracefully.

Finally, since failures and additions may disconnect and reconnect the
medium, a program which is separated into two different executions must be
able to reintegrate when the components of the medium rejoin.

Amorphous Medium Language combines mechanisms from the previous sec-
tion to fulfill these goals via three key design components: spatial processes,
aggregate state, active process maintenance, and homeostasis.

4.1 Spatial Processes

In AML each active process is associated with a region of space. The programs
that direct a process are written to be executed at a generic place in their region.
Every device in the region is running the process, continually sharing process
variables with those neighbors (in the region) that are running the same process.

A process may designate (perhaps overlapping) subregions of its region to
execute subprocesses. These subregions may be delineated by an active gradi-
ent, a Persistent Node, or some characteristic function. Thus, the collection of
processes forms a tree, whose root operates on a region that covers the entire
network.

The set of devices constituting a region that is participating in a processes
may migrate, expand, or contract in response to changing conditions in the
network or in its state, subject to the constraint that it remains in the region
owned by its parent process (This constraint yields subroutine compositional
semantics). Since regions assigned to processes may overlap, the devices in the
overlap will be running all of the processes associated with that part of space,
and all of the parent processes that cover that region.

Many copies of the same process may run at the same device, as long as they
have different parameters or different parent processes. So if process Foo calls
(Fibonacci 5) and (Fibonacci 10), it creates two different processes, and if
Foo and Bar both call (Fibonacci 5) it creates two different processes, but if
Foo calls (Fibonacci 5) twice it creates only a single process.

4.2 Aggregate State

Processes have state, described as the values of program variables. The values
of these variables are determined by aggregation across the set of participating
devices. Depending on the requirements of the computation, a variable may be
implemented by gossip, by reduction, or as a distributed atomic object. Gossip
is the cheapest mechanism, but it provides no consistency guarantees and can be
used only for certain aggregation functions (e.g. maximum or union). Reduction
is similar, but somewhat more costly and allows non-idempotent aggregation
functions (e.g. average or sum). An atomic object gives guaranteed consistency,
but it is expensive and may not be able to progress in the face of partition or
high failure rates.
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If a process is partitioned by a failure into two parts that cannot communicate
then each part is an independent process, which evolves separately. Differences
between the parts must be resolved if the parts later merge.

4.3 Active Process Maintenance

To remain active a process must be actively supported by its parent process. If
a process is not supported it will die. The root process is eternally supported.
Support is implemented by an active gradient mechanism. When a process loses
support and dies the resources held by that process in each device are recycled
by a garbage collector.2

4.4 Homeostasis and Repair

In AML processes are specified by procedures that describe conditions to be
maintained and actions to be taken if those conditions are not satisfied. If a
failure is small enough the actions are designed by the programmer to repair the
damage and restore the desired conditions.

As a result, incomplete computation and disruption caused by failures can be
handled uniformly. Failures produce deviations in the path towards homeostasis,
and if the system state converges toward homeostasis faster than failures push
it away, then eventually the process will complete its computation.

4.5 Examples

I will illustrate how AML programs operate by means of examples. These exam-
ples use the CommonLISP formatting processed by my AML compiler. These
examples are meant to illustrate how ideas are expressed in AML.

Maximum Density. Calculating maximum density is the AML equivalent of
a “hello world” program. To run this, we will need only one simple process (See
Figure 5).

The AML process root is the entry point for a program, similar to a main
function in C or Java. When an AML program runs, the root process runs
across the entire space, and is automatically supported everywhere so it will
never be garbage collected.

Processes are defined with the command (defprocess name (arguments)
statement ...). In this case, the name is root and there are no arguments, since
there are no initial conditions. The statements of a process are variable defini-
tions and homeostasis conditions; while the process is active, it runs cyclically,
clocked by the shared neighbor data refreshes. Each cycle the process first up-
dates variable aggregate values, then maintains its homeostasis conditions in the
order they are defined.

The first statement creates a variable, x, which we will use to aggregate the
density. Variables are defined with the command (defvariable name

2 This is much the same problem as addressed in [3].
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(defprocess root ()

(defvariable x #’max :base 0)

(maintain

(eq (local x) (density))

(set! x (density)))

(always

(actuate ’color (regional x))))

Fig. 5. Code to calculate maximum density (number of neighbors). The density at each
point is written to variable x, which aggregates them using the function max. Each
point then colors itself using the aggregate value for x

aggregation-function arguments). In this case, since we want to calculate maxi-
mum density, the aggregation function will be max.

Aggregation in AML is executed by taking a base aggregate value and up-
dating it by merging it with other values or aggregates — this also means that
if there are no values to aggregate, the variable equals the base value. Since the
default base value, NIL, is not a reasonable value for density, we use the optional
base argument to set it to zero instead.

Now we have a variable which will calculate its maximum value over the
process region, but haven’t specified how it gets any values to start with. First,
though, a word about the different ways in which we can talk about the value
of variable x. Every variable has three values: a local value, a neighborhood
aggregate value, and a regional aggregate value. Setting a variable sets only its
local value, though the aggregates may change as a result. Reading any value
from a variable is instantaneous, based on the current best estimate, but the
neighborhood aggregate may be one cycle stale, and the regional aggregate may
be indefinitely out of date.

The second statement is a homeostasis condition that deals only with the
local value of x. The function (density) is a built-in function that returns the
estimated density of the device’s neighborhood,3 so the maintain condition may
be read as: if the local value for x isn’t equal to the density, set it equal to the
density.

These local values for density are then aggregated by the variable, and the
current best estimate can be read using (regional x), as is done in the third
statement. The third statement is an always homeostasis condition, which is
syntactic sugar for (maintain nil ...), so that it is never satisfied and runs its
action every cycle. The action, in this case, reads the regional value of x and
sends it to the device’s color in a display — (actuate actuator value) is a
built-in function to allow AML programs to write to an external interface (its
converse (read-sensor sensor) reads from the external interface).

When this program is run, all the devices in the network start with the color
for zero, then turn all different colors as each writes its density to x locally. The

3 Density is most simply calculated as number of neighbors, but might be smoothed
for more consistent estimates.
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highest value colors then spread outward through their neighbors until each con-
nected component on the network is colored uniformly according to the highest
density it contains.

Blob Detection. With only slightly more complexity, we can write a program
to detect blobs in a binary image (See Figure 6). In this scenario, an image is
mapped onto a space and devices distributed to cover the image. The image is
input to the network via a sensor named image, which reads black for devices
located at black points of the image and white for devices located at white
points of the image. The goal of the program is to find all of the contiguous
regions of black, and measure their areas.

Unlike the maximum density program, the root process for blob detection
takes an argument — fuzziness — which specifies how far apart two black
regions can be and still be considered contiguous.

The first statement in the root process declares its one variable, blobs,
which uses union to aggregate the the blobs detected throughout the network
into a global list.

(defprocess root (fuzziness)

(defvariable blobs #’union)

(always

(when (eq (read-sensor ’image) ’black)

(subprocess (measure-blob) :gradient fuzziness)

(setf blobs

(list (get-from-sub (measure-blob) blob)))))

(avoid

(read-sensor ’query)

(let ((q (first (read-sensor ’query))))

(cond

((eq q ’blobs)

(actuate ’response (regional blobs)))

((eq q ’area)

(actuate ’response

(fold #’+ (mapcar #’second

(regional blobs)))))))))

(defprocess measure-blob ()

(defvariable uid #’max :atomic :base 0 :init (random 1))

(defvariable area #’sum :reduction :base 0 :init 1)

(defvariable blob :local)

(always

(setf blob (list uid area))))

Fig. 6. Code to find a set of fuzzy blobs and their areas in a binary image. Each
contiguous black area of the image runs a connected measure-blob process that names
it and calculates its area. The set of blobs is collected by the root process and made
accessible to the user on the response actuator in response to requests on the query
sensor
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The second statement is an always condition which runs a blob measuring
process anywhere that there is black. The measure-blob process takes no ar-
guments, and its extent is defined by an active gradient going out fuzziness
hops from each device where the image sensor reads black.

This elegantly segments the image into blobs: from each black device a gra-
dient spreads the process out for fuzziness hops in all directions, so any two
black devices separated by at most twice-fuzziness hops of white devices will
be in a connected component of the measure-blob process. Where there are
more than twice-fuzziness hops of white devices separating two black points,
however, the measure-blob process is not connected and each component cal-
culates independently — effectively as a separate blob!

The measure-blob process has two responsibilities: give itself a unique
name, and calculate its area. The uid variable, whose aggregate will be the name
of the blob, uses two arguments which we haven’t seen before. The atomic ar-
gument means that the regional aggregate value of uid will be consistent across
the process and as a side effect will be more stable in its value. We use the init
argument, on the other hand, to start uid with a random value at each point.
As a result, uid will eventually have a random number as its regional aggregate
value which is unlikely to be the same as that of another blob.

The area variable also uses an init argument, which sets everything to be 1.
This serves as the point mass of a device, which we integrate across the process
to find its area using sum as an aggregator. We must ensure that no point is
counted more than once, however, so we use the reduction argument to specify
that the aggregation must be done that way rather than defaulting to gossip.

Finally, we declare the blob variable and add an always statement to make
it a list of uid and area, packaging a result for the measure-blob process to
be read by the root process. The root process can read variables in with child
processes with the command (get-from-sub (name parameters) variable), and
uses this to set the local value of blobs.

The final statement of the root process sets up a user interface in terms
of an avoid homeostasis condition. When there is a request queued up on the
query sensor, it upsets homeostasis, which the repair action attempts to rectify
by placing an answer, calculated from the regional aggregate value of blobs, on
the response actuator. The user would then remove the serviced request from
the queue, restoring homeostasis.

Thus, given a binary image, each contiguous region of black will run a
measure-blob process which names it and calculates its area. The root pro-
cess then records this information, which propagates throughout the network
until there is a consistent list of blobs everywhere.

4.6 Related Languages

In sensor networks research, a number of other high-level programming abstrac-
tions have been proposed to enable programming of large mesh networks. For
example, GHT [28] provides a hash table abstraction for storing data in the net-
work, and TinyDB [24] focuses on gathering information via query processing.
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Both of these approaches, however, are data-centric rather than computation-
centric, and do not provide guidance on how to do distributed manipulation of
data, once gathered.

More similar is the Regiment [27] language, which uses a stream-processing
abstraction to distribute computation across the network. Regiment is, in fact,
complementary to AML: its top-down design allows it to use the well-established
formal semantics of stream-processing, while AML’s programming model is still
evolving. Regiment’s robustness against failure, however, has not yet clearly
been established, and there are significant challenges remaining in adapting its
programming model to the sensor-network environment.

Previous work on languages in amorphous computing, on the other hand, has
worked with much the same failure model, but has been directed more towards
problems of morphogenesis and pattern formation than general computation. For
example, Coore’s work on topological patterns [10], and the work by Nagpal [25]
and Kondacs [19] on geometric shape formation. A notable exception is Butera’s
work on paintable computing [7], which allows general computation, but operates
at a lower level of abstraction than AML.

5 Conclusion

Considering the space occupied by an amorphous computer as an amorphous
medium provides a useful programming abstraction. The amorphous medium
abstraction can be programmed in terms of the behavior of spaces defined using
geometric primitives, and the amorphous computer can approximate execution
on the actual network.

Amorphous Medium Language is an example of how one can program using
the amorphous medium abstraction. Processes are distributed through space,
and run while there is demand from their parent processes. Within a connected
process region, data is shared via variables aggregated over the region, and com-
putation executes in response to violated homeostasis conditions.

An AML compiler in progress is being used as a workbench for further lan-
guage development, concurrent with investigation of more lightweight implemen-
tations of robust primitives and of analysis techniques capable to dealing with
the challenges of an amorphous environment. All of the mechanisms described
above have been implemented, but only gossip, regions, and shared data are
fully integrated with the compiler, which is run on a few test programs whose
behavior is demonstrated in simulation on 500 nodes.

AML does not solve all of the problems in its domain, but it has exposed a
clear set of problems, some of which appear to be challenges inherent to program-
ming space. These outstanding challenges are the basis of current investigation.

– It is not clear at this time how large a range of behaviors can be specified
as homeostatic conditions. It does seem adequate to allow the construction
and maintenance of arbitrary graphs and some geometric constructions. The
code that is executed when a condition is violated is intended to remedy
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the situation, but there is no guarantee that the repair behavior is actually
making progress.

– AML programs can be composed with subroutine semantics, but it is less
clear how to implement functional composition, particularly when the two
programs may occupy different regions of space.

– Moving information between processes logically separated in the process tree
is awkward, since information must be routed through a common parent.

– Integration of other programming ideas, such as streaming, may help to ad-
dress some of these problems. We may also need to develop robust primitives
better suited for our environment.

– At a more fundamental level, the tradeoff between consistency and liveness
needs continued exploration, as does the problem of how to merge state when
separated regions of a process rejoin.

– Failures which involve unpredictable behavior of a device are not currently
dealt with, and may cause widespread disruption in the network.

Indeed, even analyzing the behavior of an aggregate in which devices are con-
tinually failing and being replaced is not a well understood problem.
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