
Swarm Intell
DOI 10.1007/s11721-011-0056-x

Functional blueprints: an approach to modularity
in grown systems

Jacob Beal

Received: 13 November 2010 / Accepted: 17 May 2011
© Springer Science + Business Media, LLC 2011

Abstract The engineering of grown systems poses fundamentally different system inte-
gration challenges than ordinary engineering of static designs. On the one hand, a grown
system must be capable of surviving not only in its final form, but at every intermediate
stage, despite the fact that its subsystems may grow unevenly or be subject to different scal-
ing laws. On the other hand, the ability to grow offers much greater potential for adaptation,
either to changes in the environment or to internal stresses developed as the system grows.
I observe that the ability of subsystems to tolerate stress can be used to transform incre-
mental adaptation into the dynamic discovery of viable growth trajectories for the system
as a whole. Using this observation, I propose an engineering approach based on functional
blueprints, under which a system is specified in terms of desired performance and means of
incrementally correcting deficiencies. I explore how manifold geometric programming can
support such an approach by simplifying the construction of distortion-tolerant programs,
then demonstrate the functional blueprints approach by applying it to integrate simplified
models of tissue growth and vascularization, and further show how the composed system
may itself be modulated for use as a component in a more complex design.

Keywords Morphogenetic engineering · Spatial computing · Amorphous computing ·
Functional blueprints · Proto

1 Introduction

One of the most remarkable facts about animals is that they are not generally injured by their
own growth. An animal is composed of many tightly integrated systems, all interlocking in
multiple ways. For example, bones fit together in joints that permit a useful range of motion,

Electronic supplementary material The online version of this article
(doi:10.1007/s11721-011-0056-x) contains supplementary material, which is available to authorized
users.

J. Beal (!)
BBN Technologies, Cambridge, MA, USA
e-mail: jakebeal@bbn.com

http://dx.doi.org/10.1007/s11721-011-0056-x
mailto:jakebeal@bbn.com


Swarm Intell

muscles attach to the bones in a pattern that allows them to work together effectively to
move the body, the circulatory system delivers oxygen and nutrients to every portion of the
bones and muscles via an intricate network of vessels, and their waste products are carried
away for removal by the kidneys. As the animal grows, from an embryo to a mature adult, all
of these systems are constantly adapting in order to remain integrated and fully functional.

This is not generally the case for our current engineered systems. Many artifacts, such
as cars and airplanes, have no real capacity for growth at all. In engineered systems that
do grow, the growth is often accompanied by significant degradation of function as the
existing balance of systems is disrupted and painstakingly reintegrated. Adding an extension
to a house means months of dust, being unable to use existing rooms, and electrical and
plumbing disruptions. Expanding the road networks of a growing city requires years of
detours and traffic disruptions, not to mention economic disruption for businesses nearby the
construction. Upgrading the software of a computer often requires a reboot and leaves a trail
of incompatibilities and ongoing headaches (though autonomic computing has made some
progress in this area). Beyond the obvious differences in mechanical and material properties,
we simply do not know how to describe our designs in a way that allows for disruption-
free growth. We may thus be led to consider languages for adaptable design, both to better
understand animal development and also to improve engineered systems. This is particularly
pressing given the rapid progress occurring in synthetic biology (e.g., engineered pattern
formation Basu et al. 2005 and standardized DNA assembly protocols Shetty et al. 2008),
where the systematic engineering of DNA programs promises to soon allow us to create
engineered objects that are literally grown from living cells.

One particularly elegant example of growth and adaptivity in biological systems is the
vascular system (Carmeliet 2003). Under normal conditions, sufficient oxygen diffuses
through the walls of capillaries into the surrounding tissue. When cells are not receiving
enough oxygen, however, they become stressed and emit a chemical signal that causes
nearby capillaries to leak. The vascular system also has an elegant program for regulating its
capacity. When a capillary leaks often, a new capillary begins to grow out of the leaky area,
increasing the available blood supply to the oxygen-starved region. Blood vessels are elastic,
and when they are frequently stretched, the cells divide, increasing the capacity of the vessel;
likewise, when frequently contracted, cells die and shrink the vessel. Thus, the vascular sys-
tem incrementally grows and shrinks to match the demand of the tissues it serves, branching
into under-served regions and adjusting the size of vessels to match the flow through them.

In this paper, I propose an engineering approach of functional blueprints inspired by
this and other similar adaptive biological systems. If each system is capable of operating
under minor stress and of incrementally adjusting to decrease stress, then feedback between
components should allow all the subsystems comprising a natural or engineered system to
maintain a tight integration as the system grows, even if the relationship and relative sizes
of subsystems are changing. Functional blueprints attempt to capture this by specifying a
system in terms of desired performance and means of incrementally correcting deficiencies.

In the remainder of this paper, I first discuss how stress tolerance can enable integrated
growth, then formalize this idea with a definition for a functional blueprint. I next show that
functional blueprints can be readily constructed using a programming approach based on
manifold geometry, such as that instantiated in the Proto (Beal and Bachrach 2006) spatial
computing language. Finally, I demonstrate the functional blueprint approach by applying
it to integrate simplified models of cell density maintenance and vascularization to produce
synchronized tissue growth, then show how the composed system may itself be modulated
for use as a component in a more complex design.



Swarm Intell

1.1 Related work

Morphogenesis in natural systems has been a subject of intensive study. In recent years, deci-
phering of genetic mechanisms controlling development, such as how the hox gene complex
produces the overall body plan of animals, has led to a synthesis of evolution and develop-
ment (EvoDevo) (cf. Carroll 2005), and theories of how the adaptivity of organisms to body
plan variations may facilitate evolution (Kirschner and Norton 2005).

Inspiration from natural systems has led to investigation of how growable patterns might
be programmed, generally focusing on the establishment of shape, with less attention to in-
tegration of function. Doursat, for example, has developed a hox-gene based network model
for artificial evolution of animal-like systems (Doursat 2008). Similarly, the development
of structure in growing plants has long been modeled at a high level by term-rewriting sys-
tems (Prusinkiewicz and Lindenmayer 1990), which the MGS language (Spicher and Michel
2006) extends into a general model of structure development through topological rewriting.
Other notable approaches include Coore’s Growing Point Language (Coore 1999), which
uses a botanical metaphor to create topological structure and Nagpal’s Origami Shape Lan-
guage (Nagpal 2001), which creates geometric forms through folding. Most similar to the
work presented in this paper is Werfel’s work on distributed construction (Werfel 2006),
which has been extended to use functional constraints to generate adaptive structure in re-
sponse to environmental stimuli (Werfel and Nagpal 2007).

The problems of integration addressed in this paper are also related to control theory.
Standard control theory, however, has difficulty addressing systems with large numbers of
non-linearly interacting parts, which are typical of growing systems. A notable exception
may be viability theory (Aubin 1991), a branch of mathematical theory which is intended
to address such concerns, thought it still focuses on systems well-described by differential
equations.

Grown systems may also be viewed as a special case of swarm systems, in which the
typical mobility of individual cells is highly limited. Swarm intelligence may be defined
as self-organizing global behavior from local or stigmergic interactions of a large num-
ber of relatively homogeneous individuals (Dorigo and Birattari 2007). While much swarm
intelligence research has focused on individuals that move freely with respect to one an-
other, as in the case of ant- and termite-inspired systems (e.g., Dorigo and Stutzle 2004;
Werfel 2006) or flocking models (e.g., Reynolds 1987; Couzin et al. 2005), this is not al-
ways the case. Many projects in swarm robotics and self-reconfigurable robotics have inves-
tigated the formation of shapes from collections of robots. For example, Stoy and Nagpal
investigated shape formation by a swarm where individuals construct a lattice-like struc-
ture through gradient climbing (Stoy and Nagpal 2004), and the Swarm-bots project has
investigated small-scale morphogenesis with robots that clamp onto one another in order
to collectively accomplish tasks that they cannot accomplish individually, such as crossing
gaps and balancing on thin bridges (O’Grady et al. 2009, 2010). The sort of grown sys-
tems envisioned in this paper are simply another point on this spectrum, where mobility is
typically lower and devices may be more elastic and capable of self-reproduction.

2 Stress tolerance enables integrated growth

The basic insight enabling this new approach is as follows: a stress-tolerant system can ex-
ploit its tolerance to navigate dynamically through the space of viable designs. This is rather
foreign to the typical engineering approach to failure tolerance. Usually, an engineer design-
ing a system treats its ability to tolerate failures like guard rails on a highway: important for



Swarm Intell

Fig. 1 (Color online) In this abstract example, a growing system with two attributes uses stress tolerance
to navigate through a complex viability envelope (blue). When unconstrained, the system grows its driving
attribute (horizontal arrows). When the system’s viability begins to be impaired (faint blue), it relieves that
stress by adjusting its secondary attribute (vertical arrows). By repeatedly switching between driving growth
and relieving stress, the system is able to navigate a complex viability envelope

safety, changing terrible outcomes into merely bad, but never touched under normal circum-
stances. Alternately, though, we can treat the system’s robustness as a guide, the way that a
blind person might use a guard rail to follow the twists and turns of the road.

Under this alternate view, stress within the system becomes the coordinating signal by
which independently developing subsystems are integrated. When the system is far from
the edge of its viability envelope, it can develop freely. When it comes near the edge, how-
ever, and its viability begins to be impaired, then the growth of the subsystems driving it
to non-viability is slowed or stopped temporarily. Other subsystems, triggered to act by the
increased stress, adjust to bring the system as a whole back within the viability envelope.
The driving subsystems are then re-enabled, and the cycle of growth and correction begins
again.

Critically, this is only possible if the system is able to determine the direction of stress,
and if stress caused by one system can be relieved by adjustment of another. For example,
if a beam has become the wrong length due to the change of structure around it, the beam
will experience tensile stress if it is too short and compressive stress if it is too long. If only
the magnitude of error is measured, then the beam cannot know whether it should grow or
shrink to reduce stress, but if the direction of the stress is measured then the appropriate
corrective measure becomes obvious.

For example, consider an abstract system with two attributes, whose combination is vi-
able only in the complex envelope shown in Fig. 1. The horizontal attribute drives system
growth, increasing whenever the system is clearly viable (horizontal arrows). When the sys-
tem’s viability begins to be impaired (faint blue), the secondary attribute adjusts to correct
it (vertical arrows). Given some hysteresis in the switch between driving and correction, the
switch in modes need only occur a finite number of times. By repeatedly switching between
driving growth and relieving stress, a system may navigate a complex viability envelope.

Thus we see that it is possible to use systemic stress as a signal to coordinate the growth
of independently developing subsystems. This will not, of course, work for all possible such
viability spaces: if the viability space includes a “dead end” that the driving attribute can
push into, then it cannot be successfully navigated without additional guidance. For many
systems, however, such as those where the coordination problem is rooted in the difference
of scaling laws (e.g., bone length (linear) vs. muscle cross-section (square) vs. lung capac-
ity (cubic)), the viability space is guaranteed to be navigable. Note also that when stress is



Swarm Intell

localized, the process of correction can be localized as well, allowing navigation to be par-
allelized when systems are not directly affecting one another. For example, different sets of
developing muscles can be sore at the same time.

3 Functional blueprints

Having made the observation that stress tolerance can allow a system to dynamically dis-
cover trajectories through its viability space, we can now take the next step and propose
an engineering framework for predictably constructing such systems. Let us thus define a
functional blueprint for some system X to consist of four elements:

1. A system behavior that degrades gracefully across some range of viability. Formally,
if CX is a manifold of possible configurations of system X, then it must be possible
to establish a concave viability function vX mapping CX → [0,∞) such that for any
configuration cX ∈ CX , only viable configurations have vX(cX) > 0,1 and for any such
configuration there exists a ball B ⊆ CX centered on cX such that vX(B) > 0.

2. A stress metric quantifying the degree and direction of stress on the system. Formally,
let the stress metric sX be a vector field on CX such that sX is the gradient of some legal
viability function for CX .

3. An incremental program that relieves stress through growth (or possibly shrinking). For-
mally, let this be a parametrized map iX,ε,d : CX → CX that shifts a configuration by ε

distance in the direction d .
4. A program to construct an initial minimal system. This initial minimal system, which we

label X0, must be viable, i.e., vX(X0) > 0.

Graceful degradation of system behavior asserts that the core functionality of the system
must not have a sharp transition between viable and non-viable.2 The stress metric and incre-
mental program combine to shift a degraded system’s configuration back toward viability.
Finally, the minimal system makes sure there is some viable place to start.

To transfer these properties to a composite system, it is necessary only to ensure that
the subsystems are coupled such that the side effects of subsystems on one another are
incremental. Formally, the action of each subsystem X’s incremental program on each other
subsystem Y forms a continuous map, πX,Y . Given such a coupling of functional blueprints,
it is always the case that it is possible to adjust any given subsystem by some small increment
without knocking any other subsystem out of its range of viability. This can be proved by
construction:

Theorem 1 Consider a system S, for which every subsystem has a functional blueprint, and
let X and Y be subsystems of S. For any given configuration cS , if vX(cX) > 0, then there
exists a δ > 0 such that c′

S = iY,ε,d (cS) has vX(c′
X) > 0 for every d and ε ≤ δ.

Proof By graceful degradation, we know that there exists a ball B centered on cX such that
every point b ∈ B also has vX(b) > 0. By the continuity of the coupling map πX,Y , we know
that the preimage of π−1

X,Y (B) is an open set. Being an open set, the preimage must contain

1Note that not all viable configurations need have vX(cX) > 0: the point is for the viability function to serve
as a conservative guide for system growth, not to capture the precise boundary at which the system fails.
2The formal definition is slightly weaker than continuity, but also asserts concavity to support the stress
function being used for guidance.



Swarm Intell

some ball B ′ of radius δ around the configuration cY . By the definition of an incremental
program, any configuration c′

S accessible via subsystem Y ’s incremental program iY,ε,d (cS)

is within the ball B ′ for ε ≤ δ. Since B ′ is a subset of π−1
X,Y (B), c′

X must be within B and
must therefore have vX(c′

X) > 0. !

A simple growing composite system, such as the one illustrated in Fig. 1, can thus be
constructed simply by taking the composite stress to be the maximum stress of any sub-
system and executing the incremental program of the maximally stressed subsystem. The
system can then be navigated toward a desired mature form by driving any subsystem or
collection of subsystems whenever the composite stress is low enough.

4 Distortion-tolerant programming

We have now seen that, in theory at least, the functional blueprint framework can be used to
create components that use stress signals to couple their development. Taking advantage of
this might be very difficult, however, since the program actually implementing each com-
ponent needs to be constructed in such a way that it tolerates the distortions caused by its
ongoing change in structure, or the structural changes imposed on it by other components
with which it interacts. The practicality of the functional blueprint approach will thus be
greatly enhanced if we are able to construct our programs using some representation that is
inherently tolerant to distortions.

One possible such approach is to define functional blueprints in terms of manifold geom-
etry computations. We shall demonstrate the potential of this approach by working through
several examples of scalable and tiled pattern construction using the Proto spatial computing
language (Beal and Bachrach 2006). In Proto, computations are specified in terms of infor-
mation flow and geometric operations across the volume of space where the computation is
being executed. Using Proto’s manifold model of space, we shall see that it is possible to
construct geometric descriptions of structure that automatically adapt to match distortions
in the shape of the component on which they are being executed.

4.1 Proto

We now give a brief overview of Proto: for a detailed explanation, see Beal and Bachrach
(2006) or the tutorials included with the MIT Proto distribution (MIT Proto, Retrieved
November 22, 2010). To aid comprehension, however, each program we present will have
its structure explained through embedded comments. The reader is further advised that, al-
though Proto uses LISP-like syntax and keywords, its semantics is not the same.

Proto is a functional dataflow language in which the aggregate of devices to be pro-
grammed is viewed as a discrete approximation of the continuous space through which
they are distributed, using the amorphous medium abstraction (Beal 2004). An amorphous
medium is a manifold with a computational device at every point, where every device knows
the recent past state of all other devices in its neighborhood (Fig. 2). While an amorphous
medium cannot, of course, be constructed, it can be approximated on the discrete network
of locally communicating devices, such as we might expect to find in a grown system com-
prised of many small cell-like components.

Proto uses the amorphous medium abstraction to factor programming a spatial computer
into three loosely coupled sub-problems: global descriptions of programs, compilation from



Swarm Intell

Fig. 2 An amorphous medium is
a manifold where every point is a
device that knows its neighbors’
recent past state

global to local execution on an amorphous medium, and discrete approximation of an amor-
phous medium by a real network. Aggregate behavior descriptions are thus transformed into
a program to execute on each device (every device is given the same program) and an inter-
action protocol by which devices cooperate to approximate the desired aggregate behavior.

When interpreted, a Proto program produces a dataflow graph of operations on fields,
where some of those operations may be functions implemented with their own dataflow
graph on fields. This program is then evaluated against a manifold to produce a field with
values that evolve over time. Proto uses four families of operations: point-wise operations
like + that involve neither space nor time, restriction operations like if that limit execution
to a subspace, feedback operations like letfed that establish state and evolve it in con-
tinuous time, and neighborhood operations that compute over neighbor state (gathered with
nbr) and space–time measures like nbr-range, then summarize the computed values in
the neighborhood with a set operation like integral (int-hood) or minimum (min-hood).

With Proto’s carefully chosen set of operators, compilation and discrete approximation
are straightforward, because each primitive is chosen to have a continuous-space specifi-
cation that can be coherently approximated with local device actions, and their composi-
tion rules preserve this property (except in extreme circumstances). Thus, Proto allows a
programmer to specify a distributed program in terms of information flow and geometric
operations over the space occupied by the aggregate of devices.

4.2 Pattern formation on distorting manifolds

Because Proto is based on a manifold model of space, geometric properties such as distance
are measured through a component, rather than external to it. This may prove useful in
the development of functional blueprints, because the definition of many basic geometric
operations changes to reflect the manifold. If a functional blueprint is constructed in terms
of such geometric operations, then a developing component that is being warped, whether by
internal or external forces, need not adjust its program when its shape is changed. Indeed,
if the program is formulated as a feed-forward composition of self-stabilizing geometric
operators, then its adaptability is entirely implicit.

In his dissertation, Yamins (2007) demonstrated that there are precisely two classes of
patterns that can in general be formed on the basis of local interactions with a constant
number of bits of state: scalable “proportional” patterns and tiled “repeat” patterns. Since
the genetic regulatory networks of biological organisms appear to have only a few distin-
guishable bits of state per regulatory interaction, it is reasonable to suppose that a significant
fraction of multicellular organism development may be specified in terms of combinations
of these two types of pattern.

Accordingly, we may experimentally validate the hypothesis that a manifold geometric
programming approach, such as that instantiated in Proto, has the potential to simplify the
construction of distortion-tolerant programs for functional blueprints, by constructing sev-
eral instances of these two types of pattern. The distortion tolerance of each pattern will be
tested by executing the program in the MIT Proto simulator on four different instances of a
distorting space:



Swarm Intell

Fig. 3 Four distortions used to validate the distortion tolerance of manifold geometric programs expressed
in Proto

– Square space, distorting into a parabolic space, then returning to the original configuration
(Fig. 3(a)).

– Square space, distorting into a three-dimensional spiral, then returning to the original
configuration (Fig. 3(b)).

– Irregular space, distorting along a parabolic form, then returning to the original configu-
ration (Fig. 3(c)).

– Irregular space, distorting to split apart the top 4/5 into two halves, then returning to the
original configuration (Fig. 3(d)).

In the first two cases, simulations are run on 2000 devices distributed evenly through a
100 × 100 unit the space; in the latter two, the same density of devices is used: the simulator
discards all those distributed to non-covered portions of the initial square distribution. De-
vices communicate with one another using local unit disc broadcasts with a range of r units.
Each simulation begins by executing the program for a short period of time to allow it to
stabilize an initial pattern, then executes the distortion. The distortion is executed simply by
moving devices incrementally along a straight line from their original position to their final
position and back (distortion functions are listed in the Supplementary Information).



Swarm Intell

Fig. 4 Bisector program executing on a complex shape under parabolic distortion

The patterns we test are selected for their susceptibility to verification via visual inspec-
tion. Only representative samples of the images will be shown here; the rest may be found
in the Supplementary Information.

4.3 Scalable patterns

For a scalable pattern, we seek to maintain some long-range relationship across the aggre-
gate, such as a size ratio between regions. Our primary tool here will be measurements of
distance through the manifold to the closest point in a designated region. In developing an-
imals, such metrics are often established via chemical gradients. In Proto, this is computed
by the distance-to function, which implements the fast self-healing CRF-Gradient
algorithm from Beal et al. (2008).

One basic and frequently used pattern formation building block that can be built imme-
diately from distance measurements is a bisector:

(def bisector (a b epsilon)
;; measure distance to source regions
(let ((d1 (distance-to a)) (d2 (distance-to b)))

;; bisector is points where distances are close to equal
(< (abs (- d1 d2)) epsilon)))

This is a generalized version of bisection, where the inputs a and b may be regions as well
as points. We measure the distance to each source region and compare it. If the two distances
are approximately equal (within some specified error epsilon), then that device must be
part of the bisector.

Figure 4 shows a three-bisector program running on a complex space under distortion:

(let ((bb (green (bisector s1 s2 (hood-radius)))))
(red (bisector bb s1 (hood-radius)))
(blue (bisector bb s2 (hood-radius))))



Swarm Intell

Fig. 5 Dilation program executing on a complex shape under splitting distortion

where s1 and s2 are the set of all devices within 5 units of the left and right edges of the
space and hood-radius is the distance over which devices can communicate with one
another. This program creates a green line halfway between the edges, a red line halfway
between the green and left edge, and a blue line halfway between the green and right edge.
Notice how all three bisector lines shift their position as the space distorts, with the green
center line making the most radical shift.

Another simple example is dilation:

(def dilate (source radius)
(< (distance-to source) radius))

This program simply selects the region of all devices within radius units of a source point
by measuring distance to the source and comparing against the radius input.

Figure 5 shows a pattern formed by four applications of dilation:

(all
(red (dilate (or s1 s2) 30))
(green (dilate s4 50))
(blue (dilate s3 40)))

where s1, s2, s3, and s4 are four designated devices. This creates four circles of color,
which are shown blended together (e.g., the green/red overlap is yellow). Notice that when
the space reconnects, the blue circle spreads into the portion that has become adjacent.

A somewhat more complicated example is maintaining the shortest path between two
points:

(def shortestpath (a b)
;; compute distance to b, with moderate permissiveness

(let ((d (flex-gradient b 0.3 0.2 0.5)))
(let ((path ;; is this device on the shortest path?

(> (rep next ;; each device on the path points to
;; the next

-1 ;; -1 means not on the path
;; if you are a, or are pointed to by a
;; neighbor
(mux (muxor a (any-hood (= (nbr next) (mid))))

;; then choose the next device on the
;; path
(2nd (min-hood (tup (if (= (nbr-range) 0)

(inf)



Swarm Intell

(nbr d))
(nbr (mid)))))

-1)) ;; otherwise you aren’t on the path
-1)))

path)))

For this program, we use the Flex-Gradient algorithm (Beal 2009), which is designed
to adjust its estimates more smoothly than CRF-Gradient. Devices then create a sequence
of pointers descending the distance slow as fast as possible in order to induce the shortest
path.

Figure 6 shows a pattern created from shortest-path operations, evaluated on a square
distorting into a three-dimensional curl:

(all
(red (shortestpath s1 s3))
(green (shortestpath s2 s3))
(blue (shortestpath s4 s3))
(if (or (or s1 s2) (or s3 s4))

(rgb (tup 1 0 1)) ;; paint end-points magenta
(tup 0 0 0))))

where s1, s2, s3, and s4 are four designated regions (shown as magenta). This creates
three paths, one red, one blue, and one green, all converging on the s3 region, originally
at the top of the square; since this is region-to-region shortest path computation, there are
multiple paths formed. Notice that early in the distortion when the surface interpenetrates,
the red and blue shortest paths pass beneath the forming loop. Once the curl has unrolled,
however, they pass along the surface, frequently overlapping to form magenta points.

4.4 Tiled patterns

For tiled patterns, we seek to maintain a uniform packing of patterns, elements of approxi-
mately the same size. Our basic tool here will be a symmetry-breaking operation that breaks
the space into regions of a controlled diameter. When a region grows too large, it will split
into sub-regions; when a region grows too small, it will be absorbed into the regions sur-
rounding it. We can implement a simple version of such a symmetry-break by combining
sparse randomness and distance measurement:

(def symmetry-break (radius)
;; Track two variables: region ID and region leaders
(rep (tup center id)
(tup 0 -1) ;; initially, nothing is a center or a region
(let* ((d (distance-to center))

;; a region is too small if its edge is less then 1/2
;; radius
(too-close (dilate (any-hood (not (= id (nbr id))))

(- (* radius 0.5) (hood-radius)))))
(tup
(mux (and too-close center) ;; when too close, regions

;; randomly die
(< (rnd 0 1) (probe (p_keep radius) 0))
(mux (> d (* radius 1.5)) ;; when too far, randomly seed

;; new regions
(< (rnd 0 1) (probe (p_flip radius) 1))



Swarm Intell

Fig. 6 Shortest path program executing on a square under 3D curl distortion, rotated to best show paths

center))
(broadcast center (mid)))))) ;; designate region w. UID

This program basically works by combining distance measurement with sparse randomness
to generate a random Voronoi partition. When a region is too big, devices far from the center



Swarm Intell

Fig. 7 Symmetry break program executing on a square under parabolic distortion

flip a coin to decide whether to become the center of a new region, weighted so that collisions
between newly generated regions will be rare: pflip = 2ca

πr3 , where c is the expected speed of
information flow and r is radius and a is the area covered by this device. Two regions are
too tightly packed together, as measured by the distance to its edges, the center flips a coin
weighted so that it is unlikely that both “too-close” regions will die at once: pkeep = 1 − c

10r
.

Figure 7 shows regions generated by this process, with RGB color value set from the region
id; note how their shapes change and they increase in number from 7 to 12 as the space
expands under distortion.

Once we have broken our space into regions, we can tile a pattern across it by construct-
ing a scalable pattern in each tile. The pattern must be scalable because the regions that we
have defined are irregular. For example, this program runs a bisector between centers and
edges on tiles with a characteristic radius of 50 units:

(let* ((region (symmetry-break 50))
;; an edge is any device with a neighbor in another region
(edges (any-hood (not (= (2nd region) (nbr (2nd region))))))
;; expand center to match edge thickness
(fat-center (any-hood (nbr (1st region)))))

(blue (bisector fat-center edges)))

Figure 8 shows this pattern running on an irregular space under a splitting distortion. Notice
how after the top space splits, another region has formed and the bisectors have shifted to
reflect the changed space on which they are executing.

One final example: using a symmetry break to create random red, green, or blue polka
dots:

(let ((center (1st (symmetry-break 30))))
;; form a polka dot around each region center
(if (dilate center 15)



Swarm Intell

Fig. 8 Tiled bisector program executing on a complex shape under splitting distortion

Fig. 9 Polka dot program executing on a square under parabolic distortion

;; have the center pick a color and sent it to the whole dot
(let ((color (broadcast center (once (floor (rnd 0 3))))))

(rgb (tup (= color 0) (= color 1) (= color 2))))
(tup 0 0)))

Figure 9 shows this pattern running on a square space under parabolic distortion. Notice how
the dots move with the space and multiply as it grows, but the left-most red dot disappears
as the space shrinks vertically and it loses out to the neighboring green dots.

These are only a few of the wide variety of structures that can be specified as a com-
bination of scalable and tiled patterns. They are not, of course, sufficient on their own to
specify everything we are likely to wish to construct using functional blueprints. What
these examples demonstrate, however, is that complex geometry-based programs can de-
rive their adaptivity from the adaptivity of fundamental geometric operations like distance
measurement and symmetry breaking, thereby simplifying the challenge of encoding func-
tional blueprints.



Swarm Intell

5 Example application: tissue growth

Having proposed a framework for the design of grown systems, and selected a manifold
geometric programming model to simplify pattern specification, let us now demonstrate the
feasibility of functional blueprints by developing a simplified model of tissue growth, in
which the growth of a sheet of cells is synchronized with the growth of the blood vessels
that supply them with oxygen. This example system should not be regarded as a serious
model of tissue growth, but as a cartoon to demonstrate the feasibility of the engineering
approach under discussion.

This simplified model consists of two subsystems, each specified with a functional
blueprint, and implemented in Proto. The cell density subsystem attempts to keep cells
packed at a moderate density via motion, reproduction, and apoptosis. A consequence of
this density maintenance is tissue growth at an approximately constant rate of expansion:
cells at the surface of the tissue generally have a low average density, since there are no cells
to one side of them, so unless they are regulated otherwise, they will tend to reproduce. The
vascularization subsystem, on the other hand, attempts to ensure that no cell is too distant
from a network conveying oxygenated blood outward from a source.3 These two systems
are linked together by adding a regulatory input to the cell density subsystem, such that cells
will not attempt to reproduce if they are oxygen-starved. The resulting composite system
produces smoothly synchronized tissue growth, and can be modulated to produce shaped
tissue by external regulation of either subsystem.

5.1 Cell density

In this simplified model, the base structure and expansion of a sheet of cells is produced by
a system that attempts to keep cells packed at a moderate density. We can implement such a
system as follows:

(def cell-density (grow shrink p_d)
(let ((packing (num-nbrs)))

(clone (and (and (< packing 8) ; If too few neighbors
grow) ; and allowed to grow

(< (rnd 0 1) p_d))) ; randomly reproduce
(die (and (or (> packing 15) ; If too many neighbors,

shrink) ; or commanded to shrink
(< (rnd 0 1) p_d)))) ; randomly suicide

(disperse 9)) ; Move away from other nearby cells

Here the desired system behavior is to maintain a moderate spacing between cells, which
exhibits graceful degradation if the cells have some tolerance for overcrowding or under-
population. The system is thus stressed when there are too many neighbors (here defined as
more than 15), too few neighbors (here defined as less than 8), or if the neighbors aren’t at a
desired separation (here defined as 0.6 communication radii).

The incremental program relieves stress in a straightforward manner: when there are too
many neighbors, the cell apoptoses (dies) with probability pd , and when there are too few
neighbors, the cell reproduces with probability pd (the grow enabling input and shrink forc-
ing input allows these actions to be modulated by an enclosing system). When the neighbors
are not at a desired separation, they move towards it using spring forces:

3In this simplified system, venous return is not modeled, but could be implemented using a complementary
mechanism.



Swarm Intell

Fig. 10 (Color online) Density
maintenance and growth:
simulation of an expanding sheet
of cells, where blue cells are
reproducing and green are dying

(def disperse (preferred-distance)
(* (/ 1 (int-hood 1)) ; normalize over neighbors...

(int-hood
;; the difference from preferred distance
(let ((dr (- (nbr-range) preferred-distance)))
;; (multiplied by 1/10 when attracting)
(* (mux (< dr 0) dr (* 0.1 dr))

;; turning distance into a vector to the neighbor
(normalize (nbr-vec)))))))

in which attractive forces are weaker than repulsive forces such that the farther neighbors do
not exert too much influence and collapse the diameter of communicating clusters.

Note that since cells at the surface of the sheet have an expected density half that of
cells in the interior of the sheet, their density will be considered too low (except in tempo-
rary high-density pockets) and they will reproduce. This has the desirable consequence of
continually expanding the sheet of cells such that the edge moves outward at an expected
constant rate (Fig. 10).

Figure 11 shows this cell density system in experiments where the growth parameter pd

ranges from 0.01 to 0.5. For each parameter value, 10 trials were run, beginning with 10 cells
distributed in a volume 10 units square and continuing for 200 simulated seconds. As the
growth rate pd rises, the final number of cells in the system (blue solid line) rises sharply,
but the fraction of cells that die rises as well (red dashed line shows surviving cells). An
intermediate level in the range 0.1 to 0.3 appears to offer the best trade-off, with graceful
degradation as the parameter moves away from that level.

5.2 Vascularization

Oxygen delivery by a vascular system requires that there be a capillary vessel relatively
close to every cell. When this is not the case, the cell becomes stressed by lack of sufficient



Swarm Intell

Fig. 11 (Color online) Behavior of density maintenance and growth system with respect to the growth rate
parameter pd . The number of cells after 200s of growth (solid line) is small at low pd , but the fraction of
cells surviving (dashed line) begins to drop at high pd . Thus the best system behavior is at moderate pd , but
viable behavior spans a large range of values

oxygen—a graceful degradation situation since the cell does not die. The simple vascular-
ization system here measures stress by distance to the nearest vessel:

(def vascularize (source service-range p_v)
(rep (tup vessel served parent) ; three state variables

;; the source starts as a vessel; everything else doesn’t
(tup source source (if source (mid) -1))
(mux source
(tup 1 1 -1) ; source is always a parentless vessel
(let ((service (< (distance-to vessel) service-range))

(server (gradcast vessel (mid)))
(children (sum-hood (= (mid) (nbr parent))))
(total-children (tree-children parent)))

;; adjust radius, for visualization
(radius-set
(mux vessel (* 0.5 (sqrt (+ 1 total-children))) 2))

;; grow/shrink vessel network
(mux vessel

;; if a cell is already a vessel, then:
(mux (or (muxand

;; if there is too much branching...
(any-hood
(and (= (nbr (mid)) parent)

(> (nbr children)
(mux (nbr source) 6 3))))

;; ... and there is no smaller branch
(not (any-hood



Swarm Intell

(< (nbr total-children)
total-children))))

;; or if the path to the source is broken
(not (any-hood

(and (nbr vessel)
(= (nbr (mid)) parent)))))

(tup 0 1 -1) ; ... then vessel is discarded
(tup 1 1 parent)) ; else vessels stay fixed

;; if a cell is not a vessel, then:
(mux (muxand

(muxand
;; if some neighbor is a vessel
(any-hood (nbr vessel))
;; and there is need of more vessels
(dilate (not served) service-range))

;; and a coin-flip comes up heads
(< (rnd 0 1) p_v)))

(tup 1 1 server) ; then become a vessel
(tup 0 service -1))))))) ; else stay non-vessel

where tree-children is a simple program counting each cell’s number of descendants
in the vascular tree:

(def tree-children (parent) ; given each cell’s parents:
(rep nc ; ’nc’ is the estimated number of children,

0 ; which starts each cell as a leaf
(sum-hood ; summing over neighbors,
(if (= (nbr parent) (mid)) ; if a neighbor is a child,

(+ 1 (nbr nc)) ; add it and its children;
0)))) ; otherwise, nothing

Every cell tracks whether it is part of a vessel and, if not, whether it has service from a
vessel within the service-range. In the beginning, only the source cell(s) are part of a vessel.
Later, the incremental program adds or removes cells from vessels to incrementally adjust
the network. Cells join a vessel at a growth rate pv when adjacent to a vessel and in range of
an unserved cell. Vessel cells undifferentiate when they lose their connection to the source
or when too many other vessel cells share the same junction.

Figure 12 shows a snapshot of typical simulated behavior, visualized using:

(def drawvasc (v)
(let ((vessel (1st v)) (served (2nd v)) (parent (3rd v)))

(green vessel) ; green for vessel cells
(blue (not served)) ; blue for oxygen-starved cells
;; line to vessel cell’s parent
(sum-hood (* (= (nbr (mid)) (3rd v)) (nbr-vec)))))

Figure 13 shows the vascularization system in experiments where the growth parameter
pv ranges from 0.001 to 0.05. For each parameter value, 10 trials were run, where the net-
work is grown for 200 simulated seconds from a seed point in the middle of a network of
2000 devices and devices are distributed on a square 300 by 300 units with a vasculariza-
tion service range of 50 units. The higher the growth rate pv , the faster that vascularization



Swarm Intell

Fig. 12 (Color online)
Vascularization: simulation of an
expanding vascular network
(green dots, blue lines) expanding
the area of oxygenation (red) into
a sheet of underoxygenated cells
(blue). The area of a dot is
proportional to the size of the
network descending from it

Fig. 13 (Color online) Behavior of vascularization system with respect to the growth rate parameter pv . The
oxygenated area (blue solid line) expands slowly at low pv , but the fraction of cells incorporated into vessels
(red dashed line) is large at high pv . Thus the best system behavior is at moderate pv , but viable behavior
spans a large range of values

proceeds and therefore the larger an area that is served (blue solid line). The faster that
vascularization proceeds, however, the more redundancy in the system, as reflected by the
fraction of cells designated as vessels (red dashed line).



Swarm Intell

Fig. 14 Synchronized growth of
a tissue: growth from cell density
maintenance is enabled only for
cells served by vascularization

5.3 Composite behavior

These two subsystems can be linked together into a simplified model of tissue growth by the
simple expedient of enabling growth in the cell density system only for those cells served
by vascularization:

(def tissue (src pd pv)
;; run vascularization and density maintenance
(let* ((v (vascularize src 50 pv))

(dir (cell-density (2nd v) 0 pd)))
;; allow all but vascularization source to move
(if (not src) (mov dir) (tup 0 0 0))
;; visualize vascularization
(drawvasc v)))

Having implementing these two subsystems using functional blueprints, this simple cou-
pling suffices for them to regulate one another into synchronized growth (Fig. 14).

Figure 15 compares regulated behavior (blue line) with unregulated subsystems (red
dashes), showing a smooth shift in regulatory dominance of the coupled system as pd and pv

are varied. For each set of parameter values, 10 trials were run, beginning with 10 cells dis-
tributed in a volume 10 units square and continuing for 200 simulated seconds. In Fig. 15a,
pd is varied from 0.01 to 0.5 as above, while pv is held constant at 0.02. At low values of
pd , growth from density maintenance dominates, but as pd rises, cells spread outward faster
and their growth begins to be checked by the rate of vascularization instead. In Fig. 15b, pv

is varied from 0.001 to 0.05 as above, while pd is held constant at 0.1. At low values of pv ,
vascularization is the limiting factor, but by pv = 0.02 the limiting factory has shifted to the
rate of growth from density maintenance.



Swarm Intell

Fig. 15 Linking density maintenance and vascularization results in synchronized tissue growth, with either
subsystem able the regulate the behavior of the composite system

This composite system may itself be viewed in terms of a functional blueprint, as these
results illustrate, where both density and vascularization are being maintained in the face of
stress, and the failure of either checks the other’s progress. Moreover, just as the cell density
subsystem was modulated to form a growing tissue, so may the tissue be modulated to
grow complex shapes. This can be done by modulating either the cell density subsystem or
the vascularization subsystem. To modulate shape using the cell density subsystem, growth



Swarm Intell

Fig. 16 The tissue growth
system can be modulated to
produce complex patterns, such
as the letter “F”, by modulating
growth of either the cell density
(a) or vascularization
subsystems (b). In both cases
shown, the letter grows from a
seed near its center

is enabled for cells within the constraints of the shape and apoptosis for cells outside of
the shape; vascularization modulation is done similarly, but shrinks the target shape by the
service range of vascularization.



Swarm Intell

Fig. 17 A functional blueprint
separates the result of modulated
tissue growth from the details of
its execution, as shown by
equivalent constructions of the
letter “F” when grown from a
seed in the lower right (a), upper
left (b) or center (Fig. 16a)

For example, Fig. 16 shows the result of constructing a letter “F” through regulating
cell density (Fig. 16a) and through regulating vascularization (Fig. 16b).4 Moreover, the

4For simplicity in this demonstration, the “F” bounds are set by external localization, though it could be
self-organized with variety methods (see Doursat 2008; Kondacs 2003).



Swarm Intell

functional blueprint separates the result of modulated tissue growth from the details of its
execution, as illustrated by the equivalent constructions in Fig. 16a and Fig. 17.

6 Contributions and discussion

We have demonstrated that a functional blueprint approach can be used to create grown
system that are dynamically integrated and that smoothly transfer regulatory control across
regimes. These systems can be interconnected to form composite systems with the same
properties of dynamic integration and smooth transfer of regulatory control.

While this is early work, the simplicity of creating and integrating the models discussed
in this paper indicates good potential for further development. Indeed, it is hoped that the
reader will find most value not in the results that have been presented, but in the problems
they open up and the hints that they offer toward how these problems might be addressed.

Take, for example, the formal definition of functional blueprints. The definition set forth
in this paper is conservative, constraining the set of possible blueprint designs as little as
possible. Intuitive definitions, such as “graceful degradation,” are much stronger than the
weak formal definition given: “graceful degradation” implies notions like wide margins of
error, gentle slopes, and safe misbehavior that are simply not implied by the definition given.
Important questions for the implementation and practicality of functional blueprints are thus
left open. For example, we have seen that it is always possible to navigate a viability space by
means of incremental changes to individual subsystems, but there is no bound established on
how difficult it is to find such a path or the complexity of navigating it. Moreover, it will be
important to ensure acceptable complexity for composed systems as well. The tissue growth
example gives us one hint: its set of possible viable configurations is both large and well
connected, and may be key to allowing the system to be driven so quickly by independent
choices of individual elements.

Likewise, when there are many subsystems interacting, or when a subsystem can attempt
to relieve stress in multiple ways, what ways of mixing those options together are likely
to produce good navigation of viability space? Once again, we may take a hint from the
tissue example: density maintenance uses two mechanisms simultaneously: movement and
reproduction/apoptosis. If either is run too strongly, behavior becomes incoherent. Perhaps
then, an appropriate means of combining incremental adjustments together is some form
of vector normalization, such that closely related adjustments reduce one another’s actions
strongly while distantly related adjustments mute more weakly.

At present, however, these are but early hints. More work is required, both theoretical
and practical, to determine where the functional blueprint concept can be applied well, and
what are good practices for doing so. Ultimately, we hope that the decoupling of structure
from the program guiding development will lead to more adaptivity in engineered systems
as well as stronger biological models for evolvability and phenotypic adaptation.

References

Aubin, J. P. (1991). Viability theory. Basel: Birkhauser.
Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H., & Weiss, R. (2005). A synthetic multicellular systems

for programmed pattern formation. Nature, 434, 1130–1134.
Beal, J. (2004). Programming an amorphous computational medium. In Lecture notes in computer science:

Vol. 3566. Unconventional programming paradigms international workshop (pp. 121–136). Berlin:
Springer.



Swarm Intell

Beal, J. (2009). Flexible self-healing gradients. In ACM symposium on applied computing (pp. 1197–1201).
New York: ACM.

Beal, J., & Bachrach, J. (2006). Infrastructure for engineered emergence in sensor/actuator networks. IEEE
Intelligent Systems, 21, 10–19.

Beal, J., Bachrach, J., Vickery, D., & Tobenkin, M. (2008). Fast self-healing gradients. In ACM symposium
on applied computing. New York: ACM.

Carmeliet, P. (2003). Angiogenesis in health and disease. Nature Medicine, 9(6), 653–660.
Carroll, S. B. (2005). Endless forms most beautiful: the new science of evo devo and the making of the animal

kingdom. New York: W.W. Norton & Company.
Coore, D. (1999). Botanical computing: a developmental approach to generating inter connect topologies on

an amorphous computer. Ph.D. thesis, MIT, Cambridge, MA, USA.
Couzin, I., Krause, J., Franks, N., & Levin, S. (2005). Effective leadership and decision making in animal

groups on the move. Nature, 433, 513–516.
Dorigo, M., & Birattari, M. (2007). Swarm intelligence. Scholarpedia, 2(9), 1462.
Dorigo, M., & Stutzle, T. (2004). Ant colony optimization. Cambridge: MIT Press.
Doursat, R. (2008). The growing canvas of biological development: multiscale pattern generation on an ex-

panding lattice of gene regulatory networks. In Proceedings of the 6th international conference on com-
plex systems: Vol. 6. Unifying themes in complex systems. New York: Springer.

Kirschner, M. W., & Norton, J. C. (2005). The plausibility of life: resolving Darwin’s dilemma. New Haven:
Yale University Press.

Kondacs, A. (2003). Biologically-inspired self-assembly of 2d shapes, using global-to-local compilation. In
International joint conference on artificial intelligence (IJCAI). Menlo Park: AAAI.

MIT Proto (Retrieved November 22, 2010). MIT Proto. Software available at http://proto.bbn.com/.
Nagpal, R. (2001). Programmable self-assembly: constructing global shape using biologically-inspired local

interactions and origami mathematics. Ph.D. thesis, MIT, Cambridge, MA, USA.
O’Grady, R., Christensen, A., & Dorigo, M. (2009). Swarmorph: multi-robot morphogenesis using directional

self-assembly. IEEE Transactions on Robotics, 25(3), 738–743.
O’Grady, R., Christensen, AL, Pinciroli, C., & Dorigo, M. (2010). Robots autonomously self-assemble into

dedicated morphologies to solve different tasks. In Proceedings of 9th international conference on au-
tonomous agents and multiagent systems (AAMAS 2010) (pp. 1517–1518). Toronto: IFAAMAS.

Prusinkiewicz, P., & Lindenmayer, A. (1990). The algorithmic beauty of plants. New York: Springer.
Reynolds, C. (1987). Flocks herds, and schools: a distributed behavioral model. Computer Craphics (SIG-

GRAPH’87 Conference Proceedings), 21(4), 25–34.
Shetty, R. P., Endy, D., Thomas, F., & Knight, J. (2008). Engineering biobrick vectors from biobrick parts.

Journal of Biological Engineering, 2(5).
Spicher, A., & Michel, O. (2006). Declarative modeling of a neurulation-like process. BioSystems, 87, 281–

288.
Stoy, K., & Nagpal, R. (2004). Self-reconfiguration using directed growth. In Intl. symposium on distributed

autonomous robotic systems (DARS). New York: Springer.
Werfel, J. (2006). Anthills built to order: automating construction with artificial swarms. Ph.D. thesis, MIT,

Cambridge, MA, USA.
Werfel, J., & Nagpal, R. (2007). Collective construction of environmentally-adaptive structures. In 2007

IEEE/RSJ international conference on intelligent robots and systems (IROS 2007). Piscataway: IEEE.
Yamins, D. (2007). A theory of local-to-global algorithms for one-dimensional spatial multi-agent systems.

Ph.D. thesis, Harvard, Cambridge, MA, USA.

http://proto.bbn.com/

	Functional blueprints: an approach to modularity in grown systems
	Abstract
	Introduction
	Related work

	Stress tolerance enables integrated growth
	Functional blueprints
	Distortion-tolerant programming
	Proto
	Pattern formation on distorting manifolds
	Scalable patterns
	Tiled patterns

	Example application: tissue growth
	Cell density
	Vascularization
	Composite behavior

	Contributions and discussion
	References


