Flexible Self-Healing Gradients

Jacob Beal
BBN Technologies
10 Moulton St.
Cambridge, Massachusetts 02138

jakebeal@bbn.com

ABSTRACT

Self-healing gradients are distributed estimates of the dis-
tance from each device in a network to the nearest device
designated as a source, and are used in many pervasive com-
puting systems. With previous self-healing gradient algo-
rithms, even the smallest changes in the source or network
can produce small estimate changes throughout the network,
leading to high communication and energy costs. We ob-
serve, however, that in many applications, such as routing
and geometric restriction of processes, devices far from the
source need only coarse estimates, and that a device need
not communicate when its estimate does not change. We
have therefore developed Flex-Gradient, a new self-healing
gradient algorithm with a tunable trade-off between preci-
sion and communication cost. When distance is estimated
using Flex-Gradient, the constraints between neighboring
devices are flexible, allowing estimates to vary by an amount
proportional to a device’s distance to the source. Frequent
small changes in the network or source thus cause frequent
estimate changes only within a distance proportional to the
magnitude of the change, as verified in simulation on a net-
work of 1000 devices. This can enable drastic reductions in
the communication and energy cost of gradient-based algo-
rithms.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Program-
ming— Distributed programming; C.2.1 [Computer-
Communication Networks|: Network Architecture and
Design— Wireless communication; F.2.2 [Analysis of Al-
gorithms and Problem Complexity]: Nonnumerical Al-
gorithms and Problems— Geometrical problems and compu-
tations

General Terms
Algorithms, Reliability, Experimentation

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providaticbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SAC'09 March 8-12, 2009, Honolulu, Hawaii, U.S.A.

Copyright 2009 ACM 978-1-60558-166-8/09/0355.00.

'“/\

Figure 1: A gradient is a distributed estimate of the
distance from each device to a nearest source de-
vice (blue). The value of a gradient on a network
approximates shortest path distances in the contin-
uous space containing the network.

Keywords

Amorphous computing, spatial computing

1. CONTEXT

A common building block for distributed computing sys-
tems is a gradient—a biologically inspired operation in which
each device estimates its distance to the closest device des-
ignated as a source of the gradient (Figure 1). Gradients are
commonly used in systems with multi-hop wireless commu-
nication, where the network diameter is likely to be high.
Applications include data harvesting (e.g. Directed Diffu-
sion[7]), routing (e.g. GLIDER][6]), distributed control (e.g.
co-fields[9]) and coordinate system formation (e.g. [2]), to
name just a few.

The distance estimates in such systems often must change
over time, due to changes in the set of sources, the set
of devices, and their distribution through space. Existing
self-healing gradient algorithms, such as CRF-Gradient|[3],
adapt their estimates whenever changes occur, so even the
smallest changes in the distance estimate may propagate
outward through arbitrarily large regions of the network,
imposing high communication and energy costs.

‘We observe, however, that there are many scenarios where,
the farther a device is from the source, the coarser the dis-
tance estimate that is acceptable. For example, if a pedes-
trian is carrying a mobile device running a program that
spreads to every other device within 50 meters, then it is
very important for a nearby device to know whether it is
40 meters or 60 meters away, but not important for a dis-
tant device to know whether it is 1040 meters or 1060 me-

ters away. If the pedestrian keeps walking for ten minutes,
however, that distant device may become close, and need
to know its distance more precisely. Similarly, if two de-
vices are communicating along the shortest path between
them, good distance estimates near the path can allow it
to shift incrementally, while devices far from the path only
become involved during dramatic shifts. Coarseness can be
transformed into cost savings by making coarser estimates
less likely to change, since devices need not communicate
when their estimates are not changing. Thus, for example, a
wireless sensor network using gradients to route information
from a moving data source to a base station could largely
shut down in areas not close to the path between source and
base station, saving large amounts of energy.

We have therefore developed Flex-Gradient, a new self-
healing gradient algorithm with a tunable trade-off between
precision and communication cost. When distance is esti-
mated using Flex-Gradient, the constraints between neigh-
boring devices are flexible, allowing estimates to vary by an
amount proportional to a device’s distance to the source.
Frequent small changes in the network or source thus cause
frequent estimate changes only within a distance propor-
tional to the magnitude of the changes, as verified in simula-
tion on a network of 1000 devices. This can enable drastic re-
ductions in the communication and energy cost of gradient-
based algorithms.

2. REVIEW OF SELF-HEALING GRADI-
ENTS

Gradients are generally calculated through iterative ap-
plication of a triangle inequality constraint. The simplest
self-healing estimate of the gradient value g, (t) of a device
z at time ¢ is

entire network to constantly recalculate estimates. This is a
problem because, although the estimates may change little,
the communication and energy costs of update messages are
the same no matter whether the estimate is changing a lot
or a little.

2.1 Other Self-Healing Gradients

Self-healing gradient algorithms can be categorized into
two general approaches: incremental repair and invalidate
and rebuild. In an incremental repair algorithm like CRF-
Gradient, devices constantly attempt to move their values
up or down towards the correct value. Its predecessors—
Clement and Nagpal[5] and Butera[4]’s hop-count gradients
and the hybrid distorted algorithm in [1]—also never allow
an observable error to persist and are thus sensitive to small
changes in the same way as CRF-Gradient.

An invalidate and rebuild gradient discards previous val-
ues and recalculates sections of network from scratch, gen-
erally only allowing values to decrease. Although a scalable
proportional response may be possible in this framework,
historically these approaches have not taken that route. For
example, GRABJ[10] allows a single sink, which rebuilds the
entire gradient when the error estimate at that point is too
high, TTDD(8] builds the gradient on a static subgraph that
is rebuilt in case of delivery failure, and TOTA gradients[9]
discard and rebuild everything directly dependent on a par-
ent change. Frequent small changes near a critical area in
these and related approaches thus lead to repeated recalcu-
lation of the entire gradient.

3. NETWORK MODEL

In our design of Flex-Gradient, we assume the following
network model:

e The network of devices D may contain anywhere from

0 if z € S(t) a handful of devices to tens of thousands (or more!).

gz (t) = { . .
min te,y) +d(x,y, ts, € N (t ifz &St
{ov(teu) @9, te)ly)} £50) e Devices are initially distributed arbitrarily through space.

where S(t) is the set of source devices, N (t) is the neigh-
borhood of z (excluding itself), ¢,y is the origin time for the
information about a neighbor y that is available to z, and
d(z,y,t) the estimated distance between neighboring devices
z and y. Whenever the set of sources S(t) is non-empty and
the network is not changing, repeated fair application of this
calculation (sending update messages to neighbors whenever
a device’s g, changes) converges to the correct value at ev-
ery point. We call this limit value, derived from the current
configuration of the network and source, g (t).

Although this naive algorithm converges, it may do so
at an arbitrarily slow rate set by the shortest link in the
network. The CRF-Gradient algorithm[3] addresses this
problem by switching between constraint and restoring force
modes (hence the acronym CRF). In constraint mode, the
value of a device g.(t) stays fixed or decreases, set by the
triangle inequality from its neighbors’ values. In restoring
force mode, g.(t) rises at a fixed velocity vo. The switch
between modes is made with hysteresis, so that the restoring
force always overshoots, then snaps down.

Both CRF-Gradient and the naive algorithm are very
sensitive to changes in g,. Any estimate change causes
changes that propagate outward to every other device whose
estimate depends on the old estimate. Thus even tiny con-
tinuing variations in the source or network can cause the

If devices are mobile, they move much more slowly
than messages propagating through the network.

e Memory and processing power are not limiting resources,
though excessive expenditure of either is still bad.

Execution happens in partially synchronous rounds,
once every A; seconds. Each device has a clock that
ticks regularly, but frequency may vary slightly and
clocks have an arbitrary initial time and phase.

e Devices communicate via unreliable broadcasts to their
unit disc neighbors (all other devices within r meters
distance). Broadcasts are sent at most once per round,
halfway between executions.

e Devices are provided with estimates of the distance
to their neighbors, but naming, routing, and global
coordinate services are not provided.

e Devices may fail, leave, or join the network at any
time, which may change the connectedness of the net-
work.

The Flex-Gradient algorithm may not depend on all of
these assumptions: they are the constraints on its design.

0 if x € S(t)
ch(t) else if maxz(r,2¢,(t)) < g=(t — A¢), letting y be the min nbr
L d(x, Y, tey)) else if s, (t) > 1+ €5 (t), letting y be the max-slope nbr
yd(z,y,tey)) else if s, (t) < 1 — €, (t), letting y be the max-slope nbr
ge(t — As) else

Figure 2: Flex-Gradient algorithm.

4. THE FLEX-GRADIENT ALGORITHM

The sensitivity of previous algorithms appears to be due
to their unwillingness to tolerate small errors. We therefore
reformulate the goal of a gradient to allow error proportional
to the distance from the source, considering g, (¢) to be e-
acceptable if it is in the range

gw(t) : (1 - 6) <gs < gac(t) : (1 +€)

which is identical to the ordinary criteria when ¢ = 0. This
leads directly to the basic idea behind Flex-Gradient: a
device should change its estimate only for significant errors.
Since small changes do not produce significant errors ex-
cept near the source, most estimates need not change in
response to small changes, and underlying communication
mechanisms on a device can take advantage of this as ap-
propriate to decrease the frequency of broadcasts down to-
ward whatever background level is appropriate to maintain
neighborhood relations.

Finding an appropriate distributed test for “significant
error” is not simple, however, and many straightforward ap-
proaches lead to non-functional algorithms. The solution
that we have found is to use the maximum local slope s4(t)
from a device to its neighbors:

(t = At) — gy(tay)
d(x7 y7t$»y)

This slope will be 1 when the estimate is exact, and if we
wish the estimates to converge to be e-acceptable, then we
can simply bound the slope above by 1 + € and below by
1 — ¢, snapping the estimate to the closest bound when it is
too high or too low. Thus, assuming the estimate starts out
correct, each hop can absorb up to e-r in change, propagating
only the remnant it cannot absorb onwards.

Changes propagate outward until they are absorbed, so
when a region of estimates is already “stretched” or “com-
pressed” to its limit, a small change can propagate outward
an arbitrary distance. We therefore need to ensure that de-
vices start with slope 1 and eventually return to it after
perturbation. To ensure that devices get correct estimates
initially and after non-incremental changes (e.g. appearance
of a new source), a device’s estimate snaps down to slope 1
when it is more than double a slope 1 estimate through its
neighbors and more than one hop from the source, taking
estimate through neighbors ¢ (t) to be:

$2(t) = max{% ly € Na(t)}

co(t) = min{gy (tz,y) + d(@,y, tey)|y € Na()}

To ensure that devices fix their values eventually to re-
turn to slope 1, they compute with € = 0 once every f - gx(t)
seconds, where f is a constant we call the fizing multiplier.
Thus, devices close to a source tend to correct their esti-
mate more quickly and those farther away will tolerate error

1
0.9f /’/J ”J’ -4 - e el e S N
0.8F + |
0.7 N

\

&06r 7 perturbation = 1

1} \ o o=

E 05F [' perturbation = 3

s 4 — - — - perturbation = 10

E 04l | M perlurbalioﬁ =30

© K — — — CRF-Gradient

\
0.3
0.2
0.1
ok — o
.
0 10 20 30 40 50 60 70

Geometric Distance

Figure 4: When perturbed by continual changes
in the source, Flex-Gradient’s estimates vary fre-
quently only within a limited range controlled by
the perturbation size, while other self-healing gradi-
ents, such as CRF-Gradient, change their estimates
throughout the entire network.

longer. Given that g(t) may be changing, we calculate the
effective error tolerance e, (t) using:

(€,9x(t) — Ay)
(6, (t — Ar) — Ay)
(0, 9= (1))

Thus far, this formulation is subject to the rising value
problem described in [3]: neighbors mutually constrain one
another and because the time between updates is never less
than A, two devices very close to one another can rise
only very slowly. The two-mode approach used by CRF-
Gradient to address this problem does not appear to be
usable for Flex-Gradient, since it depends on a rapidly
spreading loss of constraint. Instead, we introduce a distor-
tion ¢ into the distance measure, such that neighbor distance
is never considered to be less than ¢ - r. This changes how
the slope and estimate through neighbors are calculated:

if go (1) < ¢t — As)

(ex(t),8(1)) =
if p(t — Ay) < A

gy(te,y) — go(t — D)
max(d - r,d(z,y,tay))

5o, (t) = max{

ly € No(t)}

ch(t) = min{gy (tz,y) + max(d - r,d(z,y,tzy))|y € Nu(t)}

The entire Flex-Gradient algorithm can thus be ex-
pressed formally as shown in Figure 2.

5. EXPERIMENTS

We verify the effectiveness of Flex-Gradient in simu-
lation on a network of 1000 devices distributed randomly
through a space 100 meters by 150 meters, with devices

if Ay < ot — Ar) < ga(2)

(a) Initial Gradient

(b) Source Moving Right

(c) Source Returning to Left

Figure 3: Example of Flex-Gradient simulated on a planar network of 1000 devices (red). The network is
viewed at an angle, with distance estimates shown as the height of a blue dot above each device. The source
(orange) is at the base of the cone of distance values. The slope of the distance estimates is initially uniform
(a), but when the source moves to the right (b), then back toward the left again (c), the slope steepens in the
direction of motion and becomes shallower in the opposite direction. Repeated motion may leave “wrinkles”
in the slope that are straightened out by larger motions or gradual restoration toward unit slope.

density = 6
0.9r — — —density = 10
—— density =20
081 T 4+ density = 40
07f I
g 0.6
o
205
=3
5
S 04t
o
0.3
0.2
01
ok - e ==
.
0 10 20 30 40 50 60 70

Geometric Distance

Figure 5: The density of devices in the network does
not affect the range in which the perturbation affects
estimates, although it does appear to affect the rate
at which the estimates change within that area.

executing Flex-Gradient steps once per simulated second
(Figure 3).

In every trial, the source is a single device that starts in
the center of the network, then perturbs the gradient by
moving in a circle p meters in diameter at 1/2 radian per
second. The network is allowed to stabilize for 200 seconds
(damping out the transient from the initial calculation of
gradient values), then data is gathered over the next 1000
seconds of execution. Except where otherwise noted, we set
the communication radius r to ensure an expected p = 20
neighbors per device (making the network about 20 hops in
diameter) and use error tolerance € = 0.1, fixing multiplier
f = 10, distortion § = 0.2, and a perturbation diameter
p = 10.

We begin by testing that, under Flex-Gradient, con-
tinual perturbation of the source causes frequent estimate
changes only on devices within a range proportional to the
magnitude of the perturbation. We thus ran 20 trials each
of Flex-Gradient perturbed by a source moving in a cir-
cular orbit of diameter p = 1, 3, 10, and 30, and of CRF-
Gradient perturbed with p = 1.

Figure 4 shows the relationship between distance to the
center of the source’s orbit and frequency of estimate changes

in populations of devices grouped into 5-meter bands. As ex-
pected, Flex-Gradient’s estimates only change frequently
near the perturbed source, and smaller perturbations lead
to smaller affected radii. The observed relation is, surpris-
ingly, even lower than the expected linear relationship, and
this may be due to the rapid orbit of the source. With
CRF-Gradient, on the other hand, even the smallest vari-
ation causes near-constant changes in estimates throughout
the entire network. Note that for the largest perturbation
(p = 30), devices near the center of the orbit actually change
less than those right on the orbit due to being in the “eye
of the storm” of this particular perturbation pattern.

We confirm that this behavior is not affected by the den-
sity of devices by running 20 trials each for density rho = 6,
10, 20, and 40. Although the rate of change within the af-
fected region does vary, the range in which estimates change
frequently is not affected by density (Figure 5).

Finally, we verify that the error tolerance and fixing mul-
tiplier affect the algorithm as expected (Figure 6). Running
20 trials each with error tolerance set to ¢ = 0, 0.02, 0.05,
0.1, 0.2, and 0.5 finds that the range affected by the per-
turbation decreases radically with increased error tolerance,
while the quality of estimates is affected only slightly. Run-
ning 20 trials each with fixing multiplier set to f = 1, 3,
10, 30, and 100 finds that high values allow error to persist
longer and low values increase the range at which a pertur-
bation has a small effect, but the choice of parameter does
not appear to be particularly sensitive within a wide range.

6. CONTRIBUTIONS

We have introduced Flex-Gradient, a self-healing gradi-
ent algorithm that uses flexible constraints between neigh-
bors to limit the impact of frequent small changes in the net-
work or source. While previous self-healing gradients change
distance estimates frequently throughout the network in re-
sponse to frequent small changes, Flex-Gradient’s esti-
mates only change frequently within a distance proportional
to the magnitude of the change.

While formal bounds have yet to be established, the ex-
perimental results in this paper make it clear that this new
algorithm can be expected to greatly reduce the communi-
cation and energy costs of gradient-based systems. Thus,

tolerance = 0
— — —tolerance = 0.02
— — tolerance = 0.05
tolerance = 0.1
— — —tolerance = 0.2
tolerance = 0.5

B I ,‘L\ JT 1,21;1
. . . = . 11 L+
0 10 20 30 40 50 60 70

Geometric Distance

(a) Tolerance: Cost

5
i}
—4 T
F £ £ == =
6l tolerance = 0
— — —tolerance = 0.02
— - — tolerance = 0.05
-8H tolerance = 0.1
— — —tolerance = 0.2
tolerance = 0.5
~10 n n
10 20 30 40 50 60 70
Geometric Distance
(b) Tolerance: Error
1
fixing = 1
09r — — —fixing=3
— - — fixing = 10
0.8 fixing = 30
07k — — —fixing = 100
Ql- 0.6
2
205
=3
S04
03
0.2
0.1r
ok
0 10 20 30 40 50 60 70
Geometric Distance
(c) Fixing: Cost
6
al
2L
ok
i}

fixing = 1

- ——fwing=3 & + = 1 L + | i l i

— - — fixing = 10

fixing = 30
— — —fixing = 100

10 20 30 40 50 60 70
Geometric Distance

(d) Fixing: Error

Figure 6: Higher error tolerance decreases the
range in which a given perturbation causes esti-
mate changes (a) while affecting estimate quality
only slightly (b). Performance appears to be fairly
insensitive to choice of fixing multiplier (c, d).

the Flex-Gradient algorithm has the potential for signif-
icant impact across a wide variety of domains, such as ad-
hoc networking, sensor networks, and swarm robotics, where
the combination of volatile networks and sharply limited re-
sources has previously limited the use of gradients and the
geometric approach to self-organization that they support.

7.
(1]

(10]

REFERENCES

J. Bachrach and J. Beal. Programming a sensor
network as an amorphous medium. In Distributed
Computing in Sensor Systems (DCOSS) 2006 Poster,
June 2006.

J. Bachrach, R. Nagpal, M. Salib, and H. Shrobe.
Experimental results and theoretical analysis of a
self-organizing global coordinate system for ad hoc
sensor networks. Telecommunications Systems
Journal, Special Issue on Wireless System Networks,
2003.

J. Beal, J. Bachrach, D. Vickery, and M. Tobenkin.
Fast self-healing gradients. In ACM Symposium on
Applied Computing, March 2008.

W. Butera. Programming a Paintable Computer. PhD
thesis, MIT, 2002.

L. Clement and R. Nagpal. Self-assembly and
self-repairing topologies. In Workshop on Adaptability
in Multi-Agent Systems, RoboCup Australian Open,
Jan. 2003.

Q. Fang, J. Gao, L. Guibas, V. de Silva, and L. Zhang.
Glider: Gradient landmark-based distributed routing
for sensor networks. In INFOCOM 2005, March 2005.
C. Intanagonwiwat, R. Govindan, and D. Estrin.
Directed diffusion: A scalable and robust
communication paradigm for sensor networks. In Sizth
Annual International Conference on Mobile
Computing and Networking (MobiCOM ’00), August
2000.

H. Luo, F. Ye, J. Cheng, S. Lu, and L. Zhang. Ttdd:
A two-tier data dissemination model for large-scale
wireless sensor networks. Journal of Mobile Networks
and Applications (MONET), 2003.

M. Mamei, F. Zambonelli, and L. Leonardi. Co-fields:
an adaptive approach for motion coordination.
Technical Report 5-2002, University of Modena and
Reggio Emilia, 2002.

F. Ye, G. Zhong, S. Lu, and L. Zhang. Gradient
broadcast: a robust data delivery protocol for large
scale sensor networks. ACM Wireless Networks
(WINET), 11(3):285-298, 2005.

