
Combining Self-Organisation and Autonomic
Computing in CASs with Aggregate-MAPE

Mirko Viroli∗, Antonio Bucchiarone†, Danilo Pianini∗, Jacob Beal‡
∗Università di Bologna, Italy; Email: {mirko.viroli,danilo.pianini}@unibo.it
‡Fondazione Bruno Kessler, Trento, Italy Email: bucchiarone@fbk.eu
‡Raytheon BBN Technologies, USA; Email: jakebeal@bbn.com

Abstract—Aggregate computing is a recently proposed
framework to build CASs (collective adaptive systems) by fo-
cussing on direct programming of ensembles so as to abstract
away from individual devices and their single interaction
acts: this approach is shown to streamline the identification
of highly reusable block components, and support reasoning
about their resiliency properties. Following this paradigm,
in this paper we present a framework for bridging the gap
between the MAPE (Monitor-Analyse-Plan-Execute) loop of
autonomic computing managers, and fully-distributed self-
organising CASs. This is achieved by seeing the collection
of M components of each agent as an aggregate, amenable to
a direct specification as overall CAS Monitoring behaviour,
and similarly for A, P and E. As a result, a self-organising
CAS can be programmed by clearly separating the M, A,
P, and E parts of it; though each is expressed in terms of
a collective behaviour. The proposed approach is exemplified
with an application scenario of crowd dispersal in a large-scale
smart-mobility application.

I. INTRODUCTION

Contemporary and future software systems are composed
of large-scale ensembles [1] of widely distributed, largely
autonomous and heterogeneous agents situated in both the
physical world and in back-end computer systems. Those
ensembles are often open-boundary and multi-ownered,
resulting in the lack of a viable central point of command
and control. Moreover, human interaction via ubiquitous
computing devices is often deeply embedded and must be
considered as an integral part of these kinds of system.
We are therefore increasingly looking at, and designing,
collective and adaptive socio-technical applications built
on top of large-scale decentralised distributed computing
systems [2]. These systems can be effectively managed
only via decentralised adaptation. Such adaptation must
be itself collective, that is, multiple agents must adapt
simultaneously in a way that, on the one hand, properly
addresses critical runtime conditions, while, on the other
hand, does not break the working consistency of the en-
semble, preserving the collaboration and its benefits.

There have been many theoretical and methodological
solutions in the field of collective adaptation which can deal
with large-scale distributed and heterogeneous software sys-
tems. However, most of the proposed solutions work under
an architectural model in which the adaptation knowledge is
logically centralised, and the control of adaptation is exerted
centrally. There is still a lack of understanding on how to

engineer Collective Adaptive Systems (CAS), in which a
central control is not possible.

Aggregate computing is a recently proposed framework
to build CASs (collective adaptive systems) based on the
idea of directly engineering an ensemble by abstracting
away from the individuals and their single interaction acts
[3], [4]. From the foundational viewpoint, aggregate com-
puting is about defining computations in terms of functions
manipulating global-level, distributed data structures (i.e.,
computational fields [5], [6]); most specifically, each piece
of collective behaviour is seen as a declaratively-specified
function from fields to fields, equipped with a “compilation
technique” [7] that turns it into single operations (sensing,
computing, sending messages) to be executed by each
agent. This approach is shown to streamline the identi-
fication of highly reusable block components, for which
resiliency properties can be formally proved [3].

As a contribution towards better engineering of CASs,
and following the aggregate computing paradigm, we here
address the problem of fully distributing the typical adap-
tation technique of autonomic computing, that of MAPE
(Monitor-Analyse-Plan-Execute) control loop [8]. This is
achieved by an aggregate-MAPE framework, in which
one sees the collection of M components of each agent
as a single aggregate, amenable to a direct specification
of overall CAS Monitoring behaviour, and similarly for
A, P and E. As a result, a self-organising CAS can be
programmed by clearly separating the M, A, P, and E parts
of it, and expressing each of them in terms of a collective
behaviour, to be carried on by the whole set of agents
(or a dynamically selected subset) via implicitly occurring
message exchanges.

The remainder of the paper is organised as follows:
Section 2 provides background on CASs, MAPE, and
previous attempts at distributing control loops, Section 3
discusses essential elements of aggregate computing, Sec-
tion 4 introduces our proposal of aggregate-MAPE, Section
5 discusses the case study, and finally Section 6 concludes
with final remarks.

II. BACKGROUND

A. Collective Adaptation in Multi-Agent Systems

The term ensemble has recently been introduced in the
literature to denote very large-scale systems of systems



that may present substantial socio-technical embedding [1].
They typify systems with complex design, engineering and
management, whose level of complexity comes specifically
from bringing together and combining in the same oper-
ating environment many heterogeneous and autonomous
components, systems, and users, with their specific con-
cerns. To be robust against the high degree of unpredictabil-
ity and dynamism of their operating environments, and to
sustain the continuous variations induced by their socio-
technical nature, ensembles need to self-adapt.

Self-adaptation is an important feature of many complex
software systems, but it is often seen as a means to
automate management activities in order to meet desired
requirements, such as minimising resource usage and costs
(e.g. [9]). In an ensemble-based approach, self-adaptation
is instead a feature of the collectiveness. Individual agents
may “opportunistically” enter in an ensemble and self-adapt
in order to leverage other agents’ resources, functionalities
and capabilities to perform their task more efficiently or
effectively. However, the collaborative nature of the en-
semble makes self-adaptation much trickier. Changes in
the behaviour of one agent, as a result of its own self-
adaptation, may break the consistency of the whole collabo-
ration, or have negative repercussions on other agents in the
ensemble. Adaptation must therefore be collective. Agents
within an ensemble must be able to self-adapt simultane-
ously but, at the same time, preserve the collaboration and
benefits of the ensemble they are within. Self-adaptation
of an individual agent is therefore not only limited to the
achievement of its own respective goals but also to the
fulfilment of emerging goals of the dynamically formed
ensembles (i.e., self-organisation).

Existing works for distributed self-adaptive systems are
typically based on multi-agent and MAPE loop paradigms
[10], [11]. More specifically, the system is decomposed in
self-handling software units, which collaborate and coordi-
nate in a distributed way. In [12], for example, the life-cycle
of each agent is decomposed into three steps: “Perceive -
Decide - Act” where the “Decide” phase is the key step
where the agent chooses which action it has to perform
using its partial perceptions.

Several research effort has been devoted to multi-agent
coordination problems. Decentralisation of control implies
a style of coordination in which the agents cooperate as
peers with respect to each other, and no agent has global
control over the system or global knowledge about the
system. As a result, complex interactions are necessary to
achieve consensus since there is no single agent that can
make a centralised decision. In the case of mobile appli-
cations, agents have to take into account the distribution
of the nodes in physical space and other properties of the
environment, which add extra layers of complexity [11].

“Since development of distributed multi-agent systems
is difficult, usually middleware is used to support the ap-
plication developer” [11]. Coordination solutions provided
for distributed computing support could be also exploited

(e.g., [13]). The considered applications basically consist
of distinct application components that cooperate as peers
to reach the overall goal of the application. “No single
component has global control over or knowledge about the
system. Decentralization of control typically increases both
the importance and the complexity of coordination in the
application” [11].

In [14], a rigorous approach is defined to decentralise
the control loops of distributed self-adaptive software used
in mission-critical applications. Specifically, it uses quan-
titative verification at runtime, first to agree individual
component contributions to meeting system level quality-
of-service requirements, and then to ensure that compo-
nents achieve their agreed contributions in the presence of
changes and failures. All verification operations are carried
out locally, using component-level models, and communica-
tion between components is infrequent.

The work in [15] provides a contribution towards the
design and implementation of decentralised solutions for
the autonomic management of large and highly dynamic
distributed pervasive systems. Specifically, a fully decen-
tralised middleware (GOPRIME) is proposed for the adap-
tive self-assembly of distributed services. Abstracting from
characteristics of specific application domains, GOPRIME
aims at managing distributed systems where a set of peers
cooperatively work to accomplish specific tasks. In general,
each peer possesses the knowledge about how to perform
some tasks (offered services), but could require services
offered by other peers to carry them out. In this context,
the GOPRIME goal is to drive a self-assembly procedure
among the peers, aimed at matching required and provided
services. Moreover, it is assumed that the system operates
under non-functional requirements concerning the quality
of the offered services (QoS) (e.g., performance, depend-
ability, cost) and/or the structure of the resulting assembly.

B. Self-Organized Ensembles

As we discussed in the previous section, existing ap-
proaches typically deal with multi-agent adaptive systems
through isolated adaptation: each agent adapts itself inde-
pendently from each other. However, we want to consider
a more involved problem where even though the agents are
generally autonomous, they dynamically form ensembles to
gain otherwise impossible benefits.

Adherence to these collective rules temporarily reduces
the flexibility of collaborating agents and has tremendous
impact on how the agents adapt to dynamic changes. Iso-
lated adaptation is no longer effective, and new approaches
are needed: 1) multiple agents must adapt altogether and
transactionally; and 2) some kind of negotiation must take
place to decide on the changes to be applied on each side.
Moreover, the need to have collective adaptation raises an
important issue, VIZ identifying which parts of the system
should be engaged in adaptation. This is an intricate task,
since solving a problem may require to take actions at



Fig. 1. Collective Planning according to the architecture proposed in [2].

different scales, involving several spontaneously created
ensembles evolving over time.

In [2] an example model of collective adaptation is
proposed that is built around the concept of ensemble,
a collection of autonomous agents which collaborate to
perform certain tasks. Each agent implements a MAPE
loop that allows for the dynamic interaction with other
agents. Figure 1 depicts the communication between two
agents via their MAPE loops. During its normal execution,
each agent is in the Monitoring state, while executing
its tasks and monitoring the environment through active
handlers. Issues can come both from the agent itself (issue
triggered 1 ) or from a different entity, which asks
support in order to solve an issue (issue received 4 ).
At this point, the Analyse state is activated. On the
basis of the triggered issue, the corresponding analyser is
called (Local Analyser 2 and 5 ). Here we enter the
Planning state where all the agents involved in the issue
resolution process (i.e., Agents A and B) will collaborate
to solve the issue. If the solution provided by the Local

Analyser foresees the involvement of other agents, the
identified issues are triggered (issues targeted 3 ) to
the involved agents in the resolution process (issues
received 4 ). Once an agent receives feedback from the
triggered agents (solution forwarded 6 ), it selects the
better solution, using some form of multi-criteria ranking of
alternatives (i.e., AHP [2]), and asks to the involved targets
to commit their local solution (Commit Request 7 );
then it waits for their commit to be done (Commit Done

9 ), and eventually it commits its local solution (Local
Commit 10 ). While waiting for a commit, the entity can
receive a positive or a negative reply for its proposed
solution. Whichever the case, it executes a solution commit,
which will result empty in the negative case.

It is the goal of the present paper to fully develop on
this idea, seeking for techniques to collectively execute the
entire MAPE loop.

III. AGGREGATE COMPUTING

Most paradigms of distributed systems development,
including the multi-agent system (MAS) approach, are
grounded on the idea of programming each individual in
the system with goals, plans, algorithm, and interaction pro-
tocol. However, individual-centric approaches of this sort
are known to be problematic when it comes to reasoning

about the behavior of large-scale compositions of agents
[6]. Building and generalising on previous approaches to
organise collections of computational elements, aggregate
computing is a framework for designing complex, large-
scale ensembles of situated agents in a way that is ef-
fectively independent of (and as such, adapting to) the
number and distribution of such agents [3]. It is based on
the idea that the “abstract machine” one wants to program
is not the single agent device, but rather the logically-
single computational entity formed by the entire set of
agents constituting a given team: an aggregate specification,
hence, never mentions an individual’s actions or tasks, but
always collective ones. Such computations express ma-
nipulations of physically-distributed data structures, called
computational fields [5] (time-varying maps from devices
to computational values—sensor data, temporaneous data
values, knowledge), which are amenable to interpretation by
the single agent as a local program, automatically dictating
local computations and interactions with other neighbouring
agents.

The field calculus (formalised in [7], and implemented as
the Protelis language in [16] and the SCAFI framework in
[?]) is the foundation of aggregate computing, as it provides
the key mechanisms to work with computational fields,
and on top of which resiliency properties can be proven
by construction or formal reasoning (see e.g., [4], [17]).
The core idea of field calculus is to express computations
by a functional language with the “everything is a field”
philosophy: reusable behaviour can be expressed in terms of
declaratively-specified transformation from fields to fields;
in fact, any field computation takes field as input and
produces a field as output. For example, given an input of a
Boolean field mapping certain devices of interest to true
(representing any predicate over sensed values), an output
field of estimated distances to the nearest such device can
be constructed by iterative aggregation and spreading of
messages between agents, in such a way that, as the input
changes, the output changes to match the new situation.
Such distances could then get used, for instance, to feed
navigation services. This function can be programmed as
follows:
def distanceTo(source){
rep(d <- Infinity){

mux(source) {0} else {minHood(nbrRange() + nbr(d)))}
}

}

This code estimates distance d to devices where source
is true: it is initially infinity everywhere, and is computed
over time using built-in functional selector mux to set
sources to 0 and other devices by the triangle inequality,
taking the minimum value obtained by adding the distance
to each neighbour (as given by sensor nbrRange()) to
its estimate of d (obtained by nbr).

IV. AGGREGATE MAPE

Following the direction of previous works discussed in
Section II (such as [2]) we aim here at devising a fully



M

PE

A
M

PE

A
M

PE

A
M

PE

A
M

PE

A

Fig. 2. An Aggregate MAPE is essentially made by n agents hosting
4 aggregate processes (for M, A, P and E): interactions between these 4
are explicitly programmed, while interactions across agents are implictly
defined by the aggregate computing model.

distributed version of a MAPE-loop, with the goal of
providing fully distributed and resilient adaptation strategies
for large-scale ensembles. An initial attempt with aggregate
computing is described in [18], in which the planning stage
of an agent deliberation loop is structured as an aggregate
process producing the set of actions each agent has to
execute across space and time.

Generalising this approach, we propose “aggregate-
MAPE” as a framework in which all four M, A, P, and
E components (referred to as the MAPE components in
the following) are actually aggregate processes. Each of
them defines a functionality at the global level (with
computational fields as inputs and outputs): by aggregate
computing, this means that the M components of all
agents form an aggregate system bringing about the overall,
distributed monitoring goal of the system, and where the
information they should accordingly share is implicitly
defined “under-the-hood” of the computational model; and
similarly for A, P and E—see Figure 2. This approach
calls for a design methodology in which the overall system
behaviour is clearly divided from the beginning in the
MAPE components, and where each has a well defined
interface and can be engineered and tested in isolation,
possibly relying on the library of reusable components
available for aggregate computing [3]. Note that the whole
issue of whether the MAPE components must be known
before the application starts, or can be designed and injected
on-the-fly, is completely orthogonal: as discussed in [18],
[7], the aggregate computing toolchain allows one to make
new code be injected, diffused, and executed on-the-fly,
even only by the subset of agents deliberatively deciding
to be part of the sub-team bringing about a common goal.

Most specifically, design of an aggregate MAPE encom-
passes:

M Monitor is a process fed with local sensor values, and
providing distributed sensing, in the form of one or
multiple fields reifying the result of collective sensing;
typically it includes mechanisms such as counting
number of events, averaging a property, locally de-

def aggregateMAPE(m, a, p, e) {
let monitoring = m.apply();
let analysis = a.apply(monitoring);
let plans = p.apply(analysis); // Returns a set of labels
// Converts labels to actions
let strategies = plans.map(self, label -> {
e.apply(analysis, label)

});
// actual execution
strategies.map(self, action -> {
action -> {action.apply()}

})

Fig. 3. Protelis code implementing the MAPE state machine.
Protelis has a syntax reminiscent of Java 8: the arrow symbols
(->) prefixed with arguments and followed by a Protelis fragment
enclosed in curly brackets declares an anonymous function.

tecting contingencies, etc.
A Analyse is a process taking the results of monitoring,

digesting them according to the application needs, and
providing a field of “alert” values spotting the relevant
events that should trigger some adaptation; typically
it includes mechanisms such as information fusion,
complex correlation of spatio-temporal information,
identification of patterns, etc.

P Plan is a process taking the results of analysis, crossing
it with available adaptation resources, and providing
a set of plans to subgroups of agents, in terms of
a field of sets of “plan names”; it typically includes
mechanisms such as network partitioning, distributed
consensus, local deliberation of plans, etc.

E Execute is a process fed with sets of plan names,
and able to interpret each as an aggregate process to
be carried on by the associated subgroup of agents;
typically it includes all actuation mechanisms for the
application at hand, such as moving agents, provid-
ing suggestions in a person’s smartphone, controlling
actuators deployed in the environment, etc.

The code in Figure 3 shows how a simple virtual-
machine for aggregate MAPE can be written in Protelis
[16], in terms of a function accepting four arguments and
executing them in turn—the only caveat is that P can
produce a set of plans, hence built-in function map has to
be used to execute each element of the set at the aggregate
level.

V. CASE STUDY

In this section, we illustrate how the proposed approach
may be applied via simulation of a mass urban event.

A. Scenario description

Our target scenario is an urban mass event, in which part
of the public runs the event application on their handheld or
wearable devices. Our goal is to spot dangerous crowds as
soon as possible, and selectively run a dispersal collective
plan to reduce the probability of stampedes. We want our
system to be able to collectively sense the density of people,
to analyse such data, to plan a response and to execute such
strategy. In order to build a realistic setup, we adopted the



Fig. 4. A screenshot of the urban mass event simulation. Devices in
high and medium danger areas are depicted in red and yellow respectively.
Devices that are being suggested to actively disperse are pictured in blue.
Other devices are black.

testbed used in [19]: 1479 real world traces collected during
a mass city event. In this scenario, we assume that devices
can communicate directly within a range of 100 meters, so
that even if crowd size is high enough to disrupt the cellular
network infrastructure, they still can operate. Each device
begins at the initial position of its GPS trace, and from this
initial situation, we let the system evolve, simulating three
hours of mass event. We executed two different cases: in
our control experiment, only crowd sensing was enabled;
while in our experimental case, we enabled a full aggregate-
MAPE, which included an emergency dispersal system
as possible crowd response. Each simulated device either
follows its GPS trace or is guided by the MAPE code on
the device. We assume people always decide to follow the
system’s safety suggestion—accounting for the possibility
that people independently decide not to follow it, and
study the corresponding impact, is out of the scope of this
paper. Obviously, in the control simulation all nodes only
follow the original GPS trace, while when the aggregate-
MAPE stack is enabled, nodes can switch between the two
movement strategies. The scenario has been simulated with
Alchemist [20], as illustrated in Figure 4.1

B. MAPE implementation

Figure 5 presents the core code for this scenario, relying
on a number of aggregate programming building blocks [3].
The M component is responsible for estimating the number
of people surrounding each device (in this case based on
device communication capabilities, though more refined
systems could be deployed that leverage also information
coming from cameras, Bluetooth proximity sensing, etc.).
The A component processes the data produced by the
M component to decide whether or not a given area is
dangerous. For both these stages, we used parameters taken
from literature [3]. Moreover, since we only got traces for
about 1500 people, but the amount of participants to the
event was about 300000, we estimated the probability that
a user is running the application to be 0.005, and adjusted
our sensing accordingly. The P component is responsible

1Code available at: https://bitbucket.org/danysk/experiment-2016-ecas

// LIBRARY
// estimates density to a circle not larger than the communication range.
def densityEstimator(p, range, footprint) {
let nearby = unionHood PlusSelf(
mux (nbrRange() < range)

{ nbr([getId()]) } else { [] });
nearby.size() / p / (pi * range ˆ 2 * footprint)

}
// determines wether or not the density is dangerous
def dangerousDensity(density, part, execP) {
let s = summarize(part, (a,b)->{a+b}, 1/execP, 0);
if (average(part, density) > 2.17 && s > 300)

{ 2 } else { 1 }
}
// returns the danger level of the area in the last minute
def crowdTracking(den, rng, execP) {
if(recentlyTrue(den > 1.08, 60)) {
dangerousDensity(den, S(rng, nbrRoute), execP)

} else { 0 }
}
// MAPE SPECIFICATION
let q = 0.005; // Probability that a participant is running the app
// estimate density
let m = () -> {densityEstimator(q, 30, 0.25)};
// estimate danger level
let a = (density) -> {crowdTracking(density, 30, q)}
// disperse if within 60 meters from danger in the last 3 minutes
let p = (trk) -> {
mux(recentlyTrue(distanceTo(trk==2) < 60, 180))

{ ["disperse"] } else { [] }}
// if there are neighboring devices in safe area, get there; else, stand still
let e = (a, label) -> {
let mypos = self.getDevicePosition();
env.put("goto", if(label == "disperse") {

let dest = nbr([distanceTo(a == 2), mypos]);
dest=mux(dest.get(0)==0){[0,mypos]}else{dest};
maxHood PlusSelf(dest).get(1)

} else { mypos })}
aggregateMAPE(m, a, p, e)

Fig. 5. Protelis MAPE code for crowd dispersal.

for identifying an area where the situation should get
addressed: in this example, we notify all those devices that,
in the last three minutes, have been within 60 meters of a
dangerous area. Finally, the E component realises a simple
dispersal algorithm: if the disperse plan is selected,
each device moves toward the neighbour farthest from the
danger area; if no such neighbor is found, then stand still.
The idea here is that if a very big crowded area forms,
the outer parts of it should disperse before the centre, to
prevent the formation of dangerous waves. As shown in
Figure 5, once the four components have been identified,
the last instruction simply activates aggregate-MAPE. Note
the ability of our framework to provide a decomposed and
simple specification for each component.

C. Results and discussion

Simulation results are summarised by Figure 6. The sim-
ple algorithm deployed is sufficient to obtain a noticeable
reduction of the people in dangerous areas, as well as
a reduction of the number of people within 60 meters
from them. The system appears to become more and more
effective with time: while in the control simulation people
tend to increasingly join crowds, in the version running
our aggregate-MAPE this effect is widely mitigated, and
the initial danger level more or less holds throughout the
experiment. We can also see that a quite large number of
devices get targeted for dispersion (about one fifth of the



0 20 40 60 80 100 120 140 160 180

Time (simulated minutes)

0

100

200

300

400

N
u
m

b
e
r 

o
f 

d
e
v
ic

e
s

Dispersal plan efficacy

Danger perceived (M) without dispersal

Warning area (A) without dispersal

Danger perceived (M) with dispersal

Warning area (A) with dispersal

0 20 40 60 80 100 120 140 160 180

Time (simulated minutes)

0

100

200

300

400

500

600

N
u
m

b
e
r 

o
f 

d
e
v
ic

e
s

Dispersal involvement

Devices where dispersal is selected (P)

Devices where stand still is selected (P)

Danger perceived (M)

Warning area (A)

Fig. 6. Evaluation of the dispersal MAPE. The efficacy chart (top) shows
how the system performs with and without the dispersal system. Despite
relying on a simple algorithm, this MAPE is able to reduce both the
number of devices in a dangerous density area (red and orange lines) and
the number of devices within 60 meters from such areas (blue and black
lines). The involvement chart (bottom) measures how many devices are
selected for running the dispersal plan (blue), and how many are suggested
not to move (green), as compared with the number of devices in danger
(red) and close to the danger (orange).

total). This appears likely to be due to the simplistic im-
plementation of the monitoring and dispersion algorithms,
and would probably benefit from increased sophistication or
parameter tuning (e.g., we used three minutes for dispersal
time, but a shorter interval might produce similar results
with less devices involved).

VI. CONCLUSIONS AND FUTURE WORK

Considering the need for adaptation of CASs and in-
cluding it as an inner characteristic of their design of-
fers several potential benefits, such as: (i) an appropriate
abstraction level to describe complex adaptations, (ii) the
possibility of having a scalable and dynamic execution
environment that easily deals at runtime with different
types of changes, and (iii) the generality that allows the
design of solutions for a wide range of application domains.
Following this principle, we have presented the aggregate-
MAPE framework that—by exploiting the aggregate com-
puting paradigm—proposes a way to model CASs as an
aggregation of multiple MAPE loops. As future work we
plan to experiment with aggregate-MAPE by using the full
power of aggregate computing, dealing with multiple plans,
and advanced sensing and actuation strategies; also, we
will extend the approach considering the MAPE-K loops
where the K (”Knowledge”) component will be used to
share knowledge among agents so as to take more context-
aware decisions; finally, we plan to further experiment the

approach in real environments as the Urban Mobility in
the Smart Cities domain, also comparing performance and
scalability of the aggregate approach with a conventional
MAPE.

REFERENCES

[1] F. Zambonelli, N. Bicocchi, G. Cabri, L. Leonardi, and M. Pu-
viani, “On self-adaptation, self-expression, and self-awareness in
autonomic service component ensembles,” in SASOW, 2011, pp.
108–113.

[2] A. Bucchiarone, N. Dulay, A. Lavygina, A. Marconi, H. Raik, and
A. Russo, “An approach for collective adaptation in socio-technical
systems,” in IEEE SASOW 2015, Cambridge, MA, USA, September
21-25, 2015, 2015, pp. 43–48.

[3] J. Beal, D. Pianini, and M. Viroli, “Aggregate programming for the
internet of things,” IEEE Computer, vol. 48, no. 9, 2015.

[4] M. Viroli, J. Beal, F. Damiani, and D. Pianini, “Efficient engineering
of complex self-organising systems by self-stabilising fields,” in
Self-Adaptive and Self-Organizing Systems (SASO), 2015 IEEE 9th
International Conference on. IEEE, Sept 2015, pp. 81–90.

[5] M. Mamei and F. Zambonelli, “Programming pervasive and mobile
computing applications: The tota approach,” ACM Trans. on Software
Engineering Methodologies, vol. 18, no. 4, pp. 1–56, 2009.

[6] J. Beal, S. Dulman, K. Usbeck, M. Viroli, and N. Correll, “Organiz-
ing the aggregate: Languages for spatial computing,” in Formal and
Practical Aspects of Domain-Specific Languages: Recent Develop-
ments. IGI Global, 2013, ch. 16, pp. 436–501.

[7] F. Damiani, M. Viroli, D. Pianini, and J. Beal, “Code mobility meets
self-organisation: A higher-order calculus of computational fields,”
in FORTE 2016, ser. LNCS. Springer, 2015, vol. 9039, pp. 113–
128.

[8] IBM, “An architectural blueprint for autonomic computing.” IBM,
Tech. Rep., 2006.

[9] P. Lalanda, J. A. McCann, and A. Diaconescu, Autonomic Computing
- Principles, Design and Implementation, ser. Undergraduate Topics
in Computer Science. Springer, 2013.

[10] P. Vromant, D. Weyns, S. Malek, and J. Andersson, “On interacting
control loops in self-adaptive systems,” in SEAMS 2011, Waikiki,
Honolulu , HI, USA, May 23-24, 2011, 2011, pp. 202–207.

[11] D. Weyns, S. Malek, and J. Andersson, “FORMS: unifying reference
model for formal specification of distributed self-adaptive systems,”
TAAS, vol. 7, no. 1, p. 8, 2012.

[12] J. Bonnet, M. P. Gleizes, E. Kaddoum, S. Rainjonneau, and
G. Flandin, “Multi-satellite mission planning using a self-adaptive
multi-agent system,” in IEEE SASO, 2015, pp. 11–20.

[13] L. Baresi, S. Guinea, and P. Saeedi, “Achieving Self-adaptation
through Dynamic Group Management,” in Assurances for Self-
Adaptive Systems - Principles, Models, and Techniques, 2013, pp.
214–239.

[14] R. Calinescu, S. Gerasimou, and A. Banks, “Self-adaptive Software
with Decentralised Control Loops,” in FASE 2015, 2015, pp. 235–
251.

[15] M. Caporuscio, V. Grassi, M. Marzolla, and R. Mirandola, “Go-
Prime: a Fully Decentralized Middleware for Utility-Aware Service
Assembly,” IEEE TSE, vol. PrePrints, no. 1, 2015.

[16] D. Pianini, J. Beal, and M. Viroli, “Practical aggregate programming
with PROTELIS,” in ACM Symposium on Applied Computing (SAC
2015), 2015.

[17] J. Beal, M. Viroli, D. Pianini, and F. Damiani, “Self-adaptation to
device distribution changes in situated computing systems,” in IEEE
Conference on Self-Adaptive and Self-Organising Systems (SASO
2016). IEEE, 2016, to appear.

[18] M. Viroli, D. Pianini, A. Ricci, P. Brunetti, and A. Croatti, “Multi-
agent systems meet aggregate programming: Towards a notion of
aggregate plan,” in PRIMA 2015: Principles and Practice of Multi-
Agent Systems, ser. LNCS. Springer, 2015, vol. 9387, pp. 49–64.

[19] B. Anzengruber, D. Pianini, J. Nieminen, and A. Ferscha, “Predict-
ing social density in mass events to prevent crowd disasters,” in
Proceedings of SocInfo 2013, 2013, pp. 206–215.

[20] D. Pianini, S. Montagna, and M. Viroli, “Chemical-oriented
simulation of computational systems with Alchemist,” Journal of
Simulation, 2013. [Online]. Available: http://www.palgrave-journals.
com/jos/journal/vaop/full/jos201227a.html


