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Abstract—Estimating collective state is an important compo-

nent of many distributed systems, but has inherent challenges in

balancing the availability of estimates against their accuracy. In

this paper, we analyze the error bounds and dynamics of a com-

monly used family of self-stabilizing state estimation algorithms

based on spanning trees. We find that in the worst case transients

can duplicate values leading to exponential overestimates or

can drop values leading to near total loss of information. The

same analysis, however, also suggests that these problems can be

mitigated by prioritizing smoothness in the adaptation of distance

estimates used to maintain the spanning tree, and this mitigating

effect is supported by results in simulation.

I. INTRODUCTION

Across the vast diversity of distributed systems there are a
few widely shared key patterns of interaction, such as infor-
mation spreading, collective state estimation, and symmetry
breaking [1], [2]. In this paper we focus on collective state
estimation, a common task in many distributed systems in
which values held at many individual devices are combined
to produce a single value intended to quantify some property
of the entire network of devices (or some defined subset). For
example, collective state estimation can be used to count the
number of participating devices, estimate the availability of
system resources, track a set of errors and ongoing problems,
or check whether there is consensus on a decision.

Efficient resilient algorithms have been found for special
cases of collective state estimation, such as the use of gossip
for estimating monotonic functions (e.g., [3]–[5]). General
collective state estimation, however, may be cast in terms of a
distributed snapshot of values and as such is subject to various
of the well-known “pick two of three” impossibility results
for consensus and related algorithms (e.g. [6]–[8]), which
state that no algorithm can simultaneously ensure correctness,
liveness, and partition tolerance. For large-scale collective
adaptive systems, liveness is generally required and partition
events happen frequently, which means that we must instead
tolerate some degree of error in the estimates returned by
collective state estimation. The challenge is to understand and
manage the dynamics of error in collective state estimation
well enough to predict its effects and ensure stability in
distributed systems that make use of collective state estimation.
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Fig. 1. Example of spanning-tree collective state estimation in simulation on a
network of 30 devices: all devices compute their distance (here, by hops) from
a designated source device (orange), then select their lowest-valued neighbor
as a parent to create a spanning tree (arrows). Each device then reduces
over its own input value and those of its children to produce an estimate
(blue numbers) for its sub-tree: here the number of devices in the network is
estimated by setting every device’s input value to 1 and reducing by addition.

In this paper, we focus our study on spanning-tree aggrega-
tion, one of the most frequently used approaches to collective
state estimation (e.g., [9]–[13]). In particular, we present a first
analysis of error dynamics in the self-stabilizing spanning-tree
estimation algorithm from [1] and [14], an example of which
is shown in Figure 1. We find that transient duplication of
values has the potential to introduce exponential overestimates,
and but that in practice estimation errors should be expected
to more often be underestimates driven by transient loss of
values, particularly due to the potential for persistent local
minima in the potential function used in distributed construc-
tion and maintenance of a spanning tree. We confirm these
results through simulation.

II. SPANNING-TREE BASED STATE ESTIMATION

Amongst the many variants of spanning tree distributed state
estimation, we focus on one introduced in [1]. That paper
observed that a relatively small set of operations can serve
as a basis set of “building blocks” that can be composed
to cover a broad class of distributed systems. In particular,
the paper identified a system of self-stabilizing [15] operators
as a generalized cover for the function of a large family



1 // Aggregate values of type T along a spanning tree
2 // w. function reduce following maximum potential decrease.
3 // @param potential number, used to build tree
4 // @param reduce (T, T) -> T, aggregation function
5 // @param local T, local value
6 // @param null T, value of an empty aggregation; must

be idempotent, i.e., reduce(v,null) = v
7 // @return T, aggregated value v
8 public def C(potential, reduce, local, null) {
9 rep (v <- local) { // Initialize estimate to local value

10 reduce.apply(local, // Combine local with children’s v
11 hood( // Combine all neighbor values:
12 (a, b) -> { reduce.apply(a, b) }, // use reduce fn
13 null, // value of an empty field
14 mux(nbr(getParent(potential))==self.getDeviceUID()) {
15 nbr(v) // Use values from children
16 } else { null } // Ignore others (idempotent null)
17 ))
18 }
19 }
20

21 def getParent(potential) {
22 // if some neighbor has lower potential...
23 mux (minHood(nbr(potential)) < potential) {
24 // ... take the lowest, tiebreaking arbitrarily by UID.
25 minHood(nbr([potential,self.v.getDeviceUID()])).get(1);
26 } else { NaN } // otherwise, device is spanning tree root
27 }

Listing 1. Code for C self-stabilizing spanning-tree state estimation algorithm,
adapted from Protelis [18] supporting libraries.

of well-established distributed algorithms. These operators
are: gradient-based information spreading (G), collective state
estimation (C) symmetry-breaking (S), and temporary state
(T), and all programs that can be expressed as a functional
composition of these operations and “pointwise” local com-
putation are also guaranteed to be self-stabilizing. This notion
has been further developed in [16] and [14] in the framework
of “aggregate programming,” including the result that these
operators can be equivalently substituted by more specialized
versions with better convergence dynamics, thus improving
system performance. We have begun the analysis of dynamics
with the use of G to estimate distance (the Adaptive Bellman-
Ford algorithm) in [17], and now turn to its complement:
collective state estimation with C.

Listing 1 shows a canonical implementation of operator C in
Protelis, a Java-like language for aggregate programming [18].
This algorithm takes a field of local information, information
for combining local information and aggregates, and a field
of potential values representing a distance function from a
designated source device (this distance computed by G or
another equivalent self-stabilizing distributed distance estima-
tion). At each (unsynchronized) round of execution, every
device chooses its neighbor (neighbors being determined by
the underlying communication graph) with the lowest potential
as its “parent,” effectively constructing a spanning tree down
the potential gradient, and then computes an estimate for its
subtree as the reduction of its value and the estimates of its
children. At the source, which is the root of the spanning
tree, this value is a collective state estimate for the entire
aggregate. C has been proved to be self-stabilizing, as must
be its composition with any self-stabilizing distance estimate
used to compute potential [14]. Self-stabilization, however,

only means it will eventually converge to a correct answer
if inputs remain unchanged: we now turn to the dynamics of
this convergence.

III. ERROR DYNAMICS OF OPERATOR C

In this section, we first analyze the worst-case errors in the
collective state estimate that can be produced by C, then extend
to consider the interaction of C with the distance estimation
algorithms that may be used to produce its potential input.

A. Maximum Error Bound on C

We first introduce two definitions:

Definition 1. Given a spanning tree T , a node is said to be
at level i if it is i hops away from the source node.

Definition 2. Given two nodes a and b in a spanning tree, if
a and b are connected and b is one level greater than a, then
a is defined as the parent of b and b as the child of a.

In this section, we consider the perturbation of estimates
computed by C caused by a spanning tree that varies with
time. Specifically, in each cycle, each node may change to
another parent on the same level, informing both the new
and old parents when it transmits its estimate. Cycles are not
synchronized, so updates can occur in any order. As such:

• A sub-tree estimate is duplicated if node a switches
parent from b to c, and the nodes update in order
b < a < c, since b sends an estimate including a as
a child, then a notifies b and c of the switch, and finally
c sends an estimate also including a as a child.

• A sub-tree estimate is lost if node a switches parent from
b to c and the nodes update in order c < a < b, since c
sends an estimate without a as a child, then a notifies b
and c of the switch, and finally b sends an estimate also
without a as a child.

We will evaluate duplication and loss potential by con-
sidering the case where C is applied to count devices, i.e.,
summing a local constant of 1 from each node. First, we have
the following lemma:

Lemma 1. Under duplicating perturbation, if there is more
than one node at level i, then the sum of transmitted values
Oj of all nodes j 2 Si, where Si denotes the set of nodes at
level i, satisfies

X

j2Si

Oj  2
X

j2Si+1

Oj + |Si|

Proof. Suppose in this case, there are n nodes at level i, and
the number of nodes with decreased values in the current cycle



is m. Then we have
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Equality in (1) holds when in the previous cycle, all the nodes
at level i+1 are children of those m nodes at level i while the
remaining n �m nodes at level i have no children. Equality
in (2) holds when those m nodes lose all their children and
all their children choose the remaining n �m nodes as their
parents in the current cycle. ⌅

Based on Lemma 1, we have the following theorem.

Theorem 1. Under the perturbation described above, for a
spanning tree with n nodes, value of the source node satisfies
the tight bound

Os 
(
2

n+1
2 � 1 n is odd

2
n
2 + 2

n
2 �1 � 1 n is even

where Os denotes the value of source node.

Proof. First, we consider the case that all levels in the span-
ning tree have more than one node, then we consider the case
that some or all levels have only one node, and show that
value of the source node resulted from the former case will
be larger than that in the latter case.

For the former case where each level has more than one
node, when n is odd, suppose value of the source node is
maximized when there are l levels in the spanning tree(here
we assume the bottom level is level l), according to Lemma
1, Os satisfies

Os 
lX

i=1

2i�1|Si|+ 1 (3)

where Si denotes the set comprised of the nodes at level i.
As we can see from (3), the sum grows exponentially with

the number of levels and grows linearly with the number of
nodes at each level. Thus, value of the source node will be
maximized by maximizing the number of levels, which means
that each level should have two nodes and l = (n�1)/2, then
value of the source node satisfies

Os 
(n�1)/2X

i=1

2i�1|Si|+ 1

= 2
n+1
2 � 1 (4)

where |Si| = 2 for i = 1, 2, .., l.
In (4), we assume that all values of nodes transmitted from

higher levels to lower levels all get doubled. This is a tight
bound, and an example is shown in Figure 2.
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Fig. 2. Example of achieving the maximum source value

As shown in Figure 2, all nodes in the same level share
the same parent in every cycle, and nodes at the highest level
change their common parent back and forth from the second
cycle, nodes at the second highest cycle follow this from the
third cycle, and so on. The source value grows exponentially
and finally achieves its maximum value defined in (4).

If the number of nodes in the graph is even and value of
the source node is maximized when there are l levels in the
spanning tree. Since the number of nodes is even, there will
be one level with a single node. The question is that where to
put this single node in order to achieve the maximum value
of the source node. Here we claim that value of the source
node will be maximized when the single node is at the highest
level. The proof (omitted due to space constraints) follows
similar reasoning as before, in essence finding that it is always
better to replace two layers of single nodes with one layer
of two nodes, and that such replacements are better at lower



layers. ⌅

B. Minimum Error Bound on C

Next, we show the lower bound of value of the source node.
First, we provide the following lemma.

Lemma 2. Under loss perturbation, if there is more than one
node at level i, then the sum of values of all nodes transmitted
from level i satisfies

X

j2Si

Oj � |Si|

Proof. Suppose in this case, there are n nodes at level i, and
the number of nodes with increased values in the current cycle
is m. Then we have

X

j2Si

Oj =
mX

j=1

Oj +
nX

j=m+1

Oj

� m+
nX

j=m+1

Oj (5)

� m+ n�m (6)
= |Si|

Equality in (5) holds when those m nodes have no children
in the previous cycle, and equality in (6) holds when the
remaining n � m nodes lose all their children in the current
cycle. ⌅

Based on this, we have the following theorem.

Theorem 2. Under the perturbation described above, for a
spanning tree with n nodes, value of the source node satisfies

Os �
(
n n  2

3 n � 3

Proof. Cases n = 1 and n = 2 are trivial, since there is no
parent switching. When n � 3, we have

Os �
X

j2S1

Oj + 1 (7)

If there is only one node at level 1, then Os � 3 since there
must be at least one node at level 2. According to Lemma
2, if there are more than one node at level 1, then under the
perturbation,

Os � |S1|+ 1 (8)
� 3 (9)

Equality in (8) holds when nodes in level 1 satisfy the
conditions mentioned in Lemma 2, and equality in (9) holds
when there are two nodes at level 1. ⌅

C. Effect of Distance Estimation on Error

Our analyses of the maximum and minimum bounds on
error assume that the set of parent/child relations does, in
fact, form a spanning tree at each point in time. This is not
necessarily the case: when changes occur in the network, it
can result in changes in the potential function that may take
multiple rounds to resolve. Notably, as analyzed in [17], over-
estimates of potential resolve quickly, while underestimates
may linger for many rounds. These persistent underestimates
also imply a local minimum that breaks the spanning tree
and creates a “black hole” for all information from devices
with underestimated potential value, thereby preventing it from
reaching the root.

We may also note that even when the spanning tree as-
sumption holds, the origin of both duplication and loss of
information is the transients that can occur when the potential
function causes devices to change parents and thus the path
by which paths to the root. Both of these indicate that the
performance of C is most critically dependent not on its own
behavior by on the adaptation dynamics of the algorithm used
to compute the potential and maintain the spanning tree.

IV. EMPIRICAL COMPARISON

To test these predictions, we ran experiments using using
MIT Proto [19] to simulate a network of unsynchronized de-
vices. In particular, we ran tests on devices randomly arranged
in a rectangular region with neighbors determined by a unit
disc graph. In each test, we estimated the number of devices
in the network using three instances of
def countDevices(potential) {

C(potential, sum, 1, 0)
}

in parallel, calculating potential from a single fixed source
devices in a different manner for each instance: one using hop-
count (i.e., Adaptive Bellman-Ford with unit distance), one
by straight Adaptive Bellman-Ford [17], and one by Flex-
Gradient [20]—the last of which prioritizes smoothness of
slope over correctness of estimate. Error in state estimation
is then the difference between the number of devices in the
network and the state estimate output from C at the source
device.

To test the effects of scale, we ranged the width of the arena
from 2 to 20 units in steps of 2 units, while keeping its other
dimension at 2 units, and placed the source device initially at
the one extreme of the long axis of the arena. The number of
devices was scaled proportional to the area of the arena, at 10
devices per square unit, i.e., from 40 devices in a 2⇥2 arena to
400 devices in a 20⇥2 arena. To inject continual perturbation
into this network, each device moved randomly following a
reactive Levy walk (a scale-free form of constrained random
walk [21]) at a rate of 0.0025 units/second. Each trial was run
for 1000 simulated seconds, 10 trials per condition, recording
values at each second. Our analysis, however, drops the first
100 seconds of each trial as being potentially still affected by
convergence from initialization.
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(a) Example estimate variation over time in a 4 unit width space
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(b) Example estimate variation over time in a 20 unit width space

Fig. 3. Examples of typical estimate variation over time, showing excerpts
from a individual simulation run on a network dispersed through a space
(a) 4 units in width and (b) 20 units in width. Notice that most transients
are relatively short, but they are much more frequent for hop-count than for
Adaptive Bellman-Ford or Flex-Gradient, and they tend to be under-estimates
rather than over-estimates, particularly for hop-count.

When diameter is low, it is expected that there should not
be many opportunities for disruption on any given chain of
parents to the source, and indeed we see that the estimates are
often correct, but with frequent transients, sometimes causing
large transients in estimate value. At high diameter, most de-
vices are far from the source, so there are many opportunities
for information to be duplicated or lost. Moreover, many of
the devices share at least part of their path to the source,
creating critical links whose disruption is likely to cause
large transients. Figure 3 shows excerpts from two of trials,
illustrating that the typical patterns in how estimates were
observed to vary from the true value follow these predictions.
Most individual transients are relatively short, but they are
much more frequent for hop-count than for Adaptive Bellman-
Ford or Flex-Gradient, and they tend to be under-estimates
rather than over-estimates, particularly for hop-count.

Analysis of the overall statistics of errors versus width bears
out these observations. Figure 4(a) shows that as the width
of the space increases (and thus the diameter of the network
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(b) Correctness vs. Width

Fig. 4. The more hops spanned by the network, the higher the relative error
in estimates (a) and the smaller amount of time that the estimate is correct.
Furthermore, the smoother the input potential, the better estimation performs.

rises), the mean relative error in estimates rises approximately
linearly—though the high degree of variation in the behavior
of Adaptive Bellman-Ford makes difficult to verify for that
case. Complementarily, Figure 4(b) shows that the amount of
time that the estimate spends equal to the true value decreases.
approximately exponentially with increasing width. This is as
would be expected if we consider reconfiguration (and thus
transient duplication or loss) to be equally likely to occur at
any location in the network. In general, having a smoother
input potential produces better results: Adaptive Bellman-
Ford slightly outperforms hop-count distance values, and Flex-
Gradient produces much better performance than both.

A deeper inspection of the errors finds that the distribution
of individual error values is also consistent with the predic-
tion of the importance of smoothness of potential from our
analysis. Figure 5 shows a typical histogram of error ratios, in
this case from the collection of trials with a width of 16 hops.
Running C with all three potential algorithms results in a clear
“spike” with a plurality of values being equal (or almost equal)
to the true value, and all three have nearly identical rates of
overestimates from transient duplication of values. The three
potential algorithms differ starkly, however, in the distribution
of underestimates. Hop-count distances are the least able
to distinguish between alternative paths, and appear to pay
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Fig. 5. Typical histogram of error values, showing that smooth adaptation of
potential prevents transient value loss.

for this in generally increased volatility. Adaptive Bellman-
Ford usually performs better, but in certain circumstances can
experience long underestimate transients due to the “rising
value problem” [17], [22]: when this problem occurs, it can
cause a severe underestimate to last for a long time, as seen in
the distribution spikes low values. Flex-Gradient, on the other
hand, because it preserves smoothness at the cost of accuracy
in distance estimates, suffers from much less loss of value than
both of the others, explaining its superior performance.

V. CONTRIBUTIONS

In this paper, we have presented a first analysis of the
error dynamics of self-stabilizing approaches to collective state
estimation via spanning-tree aggregation. Although we find
the theoretical potential for exponential overestimates based
on duplication of data, we also find that underestimates based
on data loss are more likely to occur and to persist over
long periods, particularly when the dynamics of using distance
estimates to maintain a spanning tree are taken into account.
These findings are validated in simulation, along with the
prediction that prioritizing smoothness of slope in distance
estimation should decrease error in collective state estimates.

In future work, we plan to extend these results to more
classes of networks, to other classes of perturbation, such
as link failures or devices joining and leaving, and to a
broader class of estimations. The results that we have obtained
also suggest possible approaches to decreasing the effect of
network perturbations on state estimates, such as by smooth-
ing to decrease the effect of transients or changes to the
computation of the spanning tree to increase its resilience.
Finally, these results suggest existing applications of collective
state estimation can be improved by smoothness-prioritizing
distance estimates like Flex-Gradient.
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