# Laplacian-Based Consensus on Spatial Computers

#### Jacob Beal, Nelson Elhage AAMAS 2010





## Laplacian-Based Consensus

• Averaging consensus:

$$x_i(k+1) = x_i(k) + \epsilon \sum_{j \in N_i} w(e_{i,j}) \cdot (x_j(k) - x_i(k))$$

- Many multi-agent applications: flocking, swarming, sensor fusion, formation control, ...
- Fast convergence:  $\delta(k) = (1 \epsilon \lambda_2)^k ||\delta(0)||$

## Laplacian-Based Consensus

• Averaging consensus:

$$x_i(k+1) = x_i(k) + \epsilon \sum_{j \in N_i} w(e_{i,j}) \cdot (x_j(k) - x_i(k))$$

- Many multi-agent applications: flocking, swarming, sensor fusion, formation control, ...
- First convergence:  $\delta(k) = (1 \epsilon \lambda_2)^k ||\delta(0)||$

2<sup>nd</sup> eigenvalue of graph Laplacian Extremely small on spatial computers

# **Spatial Computers**



**Robot Swarms** 





**Biological Computing** 





Sensor Networks



Modular Robotics

# **Spatial Computer: Formal Definition**

- Given:
  - Graph G={V,E} of *n* devices
  - Non-negative weight  $w(e_{i,i})$  for each edge
  - Riemannian manifold *M* with distance function *d*
  - Mapping  $p: V \rightarrow M$  of devices to manifold points
- Spatial computer if  $w(e_{i,j}) = O(1/d(p(i),p(j)))$

# Analysis: How fast is convergence?

$$\delta(k) = (1 - \varepsilon \lambda_2)^k ||\delta(0)||$$

- Convergence requires:  $\epsilon < 1/\Delta$
- Available bounds for  $\lambda_2$  are very loose:

 $4/n \cdot diam \le \lambda_2$  $\lambda_2 \le \Delta - 2\sqrt{(\Delta - 1) + ((2\sqrt{(\Delta - 1)} - 1)/[diam/2])}$ 

### In simulation...



proto -r 6.3 -n 800 -dim 100 100 '(delta 0.02 50)' -s 1 -l -step -m -T

## **Analysis: Parameter Space**



# Analysis: How fast is convergence?

- Available bounds for  $\lambda_2$  are very loose
- But... on a spatial computer with  $\overline{N}$ >6, Laplacian consensus approximates physical diffusion.
- Convergence to a fixed error level:
  - $O(diameter^2 \cdot \ln(\delta(0)) / \overline{N}\varepsilon)$
  - But  $\varepsilon < 1/\text{degree} \le 1/\overline{N}$
  - Thus:  $O(diameter^2 \cdot \ln(\delta(0)))$

#### How bad is the constant term?

# **Empirical Evaluation**



- Synchronous execution,  $\varepsilon = 0.02$
- Converged when 95% of devices at mean +/-2

# **Spatial Correlations Matter**



Random initial values → fast convergence

## Quadratic Scaling w. Diameter



Convergence time dominated by width

## Inverse Scaling w. Num Neighbors



Secondary improvement from straighter path

## Inverse Scaling w. Step Size



Breaks down as system approaches instability

### Logarithmic Scaling w. Initial Difference



# Contributions

- Laplacian-based averaging consensus scales poorly on spatial computers:
  - O(diameter<sup>2</sup> · In( $\delta(0)$ ))
  - Empirical survey shows convergence time constant is high as well