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Abstract—Engineering resilient distributed systems remains
extremely challenging, particularly in mapping from collec-
tive specifications to individual device behavior. Aggregate
programming aims to address this problem using a compu-
tational field abstraction to provide inherent guarantees of
resilience, scalability, and safe composition. These capabilities
are provided, however, by an expressive but terse set of
operators too low-level for pragmatic use in complex systems
development. We thus present an API to raise the level of
abstraction, thereby providing an accessible and user-friendly
interface for construction of complex resilient distributed
systems. In particular, we capture and organize a large,
heterogeneous collection of algorithms and use patterns into
a unified framework, including methods for common tasks
such as leader election, distance and state estimation, and
gossip-based information dissemination. We demonstrate how
the expressiveness of this library reduces the abstraction
gap required to engineer scenarios of large-scale pervasive
computing, while introducing the novel multiInstance pattern
enabling an unanticipated composition of computational fields.

Index Terms—Aggregate computing, programming lan-
guages, self-organization, application programming interface

I. INTRODUCTION

Heterogeneous computational devices and networks in-
creasingly pervade our environment, as computation has
become cheap enough to embed computational devices
(FPGAs, microcontrollers, etc) in nearly every aspect of our
lives [1], [2]. It remains extremely challenging, however,
to program distributed systems that fully take advantage
of this dense computational environment, due to its scale,
heterogeneity and potential complexity of interactions. The
wide gap between collective behavior requirements and
their resilient implementation has long been recognized and
addressed for a number of specialized applications and with
a variety of strategies [3], [4].

Aggregate programming [5] generalizes across many
such prior efforts with a layered architecture that factors
these challenges into separable sub-problems. The foun-
dation of aggregate programming is field calculus [6],
which, by the means of composition of computational
fields (an evolving map from a collection of devices
to data values), provides transformations from collective
specification to local implementation. Atop this founda-
tion are systems of resilient coordination operators [7]

that implicitly provide adaptation capabilities such as self-
stabilizing recovery from faults and independence from
details of device distribution [8]. Both field calculus and
the resilient coordination operators, however, are extremely
terse systems of generalized mathematical operators, and
thus too low-level for pragmatic use, especially when the
complexity of systems increase—much like other founda-
tional models like λ-calculus [9] or π-calculus [10]. Thus,
as with other more specialized collective-to-local program-
ming frameworks (e.g., [11], [12], [13]), the pragmatic
usability of aggregate programming depends strongly on
providing libraries with an accessible and user-friendly
application programming interface (API) for commonly
used mechanisms and patterns, thereby raising the effective
level of abstraction and reducing programming complexity.

To this end, we have extended Protelis [14], a field-
calculus implementation hosted in Java, by developing the
protelis-lang1 library, aiming to provide a domain-
general “foundational API” for aggregate programming.
Additionally, and as one of the key contributions of
this paper, we created new “meta-patterns” providing
advanced reuse and composition techniques, including
multiInstance, a distributed algorithm using first-
class functions to compute and compose a dynamically-
determined number of parallel functional processes.

The remainder of this paper is organized as follows:
Section II provides additional background and description
of related work; Section III provides details on the goals,
coverage and structure of the library, including fine-grained
description of existing and new algorithms; Section IV
illustrates the expressiveness of the library through selected
scenarios of large-scale pervasive computing; and Section V
summarizes contributions and future work.

II. RELATED WORKS AND BACKGROUND

Many specialized approaches for programming collec-
tive behaviors have previously been developed across
many different fields, one survey of which may be found
in [3]. From a software engineering perspective they have
tended to cluster into five main classes: making device

1Available at https://github.com/Protelis/Protelis



P ::= F e ;; Program
F ::= def f(x) {e} ;; Function definition
s ::= e | let x = e | x = e ;; Statement
e ::= w | s ;; Basic expression

| f(e) | e.m(e) | e.apply(e) ;; Calls
| if(e){e′}else {e′′} ;; Space-time branch
| nbr(e) ;; Neighbor values
| rep(x<-w){e} ;; Persistent state

Fig. 1. Protelis core abstract syntax, adapted from [14].

interaction implicit (e.g., TOTA [15], MPI [16], NetL-
ogo [17], Hood [18]), geometric and topological construc-
tions (e.g., Origami Shape Language [19], Growing Point
Language [20], ASCAPE [21]), summarizing state from
space-time regions and streaming these summaries to other
regions (e.g., TinyDB [22], Regiment [23], KQML [24]),
automatically splitting computational behavior for cloud-
style execution (e.g., MapReduce [13], BOINC [25], Sun
Grid Engine [26]), and providing generalizable constructs
for space-time computing (e.g., Protelis [14], Proto [27],
MGS [28]). It is from this last, and particularly Proto,
that field calculus and the aggregate programming approach
derive, aiming at a generalization that can effectively en-
compass the vast majority of the above approaches.

Complementarily, from a “bottom-up” perspective, there
have recently been efforts to organize and systematize algo-
rithms and patterns producing resilient self-organizing be-
havior, with the aim of developing a “library of resilience.”
The first such library was the catalogue of bio-inspired
patterns in [4], systematizing mechanisms of information
spreading, aggregation, and decay (temporal pertinence)
into higher-level patterns. Aggregate programming follows
this idea by proposing building blocks expressive enough
to cover most mechanisms in [4], but with an additional
key feature: resiliency properties such as self-stabilization
(adaptation to transient changes) [7] and eventual con-
sistency (adaptation to distribution density, topology, and
changes) [8] are mathematically proved, and transfer to any
composition of these blocks. As noted above, these building
blocks are high general and terse, motivating the desire for
a more user-friendly API layer atop them.

A. Aggregate programming with the Protelis language

The computational field calculus [6] provides a univer-
sal [29] formal foundation for the aggregate computing,
and the Protelis functional programming language [14] has
been developed as practical field calculus implementation.

The abstract syntax of Protelis necessary to understand
the library presented in this paper is shown in Figure 1:
overbar semi-formal notation is used to denote sets or
sequences of syntactic elements. (i) nbr(e) creates a field
where each device maps neighbors (including itself) to their
latest available evaluation of e, (ii) if(e){e′}else{e′′}
performs an exclusive branch, partitioning the network into
two space-time subregions—where e evaluates to true and
false, respectively—computing e′ in the former and e′′ in

protelis

coord state

time

countDown
cyclicTimer
limitedMemory
T
...

meta

boundSpreading
multiInstance
multiRegion
publishSubscribe
...

sparsechoice

S

spreading

broadcast
crfGradient
distanceTo
distanceBetween
flexGradient
gradcast
G
...

accumulation

average
C
cMultiSum
cMultiMin
consensus
countDevices
...

nonselfstabilizing

accumulation

gossip
...

nonselfstabilizing

time

gossipEver
...

Fig. 2. Library package organization: spreading, accumulation,
state and sparsechoice are built around the four resilient “building
block” operators described in [7], while meta contains higher-order co-
ordination patterns. The nonselfstabilizing sub-packages contain
less resilient functions, which must thus be used more carefully.

the latter, in isolation. (iii) rep(x<-w){e} defines a time-
varying field that is initially w, and is updated at each round
by the function binding the prior value to variable x and
evaluating body e.

III. THE PROTELIS-LANG LIBRARY

While a programmer may have clear ideas about the
aggregate behaviors desired from a system, the details of
implementing such behaviors in the low-level operations
of field calculus (or Protelis) are often quite intricate and
sensitive to implementation details. This is particularly true
for ensuring that behaviors are resilient and scalable, as
these properties are often quite difficult to validate using
either formal analysis or empirical testing [30]. In order
to fulfill the promise of aggregate programming, we need
a comprehensive library that provides higher-level building
blocks already guaranteed to be resilient and scalable, thus
insulating application programmers from these challenges.

In constructing our Protelis library, protelis-lang,
we thus drew upon three sources in an effort to more
systematically define its scope and populate its contents. At
the core of the library is the system of four self-stabilizing
“building-block” operators [7]: G (spreading), C (aggrega-
tion), T (temporary state), and S (sparse choice). Critically,
any program constructed using only these operators for
coordination and state is guaranteed to be self-stabilizing
and to scale well asymptotically in terms of time complexity
(though details depend on specific usage). We then searched
through all of the publications referenced for associated
algorithms and code fragments, importing and adapting
any that could be mapped onto these operators or proved
equivalent, along with any other patterns and supporting
functions of interest.

We then compared the contents thus identified to the
two broad surveys referenced in the prior section ([3],
[4]) to systematically identify and fill in gaps in cover-
age. Notably, comparison between building block algo-
rithms and [4] highlighted limitations of G with respect



to the gradient pattern described in [4], which are further
discussed in Section III-E. We also applied systematic
software engineering practices to ensure the generality
of the library. For example, as broadcast [5] uses a
distance metric to generate a gradient for spreading infor-
mation from a source, we provided both a metric-agnostic
version (broadcastWithMetric) and a meta-solution
(gradcast) where the gradient-generating algorithm of
choice can be passed as an argument, making it easy to
leverage more efficient specialized algorithms in the library
such as flexGradient (see below).

This analysis thus ensures that the functions in our
library are likely to cover most of the communication
and coordination primitives needed for implementing any
self-organizing system. Encouragingly, we found that the
building-block operators correspond nicely with three of the
bio-inspired mechanisms from [4]—diffusion, aggregation
and evaporation of information—while the others in that
work were explicitly ruled out of the scope of this current
effort as focusing on device movement (e.g., flocking and
swarming) and geometric patterning.

The result is a protelis-lang library containing
more than 150 distinct functions grouped together accord-
ingly to the “building block” operator they rely on, and
organized as shown in Figure 2. By respecting the principles
described in [7], the functions composing these modules
inherit the self-stabilizing and eventual consistency features
of the building blocks they rely on. Associated with these
are also two additional nonselfstabilizing modules
that collect related useful patterns that must be handled with
care due to their lack of resilience. At a yet higher level
of abstraction, the meta module collects general purpose
patterns that combine and modulate other functions. Among
them, multiInstance is one of the key contributions of
this paper: this meta-pattern uses first-class field functions
to compute and compose a dynamically-determined number
of computational fields by running parallel instances of a
function. We now discuss each module in turn.

A. Spreading

The protelis:coord:spreading module is based
on the information spreading operator G, illustrated in
Figure 3(a). This operator produces resilient diffusion of
information away from a source region, spreading this
information outward along a spanning tree built applying
the triangle inequality constraint, and possibly modifying
that information as it spreads. In the case of multiple
sources, the space is effectively partitioned into sub-regions,
one per source, with each device receiving information only
from its nearest source.

In this module, G is exploited to build functions based
on information moving towards the edges of a spatial
region, such as broadcast, which spreads a copy of
the information held by the source region. Other functions
include distanceTo, which estimates distance of each
device from a source region and distanceBetween,

which provides every device with an estimate of the shortest
distance between two regions.

The module also includes two alternatives to G that per-
form better for some applications, as the self-stabilization
rate of G is inversely bounded by the distance between
the closest pair of neighbors and their communication
speed [31]. One alternative, crfGradient, is a distance
measure that self-repairs rapidly but is sensitive to repeated
small perturbations [31]; the other, flexGradient, is a
distance measure that tolerates small distortions in return
for smoother change over time [32]. As these are equivalent
to particular uses of G, they may safely substitute for it [7].

B. Accumulation
The protelis:coord:accumulation module is

based on the information accumulation operator C, illus-
trated in Figure 3(b). This operator is the complement of G,
resiliently aggregating information: C aggregates a field of
values along a spanning tree defined by a potential gradient
to a source device that receives the reduction of all values
in the field into a single summary value.

Even small perturbations, however, can cause loss or
duplication of data, so the module also includes special-
ized alternatives that use multiple paths down the po-
tential field rather than just one: cMultiIdempotent,
cMultiDivisible, their specializations cMultiMin,
cMultiSum, etc.

Applications of C (often combined with G) provide
various collective state estimations, such as summarize,
which shares the result of an accumulation through a region;
countDevices, which counts the number of devices in
a region; and average, which estimates the average of a
local value across a region.

C. Symmetry breaking
The protelis:coord:sparsechoice module is

currently only the symmetry breaking operator S, illustrated
in Figure 3(c). This algorithm breaks symmetry through
mutual inhibition, in which devices compete against others
to become leaders, generating a random Voronoi partition
with a characteristic grain size grain in expected time
O(grain).

D. State
The protelis:state module is based on the tem-

porary state operator T, illustrated in Figure 3(d). This
operator essentially implements a flexible timer, which
progresses from some initial state to a “zero” state at a po-
tentially time-varying rate. T is applied to manage time and
memory. For example, countDown implements a timer
counting seconds down to zero, cyclicFunction exe-
cutes a function periodically, and limitedMemory holds
a value for a specified number of seconds. Other functions
in the module provide related functionality not based on T,
such as isRisingEdge, which checks for a rising edge
in a binary signal and exponentialBackoffFilter,
which filters a signal to smooth out noise.
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Fig. 3. The main modules of protelis-lang are based on: a) spreading (G), diffusing possibly changing information from sources; b) accumulation
(C), aggregating information from many locations; c) sparse choice (S), breaking symmetry; d) temporary state (T), adaptive retention of information
over time; and e) meta algorithms to modulate and compose other algorithms, such as the dynamic parallel computation of multiInstance (a, b,
c, d adapted from [30]).

1 /* Run an instance of f for every source */
2 def multiInstance(srcs, f, null) {
3 alignedMap(
4 nbr(srcs.map(self, id -> {[id, null]})),
5 (key, field) -> { true },
6 (key, field) -> { f.apply(key) },
7 null)
8 }

Listing 1. multiInstance pattern from meta.

E. Meta patterns

In organizing the prior modules, we noticed sev-
eral sets of function variants following shared patterns.
Following the “strategy” design pattern [33], we have
factored out these common mechanisms (using higher-
order Protelis functions) and collected them in the
protelis:coord:meta module. This module thus de-
fines a family of general purpose patterns, which enhance
code reusability by allowing useful functionality to be
implemented by higher-order composition rather than a
combinatorial collection of variants.

Listing 1 shows the implementation of the novel
multiInstance meta-pattern, which leverages Protelis’
alignedMap construct (field alignment based on arbitrary
keys) to run multiple copies of a process in parallel, one
for each identified “source,” and aggregate their outputs.

This pattern offers a two-fold benefit: on the one hand, it
can be leveraged to improve system stability and resilience:
for instance, time replication [34] can be implemented
as a specialized multiInstance. On the other hand,
by computing multiple instances of a function, devices
share information coming from multiple sources, augment-
ing their perception of the aggregate system as a whole.
The multiInstance meta-pattern thus allows reuse
and composition of existing algorithms, extending their
application scope. For instance, as we introduced in the
spreading module, G creates spatial network partitions
in which devices can only interact with the closest source.
By running multiple instances of G, multiInstance
overcomes this limitation, and allows devices to merge
information from all the available sources. As such, the
gradient pattern from [4] is one of the possible specializa-
tions of multiInstance.

Yet other patterns focus on modulating scope in space

and time, such as multiRegion, which generalizes
Boolean branching to instead use a generic discriminator
with potentially many values, and boundSpreading,
which allows a function to run only where certain con-
ditions hold.

F. Non-self-stabilizing functions

Being universal, field calculus can express any coor-
dination mechanism constructed from local interactions,
and it is only a small fraction of such coordination
mechanisms that are self-stabilizing. Self-stabilization is
extremely valuable for ensuring resilience, but there are
many cases in which non-self-stabilizing coordination or
state mechanisms still have a role to play. Since these
are inherently dangerous to constructing a resilient sys-
tem, however, we have segregated them into their own
nonselfstabilizing modules to ensure that they are
not used without explicit knowledge that one is doing so.

Finally, we note that one active area of investigation is the
transformation of non-self-stabilizing algorithms into self-
stabilizing algorithms that retain many of their properties.
In the specific case of the gossip pattern, for example, it has
recently been demonstrated that gossip can be transformed
into a self-stabilizing variant by running several instances
overlapping in time [34], and this functionality can be
implemented with protelis-lang by application of the
timeReplicated pattern from meta.

IV. EXPERIMENTS AND PERFORMANCE

We now show how functions and meta-patterns from
protelis-lang can be readily combined to implement
two complex application scenarios in the context of mass
public events, while reducing the abstraction gap of the
aggregate program. For each scenario, we compare two
Protelis implementations2 by counting their lines of code
(LoC) as a well understood indicator of the effort required
to engineer an aggregate program: an implementation that
leverages the novel multiInstance meta-pattern and
other library functions (L), and “building blocks only” (BB)
implementation of approximately the same size, but which
is not allowed to use any library code. This size restriction

2Code available: https://bitbucket.org/mfrancia/2017-ecas-experiments



provides an approximation of what can be accomplished
with in the two conditions (with and without library) with
a similar level of programming effort, and results in the BB
implementation being necessarily much simpler and less
sophisticated in its handling of our test applications.

To compare the performance of our two implementations
for each test scenario, we used Alchemist [35] to simulate
a network of 1000 devices dispersed through the streets
of Cesena, Italy, comprising both mobile (800) and infras-
tructural (200) devices, all with a 150 meter communication
radius. Note, however, that the goal of this evaluation is not
to seek optimality or directly compare with prior systems
(to the best of our knowledge, no existing system has the
desired resilience properties), but rather to demonstrate how
our library makes it easier to obtain resilient behaviors.

A. Scenario: “Meet the Celebrity”

In this scenario, a celebrity is a featured attendee of an
event and appears at a sequence of meeting locations in
the city. Because of potential for danger in overcrowded
situations, security personnel allow only a limited number
of people at each meeting place. Attendees can coordinate
however, with an app on their personal devices that tries to
maximize how many people get to see the celebrity while
minimizing distance travelled and avoiding over-crowding.

In the building-block-only implementation, the G opera-
tor estimates distances and spreads information from meet-
ing places, but each device receives information only from
the closest source. As a consequence, people are allocated
to the closest meeting place, which can result in some
becoming overcrowded while others are underutilized.

By contrast, the library-based alternative leverages the
multiInstance pattern to count how many people are
either arrived already or expected to arrive in each meet-
ing point. This information is then shared to all devices,
where the crowd management algorithm considers both
the meeting places with available room reachable before
the celebrity passes by, and the meeting places for which
the sum of arrived and arriving people is smaller than
the overcrowding threshold. Attendees are then steered
towards the closest timely meeting place that is not already
overcrowded (Figure 5). From Figure 4, we can see that
with few more application (App) LoC, and a much larger
library code, the library implementation overcomes G’s
partitioning and enables capabilities the building-block-
only solution does not have.

B. Scenario: Resource Allocation

In this scenario, we design a service assisting in al-
locating emergency responders (e.g., medical teams) to
a set of people experiencing medical emergencies, while
maximizing the coverage of all needs. As emergencies can
occur anywhere, and a good allocation of resources to
needs is not always obvious, we consider the allocation
of 15 emergency responders to assist 4 attendees in need,

LoC Total BuildingBlocks Library App
meetTheVip-BB 21 13 0 8
meetTheVip-L 240 79 142 19
resourceAllocation-BB 69 40 0 29
resourceAllocation-L 245 79 149 17

Fig. 4. Library code (L) enables more complicated total implementations
than building-block-only code (BB) with a similar amount of application
lines of code (LoC).

Fig. 5. Screenshot of “meet the celebrity” simulation: meeting oppor-
tunities (large circles) are assigned to as many people as safely possible
(matching colors). Unassigned people are black dots, structural devices
are grey.

Fig. 6. Screenshot of “resource allocation” simulation: emergency
responders (blue) are allocated and guided to people in need (red);
allocation is indicated by inner circle color. Other devices are black
(mobile) and grey (structural) dots.

requiring respectively 2, 3, 4, and 6 aid units, clustered in
the opposite corners of the city centre (Figure 6).

Due to the partitioning limitations of G, the building-
block-only implementation leads to a poor resource as-
signment as responders can only get allocated to the clos-
est need. The library-based solution, on the other hand,
leverages multiInstance to coordinate responders with
the following strategy: (i) responders are allocated to the
emergency with the least allocated resources until its needs
are satisfied; (ii) if two emergencies have the same amount
of resources, responders are allocated to the closest one. As
shown in Figure 4, the large library codebase effectively re-
duces the required application code and thus simplifies the
engineering phase of fully resilient systems, also achieving



additional capabilities.

V. CONCLUSION

We have presented a library, protelis-lang, im-
plementing an API for resilient system design. This li-
brary bridges a critical gap in the aggregate programming
framework, between theoretical results providing properties
of resilience, scalability, safe composition, etc., and the
pragmatics of exploiting and applying these properties
in the construction of complex distributed systems. This
library also introduces novel meta-patterns, most notably
multiInstance, providing additional useful new func-
tionality, as demonstrated in our experiments.

This prototype, of course, leaves much room for improve-
ments, refinements and extensions. There are important
classes of functionality that were not in the scope of
this effort, such as movement coordination and security
issues, to be addressed either through expansion of this
library or construction of complementary modules. Finally,
the protelis-lang library serves as a foundation for
future construction of domain-specific APIs customized for
particular application areas, such as emergency service co-
ordination, home automation, or public event management.
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