
Cells Are Plausible Targets for High-Level Spatial
Languages

Jacob Beal
MIT CSAIL

Cambridge, MA 02139
Email: jakebeal@mit.edu

Jonathan Bachrach
MIT CSAIL

Cambridge, MA 02139
Email: jrb@csail.mit.edu

Abstract—High level languages greatly increase the power of
a programmer at the cost of programs that consume more
resources than those written at a lower level of abstraction.
This inefficiency is a major concern for the programming of
biological systems: although advances in synthetic biology are
beginning to allow bacteria to be programmed at an “assembly
language” level, metabolic and chemical constraints currently
place tight limits on the computational resources available. We
find, however, that the semantics of the Proto spatial computing
language appear to be a good match for engineered genetic
regulatory networks, and particularly for describing the spatial
differentiation necessary to construct tissues or organs. In this
paper, we propose a mapping between Proto programs and stan-
dardized biological parts. We then demonstrate the plausibility
of this mapping by applying it to a band detection program,
finding that standard code optimization techniques can transform
the inefficient program produced by the initial mapping into
an efficient design equivalent to the Weiss laboratory’s hand-
designed band detector[1].

I. INTRODUCTION

Advances in synthetic biology promise to soon give en-
gineers intimate control over cells, with standardized bio-
logical parts allowing routine assembly of DNA to produce
predictable behaviors of these designed biological systems.

If we wish to build complex multi-cellular systems, how-
ever, we are faced with a difficult compound programming
problem: the engineer must describe not only how the pop-
ulation of cells should move, grow, and differentiate to form
structures like tissues and organs, but also how this program
should be distributed for execution on individual cells and
how the individual cells should implement the program in
DNA sequences. Thinking about all of these problems at
once is extremely difficult, as can be seen in the problems
suffered when programming distributed systems on ordinary
computers.

For many biological systems, however, we may hope to
cut this Gordian knot by viewing the aggregate of cells as a
spatial computer. Bacterial colonies, biofilms, and developing
embryos are all examples of spatial computers: the cells are
distributed such that they fill a volume of space, and the time
it takes for information to propagate from place to place in
the population is strongly dependent on geometric distance. A
spatial computing computing language such as Proto[2] might
then be used to describe the behavior of the population of cells

at a high-level, delegating the routine details of distribution and
implementation to the compiler.

Cells have tight constraints on the amount of resources
available, however. In the systems currently being investigated
by synthetic biologists, even relatively small programs impose
high costs on the cell’s metabolism. In addition, the number
of standardized parts currently available for constructing pro-
grams is small, and the lack of physical isolation in bacterial
DNA inhibits part reuse, so programs with more than a few
components cannot even be constructed, let alone inserted into
cells and executed. Although both of these constraints may
loosen in the future, it is unlikely that we will see a Moore’s
law-style vast increase in available resources any time soon.

We are therefore left with a problem: on the one hand,
high-level spatial languages appear to be necessary if we
wish the engineering of complex multi-cellular systems to
be humanly comprehensible. On the other hand, high-level
languages generally carry a penalty in efficiency relative to
hand-tuned systems constructed at a lower level of abstraction.
Given the tight resource constraints of cells, if the efficiency
penalty is significant, then we cannot expect to use high-level
languages for programming cells.

In this paper we investigate the plausibility of high-level
programming of cells using the Proto spatial computing
language. Beginning with a Proto program to replicate the
Weiss laboratory’s band-detector engineered bacterial system,
we propose a mapping between Proto programs and stan-
dardized biological parts and use this to produce a by-hand
compilation of the Proto program into a genetic regulatory
network. We then demonstrate that application of ordinary
code optimization techniques, again by hand, can transform
the inefficient program produced by the mapping into an
efficient design equivalent to the Weiss lab’s system. This
result shows that, given a good match between programming
model and biological parts, it is reasonable to believe that
high-level languages such as Proto may be a viable approach
to engineering complex biological systems.

II. BACKGROUND

This section briefly reviews the “band detector” system
we use as a challenge problem, the BioBrick parts used for
the low-level output of compilation, and the Proto spatial
computing language that we propose as a candidate high-level



Fig. 1. The Weiss laboratory’s engineered bacterial band detector, reprinted
by permission from Macmillan Publishers Ltd: Nature ([1]), copyright (2005).
The concentration of AHL diffused from sender cells (top right) serves as an
input to a genetic regulatory network in receiver cells. When the AHL level
is high or low, GFP is repressed, but when the AHL level is moderate, GFP
is expressed. The sender plasmid is shown in (b), and the receiver plasmids
in (c) and (d).

language for controlling engineered biological systems. We
assume general familiarity on the part of the reader with both
basic cell biology and programming languages.

A. Engineered genetic regulatory networks

Work in the area of synthetic biology has begun to pro-
duce libraries of standard biological parts, which can be
readily assembled to create engineered genetic regulatory
networks. When successful, these allow the design of living
cells with predictable engineered behaviors. For example,
Weiss has produced engineered “band detector” bacteria that
use intercellular communication to create spatial patterns of
fluorescence[1], [3]. We choose the band detector system as a
target for replication because it is a known working engineered
biological system with a spatial component.

Weiss’s band-detector system (shown in Figure 1) uses
two populations of bacteria. One population is senders: the
presence of anhydrotetracycline (aTc) induces this population
to produce the LuxI enzyme. LuxI catalyzes the production
of AHL, a signalling chemical that diffuses through cell
membranes. The second population are receivers: when AHL
diffuses into cells of this population, it binds to the LuxR

a

Fig. 2. Examples of the Weiss lab band detector in use, reprinted by
permission from Macmillan Publishers Ltd: Nature ([1]), copyright (2005).
The circular regions in the center are active senders, while the fuzzy colored
areas are receivers expressing fluorescent protein.

transcription regulator and induces activity on two pathways.
One pathway detects high levels of AHL, the other detects
low levels, and both act to suppress production of a fluorescent
protein such as GFP. Accordingly, cells at a moderate distance
to the active senders, which receive moderate levels of AHL,
fluoresce, while cells closer or farther away do not. Figure 2
shows images of band detector colonies in operation.

In this paper, we consider systems constructed from parts
conforming to the BioBricks assembly standard. This standard,
proposed by Knight in 2003[4], allows the assembly of con-
forming parts into arbitrary sequences, as any two BioBricks
can be composed and the composition of any two BioBricks
is itself a BioBrick: source plasmids are assembled to form
a composite plasmid, following one of several protocols, and
the composite plasmids are inserted into bacteria (generally
e. coli). Publicly available BioBricks are collected in the
Registry of Standard Biological Parts[5], [6] and have been
used successfully by many laboratories, including undergrad-
uates teams in the iGEM genetic engineering competition[7].
Although the band detector we wish to replicate is not
constructed from BioBricks, we have chosen to consider
BioBricks because their composition standard is amenable to
automated design generation by a compiler.

Figure 3 shows the “language” of BioBricks that we use for
describing engineered genetic regulatory networks, along with
an intercellular communication composite part and a typical
composite for a functional unit in a genetic regulatory network.
A typical functional unit is composed of four parts: a ribosome
binding site preceded by one or more regulatory sites and
followed by one or more protein coding sequences, which are
in turn ended with a transcription terminator. When at least one
regulatory site is promoting binding and none are repressing
it, DNA is transcribed into RNA, which is translated into the



Fig. 3. Standard biological parts, as encoded by the registry, and the notation
we use to show the interaction between parts and chemicals. Arrow size shows
the strength of a relationship. Note that the signalling part is, itself a complex
composite and may even be split between plasmids or cell populations, as in
the Weiss lab design.

encoded proteins, increasing their concentration in the cell.
Computation is generally implemented through the influ-

ence of transcription factors on regulatory sites. We indicate
this with arrows connecting chemical names to regulatory
sites: a chemical name X and green arrow means a site
that is normally inactive but can be induced to activity by
the presence of X , while a red bar means a site that is
normally active but can be repressed by the presence of X . The
wider the arrow, the stronger the induction or repression, and
therefore the lower concentration of transcription factor needed
to affect behavior. If there is no arrow, then the regulatory
region is constitutively active.

For example, the composite part shown in Figure 3 nor-
mally produces a standard amount of protein C and a small
amount of protein B. When protein A is present, it suppresses
transcription, and levels of B and C in the cell will drop.

In practice, assembly of BioBricks to produce working in
vivo systems is fraught with complications. Major current
challenges include maintenance of consistent signal levels,
switching speed, interference with cell metabolism, unex-
pected secondary structure in composed sequences, and in-
terference between transcription factors. As progress is being
made in all of these areas, however, we feel it is reasonable
to discuss computation on the abstract genetic regulatory
networks that the BioBricks community aims to enable.

B. The Proto language

One promising approach to the challenges of spatial com-
puting is to focus not on the network of devices, but on
the continuous space that they occupy, using the amorphous
medium abstraction. An amorphous medium[2] is a manifold

neighborhood of P

P

Fig. 4. An amorphous medium is a manifold where every point is a device
that knows its neighbors’ recent past state.

(def band-detect (signal lo hi)
(and (> signal lo) (< signal hi))))

(let ((signal (diffuse (aTc) 0.8 0.05)))
(green (band-detect signal 0.2 1)))

Fig. 5. Proto code for a band detector.

with a computational device at every point, where every
device knows the recent past state of all other devices in
its neighborhood (Figure 4). While an amorphous medium
cannot, of course, be constructed, it can be approximated on
the discrete network of a spatial computer.

Our language, Proto[2], uses the amorphous medium ab-
straction to factor programming a spatial computer into three
loosely coupled subproblems: global descriptions of programs,
compilation from global to local execution on an amorphous
medium, and discrete approximation of an amorphous medium
by a real network.

Proto is a functional language that is interpreted to produce
a dataflow graph of operations on fields; for the purpose of
this paper, we assume that all function calls are inlined in
the graph, though that need not be the case in general. This
program is then evaluated against a manifold to produce a field
with values that evolve over time. Proto uses four families of
operations: point-wise operations like + that involve neither
space nor time, restriction operations that limit execution to a
subspace, feedback operations that establish state and evolve it
in continuous time, and neighborhood operations that compute
over neighbor state and space-time measures and summarize
the computed values in the neighborhood with a set operation
like integral or minimum.

With appropriate operators, compilation and discrete ap-
proximation are straightforward. Thus, Proto makes it easy for
a programmer to carry out complicated spatial computations
using simple geometric programs that are robust to changes in
the network and self-scale to networks with different shape,
diameter, density of nodes, and execution and communication
properties[8].

For example, a band detector can be implemented using the
short program shown in Figure 5, where aTc is a function
for sensing aTc and green is an actuator that sets the level
of GFP expression. On a wireless network an implementation
of diffuse (whose parameters are an indicator function for
sources, a diffusion constant, and a decay constant) adds five
more lines of code, including feedback and neighborhood
operations, but in our biological implementation it will be
implemented directly using a signalling part. Figure 6 shows



Fig. 6. A Proto program specifies a dataflow graph of operations on fields.
When evaluated on a space, each operation produces a field of values over that
space. Here the band detector program is shown evaluated on an irregularly
shaped space, with scalar fields grey (lighter is less) and boolean fields colored
(true is red, false is blue). The actuation produced by green is shown inside
that operation.

the Proto band detector program interpreted to produce a
dataflow graph, then evaluated against an irregularly shaped
space.

Executing the Proto band detector in simulation produces
results equivalent to Weiss’s band detector. Figure 7 shows
execution on a network of 2000 simulated wireless devices
distributed randomly through a 100 by 100 unit region with a
10 unit communication radius.

Other spatial computing approaches: Proto is only
one of many high-level approaches to programming spa-
tial computers. Other major approaches include viral code
systems, (e.g. TOTA co-fields[9], paintable computing[10])
Regiment[11], which gathers streaming data from spatial re-
gions, Kairos[12], which operates on abstract graphs, pattern
languages like Origami Shape Language[13] and Growing
Point Language[14], and modular robotics systems (e.g. [15]).
Previous work toward a general purpose spatial computing
language includes other work by Coore[16] and the Amor-
phous Medium Language[17]. Crystalline systems such as
cellular automata are a special case of spatial computers, and
insight from that area is beginning to be applied to spatial
computing[18], including models of morphogenesis. Proto,
however, appears uniquely well suited for translation into
genetic regulatory networks, as is shown in the next section.

d

ba

c

Fig. 7. A band detector implemented in Proto produces equivalent results
to the Weiss lab band detector. Subfigure (a) creates the two color pattern by
calling the band-detect function twice inside the let.

III. BIOLOGICAL IMPLEMENTATION OF PROTO
PRIMITIVES

Proto’s semantics appear to be a good match for imple-
mentation in a genetic regulatory network. The continuous
space abstraction used by Proto means that scaling to cell
populations in the billions or trillions should be no challenge.
Likewise, the parallel, unsynchronized operation of a genetic
regulatory network should pose no problem for Proto because
it is a purely functional language: state in Proto comes only
from the values flowing over edges in the dataflow graph,
just as state in the BioBrick genetic regulatory networks we
are considering comes primarily from the concentration of
chemicals within the cell.

We therefore propose to represent edges as chemicals (gen-
erally transcription factors) and Proto primitives as composed
patterns of BioBricks. For purposes of this paper, we discuss
implementations for only those families of primitives needed
to implement the band detector.

a) Logical, Branching: Inverters were one of the first
targets of work in synthetic biology (see, for example, [19]),
and can be implemented as repression of a regulator, giving us
a not operation. Figure 8(a) shows the pattern for a not: A
is the input, which represses production of out. If the transfer
curve between levels of A and out obeys the static discipline,
then this composition of parts operates as an inverter, and the
concentrations of A and out are interpreted as digital values.

Adding a second repressable regulator produces a nor that
is repressed when either input A or B is present. If the inputs
induce rather than repress, they implement an or operation
instead. These operations can be used to build any logical
primitive. For example, and can be built out of three inverters,
effectively computing (nor (not A) (not B)).



(a) Logical

(b) Comparison

(c) Diffusion

Fig. 8. Genetic regulatory network implementations for selected Proto
primitives.

Branching operations can also be implemented using logical
operations. For example, where—the Proto equivalent of if,
restricting execution to a subspace—can be implemented by
using the output of the test expression to repress the inactive
branch.

b) Arithmetic: While digital arithmetic can be imple-
mented using logical operators, doing so is extremely expen-
sive. A one-bit full-adder, for example, requires five gates to
implement. As an alternative, one might consider representing
scalar numbers as analog values using chemical concentration.

In this approach, a numeric literal can be represented by a

constitutively active protein coding sequence. The + operator
can be implemented simply by having its operands be repre-
sented by the same chemical. Subtraction can be implemented
using a chemical reaction: if chemicals A and B react to
produce X , then (- A B) may be represented by the level of
A remaining for positive numbers and the level of B remaining
for negative numbers. Other operations such as multiplication,
division, and exponentiation are more complicated but might
still be implementable using methods adapted from electronic
analog computing.

There are significant questions that must be resolved to
make such analog computation usable, particularly those of
range, resolution, and timing. Nevertheless, given the limited
resources available in cells, it seems advisable to pursue analog
representations.

c) Comparison: Given a representation of scalars as
analog values, comparison operators such as < are effectively
operating as analog-to-digital converters. A promoter with a
sharp transition in its input/output transfer curve can be con-
sidered a one-bit analog-to-digital converter, testing whether a
chemical is present in any significant concentration.

We can thus implement comparisons using chemical reac-
tions to subtract the two chemicals being compared, then using
the remnant that is not consumed by the reaction to induce or
repress the output chemical (Figure 8(b)). This is a “fuzzy”
comparison that produces a clear answer only when the differ-
ence is in the saturated region of the induction or repression
transfer curve, but may suffice for many programs—certainly
it should be sufficient for the band detector.

d) Neighborhood Operations: Communication in Proto
is described implicitly through operations on the collection of
values held by neighbors. This may be very hard to imple-
ment on biological systems, however, due to the difficulty of
distinguishing which inputs come from which neighbors.

Much can be done using only diffusive communication,
so for now rather than implement neighborhood operations,
we implement only the diffuse function, as a special
case using a signalling part (Figure 8(c)). The input is a
boolean field—locations where it is true are sources of the
diffusing chemical—and diffusion constants are set by the
implementation of the signalling part, assuming that they are
in a realizable range. Note that the signalling part is, itself a
complex composite and may even be split between plasmids
or cell populations, as in the Weiss lab design.

e) Sensors and Actuators: Finally, we need chemical
sensors and actuators. In the case of the band detector these
are simple. There is a promoter that is induced by aTc, so
the aTc sensor primitive may be implemented simply using
a composite part headed by that promoter. Conversely, the
green actuator may be implemented with a composite part
that includes a protein coding sequence for green fluorescent
protein (GFP).

IV. COMPILATION

Given this mapping from Proto operators to biological parts,
compilation is straightforward. First, as usual, the Proto code



Fig. 9. Proto code is interpreted to produce a dataflow graph. Then each
edge in the graph is assigned a chemical and each operation an implementing
pattern of biological parts. Lower case letters are variables used to indicate
where the same chemical must be used in a complex pattern, though that
chemical is not yet assigned.

is interpreted to produce a data-flow graph of operations on
streams of fields. To map this to a genetic regulatory network,
each operator is assigned its corresponding pattern of biologi-
cal parts, and each edge assigned a unique chemical. Figure 9
shows this first stage of compilation for the band detector code
from Figure 5 (note that the diffusion operator is handled
as a special case, folding the constants in immediately).
The chemicals and biological annotations are then connected
together to create an abstract genetic regulatory network that
implements the program (Figure 10). The next stage, from
abstract network to actual components incorporated into one
or more plasmids and one or more cell populations, is not
treated because it is already an active area of synthetic biology
research.

The resulting biological design is complicated and redun-
dant. This is no surprise: the naive translation of high-level
programs into executable code often is. What is important is
that we have a complete design that likely could be realized
with a sufficient investment of laboratory work, and this naive
design provides a starting point for the process of optimization.

V. OPTIMIZATION

Although the program shown in Figure 10 is an imple-
mentation of a band detector, it is much less efficient than
the Weiss lab band detector. Applying common code opti-
mization techniques as described below, however, produces
an optimized program (Figure 11(f)) that is equivalent to the
abstract genetic regulatory network for the Weiss lab’s hand-
tuned design. This surprisingly good result shows two things:
that using high-level languages to create efficient biological
designs is plausible, and that we may be able to use readily
available compilation tools to do so.

D FB
B + YD

C X+ E
C E G

F H HG

JH

D E

A B C

outJ GFP

AaTc

Fig. 10. The chemicals and biological parts assigned to a Proto dataflow
graph are connected together to create an abstract genetic regulatory network
implementing the program.

Table I shows the sum of various resources used by the
Weiss lab design, the naive compiled Proto code, and the
optimized version. The costs count aTc as an intercellular
messenger and, for the Proto implementations, assume that
the intercellular signalling part is implemented using parts
BBa_F1610 and BBa_F2621 from the Registry of Standard
Biological Parts[5], for a total cost of one signal-carrying
chemical, one intercellular messenger, two coding regions, and
two promoters. The naive compiled version is clearly much
less viable: the greater resources required mean greater drain
on a cell’s resources as it operates and more potential interac-
tions between components, making it much more difficult to
produce a working in vivo system. Note, however, that these
costs are for the abstract network only, as we are not treating
the question of how the network is realized with particular
BioBricks, then divided into plasmids and cell populations.

Many standard methods for optimizing computer programs,
however, can be applied to such a genetic regulatory network.
The naive network fairly begs to have such techniques ap-
plied: even a cursory glimpse shows that the out chemical is
unneeded and that chemical J is redundant.

We applied standard code optimization techniques by hand
in order to see how much improvement could be easily
gained. Some (like copy propagation) should be immediately



Resource Hand Tuned Naive Optimized
Signal-carrying chemical 3 11 3
Protein coding sequence 6 14 6
Promoters 5 14 5
Intercellular messengers 2 2 2
Chemical reactions 0 2 0

TABLE I
RESOURCES REQUIRED BY BAND DETECTOR: THE WEISS LAB’S
HAND-TUNED DESIGN VERSUS NAIVELY COMPILED PROTO AND

OPTIMIZED COMPILED PROTO.

applicable to any Proto program, while others (like constant
elimination) are generic techniques which need to be applied
differently on different platforms. Figure 11 shows the se-
quence of reductions from applying five common code op-
timization techniques, adapted to genetic regulatory networks.

A. Constant Elimination
Most computing idioms include special-purpose operations

that implement particular computations quickly and simply.
For example, computers often include increment and decre-
ment instructions that compute much faster than general
purpose addition.

Comparison with a constant is such an operation for genetic
regulatory networks. Instead of representing the constant by a
constitutively produced chemical species, we represent it by
the strength of a promoter. For example, testing that B is above
a low threshold can be done using a strong positive promoter
and testing that C is below a high threshold can be done
using a weak negative promoter. We can thus eliminate both
reactions and chemicals D and E, producing Figure 11(a).

B. Algebraic Simplification
Sometimes briefly adding complexity to code enables

greater simplification. For example, inverting the comparison
operations (Figure 11(b)) produces a double negative than can
be eliminated, producing the simpler design in Figure 11(c).

C. Dead Code Elimination
Values and expressions in a program are “live” if they

will be used and “dead” if they will not be. Dead portions
of a program can be freely eliminated without changing the
function of a program. In this case, the out signal produced
by the band detector is not used—we are interested instead in
the GFP that is produced as a side effect of the last operation.
We can thus snip the out chemical from the design, producing
Figure 11(d)

D. Copy Propagation
When a value is copied to an intermediate variable, later

expressions can equivalently use either the copy or the orig-
inal. Copy propagation eliminates uses of the copy wherever
possible, hoping to eliminate the intermediate value.

In this case, copy propagation sets H to regulate GFP
directly, rather than being copied by the intermediate chemical
J . Since J is no longer used, a round of dead code elimination
removes it. A similar process eliminates chemical A, produc-
ing Figure 11(e).

E. Use-Definition Analysis

Finally, optimizations can be performed by analyzing a vari-
able’s definition and use cases. For example, many compilers
will move a computation out of a loop when its value it not
affected by the progress of the loop.

In this case, we can make an optimization based on knowing
that the uses of a value are positive promoters of the same,
strength. Since chemical C is used by only one positive pro-
moter, we can get equivalent signal strength by returning the
promoter to the standard level and modifying the expression
level of C instead. This turns the C to H relation into a copy,
so that a round of copy propagation and dead code elimination
eliminate C, resulting in the design shown in Figure 11(f).

This final design is equivalent to the genetic regulatory
network produced by the Weiss laboratory and shown in
Figure 1.

VI. CONTRIBUTIONS

We have shown that a Proto program for band detection can
be translated into a plausible design for a genetic regulatory
network, compiling by hand with a mapping from Proto
primitives to assemblages of standardized biological parts.
Moreover, applying standard code optimization techniques
to the compiled program can produce an optimized version
equivalent to a hand-designed band-detection program that
actually runs on bacteria.

These results suggest that it is reasonable to consider using
high-level spatial computing languages such as Proto to design
complex multi-cellular biological systems. There are, however,
serious obstacles to making this vision a reality. Most pressing,
of course, are the issues of compositionality, interference, and
resource management that are a major focus of study in the
synthetic biology community: real biological systems often
show unexpected interactions between parts, have stochastic
and noisy behavior, and show graded responses to stimuli,
and it is an open question whether these can be managed
well enough to allow any high-level language approach to
design. Beyond this, there is a great gap of implementation
between demonstrating that efficient compilation is possible
and actually producing an effective optimizing compiler. Im-
plementing an optimizing compiler is expected to be mainly a
matter of software engineering, so since Proto is a free open-
source project, we invite the interested reader to participate in
doing so.

Given that the problems of implementation and distribution
appear to be solvable, however, we may also ask what sort
of high-level programs are useful for succinctly describing
the behavior desired from multi-cellular biological systems.
Besides bearing on the obvious questions of engineering, the
struggle to answer this question may shed light on deep
questions of development and evolution, for the problems
faced by a growing engineered multi-cellular system are not
unlike those of a developing embryo.



F H HG

JH

outJ GFP

FB GC

A B C

AaTc

(a) Constant Elimination

A B C

F H HG

JH

outJ GFP

AaTc

B

F GK

K

L

LC

(b) Algebraic Simplification, step 1

A B C

JH

outJ GFP

AaTc

B CH H

(c) Algebraic Simplification, step 2

A B C

JH

AaTc

B CH H

J GFP

(d) Dead Code Elimination

B CH H

H GFP

B CaTc

(e) Copy Propagation

H GFP

B H

B H

aTc

(f) Use-Definition Analysis

Fig. 11. Application of standard code optimization techniques greatly simplifies the initial genetic regulatory network from Figure 10. First, the comparisons
are modified to get rid of constants (a), then inverted (b) to create a double-negative that can be eliminated (c). Next the unused out chemical is discarded
(d), followed by unneeded copy stages (e), and a deamplifier changed into weak expression (f).



REFERENCES

[1] Subhayu Basu, Yoram Gerchman, Cynthia H. Collins, Frances H.
Arnold, and Ron Weiss, “A synthetic multicellular systems for pro-
grammed pattern formation,” Nature, vol. 434, pp. 1130–1134, April
2005.

[2] Jacob Beal and Jonathan Bachrach, “Infrastructure for engineered
emergence in sensor/actuator networks,” IEEE Intelligent Systems, pp.
10–19, March/April 2006.

[3] Ryan McDaniel and Ron Weiss, “Advances in synthetic biology: on the
path from prototypes to applications,” Current Opinion in Biotechnology,
vol. 16, pp. 476–483, 2005.

[4] T.F. Knight, “Idempotent vector design for standard assembly of bio-
bricks,” Tech. Rep., MIT Synthetic Biology Working Group Technical
Reports, 2003.

[5] Barry Canton, Anna Labno, and Drew Endy, “Refinement and standard-
ization of synthetic biological parts and devices,” Nature Biotechnology,
vol. 26, pp. 787–93, July 2008.

[6] Reshma P Shetty, Drew Endy, and Jr Thomas F Knight, “Engineering
biobrick vectors from biobrick parts,” Journal of Biological Engineering,
vol. 2, no. 5, 2008.

[7] J. Brown, “The igem competition: building with biology,” IET Synthetic
Biology, vol. 1, pp. 3–6, 2007.

[8] Jonathan Bachrach, Jacob Beal, and Takeshi Fujiwara, “Continuous
space-time semantics allow adaptive program execution,” in IEEE SASO
2007, July 2007.

[9] M. Mamei and F. Zambonelli, “Programming pervasive and mobile
computing applications: the tota approach,” ACM TOSEM, to appear
2008.

[10] William Butera, Programming a Paintable Computer, Ph.D. thesis, MIT,
2002.

[11] Ryan Newton and Matt Welsh, “Region streams: Functional macro-
programming for sensor networks,” in First International Workshop on
Data Management for Sensor Networks (DMSN), Aug. 2004.

[12] Ramakrishna Gummadi, Omprakash Gnawali, and Ramesh Govindan,
“Macro-programming wireless sensor networks using kairos.,” in
DCOSS, 2005, pp. 126–140.

[13] Radhika Nagpal, Programmable Self-Assembly: Constructing Global
Shape using Biologically-inspired Local Interactions and Origami Math-
ematics, Ph.D. thesis, MIT, 2001.

[14] Daniel Coore, Botanical Computing: A Developmental Approach to
Generating Interconnect Topologies on an Amorphous Computer, Ph.D.
thesis, MIT, 1999.

[15] Kasper Stoy, “Controlling self-reconfiguration using cellular automata
and gradients,” in 8th int. conf. on intelligent autonomous systems (IAS-
8), 2004.

[16] Daniel Coore, “Towards a universal language for amorphous comput-
ing,” in Fifth International Conference on Complex Systems, 2004.

[17] Jacob Beal and Gerald Sussman, “Biologically-inspired robust spatial
programming,” Tech. Rep. AI Memo 2005-001, MIT, January 2005.

[18] Daniel Yamins, A Theory of Local-to-Global Algorithms for One-
Dimensional Spatial Multi-Agent Systems, Ph.D. thesis, Harvard, De-
cember 2007.

[19] Ron Weiss, Cellular Computation and Communications using Engi-
neered Genetic Regulatory Networks, Ph.D. thesis, MIT, 2001.


