

Automatic Compilation from
High-Level Bio-Languages to
Genetic Regulatory Networks

Jacob Beal, Ting Lu, Ron Weiss

IWBDA, June 2010

Goal: High-Level Biological Design

(def band-detector (signal lo hi)
 (and (> signal lo)
 (< signal hi)))

(let ((v (diffuse (aTc) 0.8 0.05)))
 (green (band-detect v 0.2 1)))

High-Level
Bio-focused
Language

OptimizeCompile

Genetic Regulatory
Network

S
im

u
la te

A
ssem

b
le

Tool Chain Vision

Tool Chain Vision

Outline

● Compositional Design
● Motif-Based Compilation
● Simulation Results

ribosome

Computation via Transcription Network

DNA

RNA
RNA polymerase

promoter

regulatory
protein

Protein
Decay

ribosome

Computation via Transcription Network

Stablizes at decay = production

DNA

RNA

promoter

regulatory
protein

Protein
Decay

Signal = Concentration

RNA polymerase

Alternatives:

 PoPS

 RNA concentration

X

Abstract GRN Design Space

Y

Z

X
Inputs:
[none]

,
,

X

Abstract GRN Design Space

Y

Z

X

d [X]=Ri⋅1K Y
−1[Y]/DY

H Y

1[Y]/DY
H Y ⋅ 1K Z [Z]/DZ

H Z

1[Z]/DZ
H Z −log2/ t X [X]

K ∈ [2,1000]

D ∈ [10,1000] nM

[X] ∈ [0,1000] nM

t > 300 s

H ∈ [1,4]

R < 10 nM/s

Inputs:
[none]

,
,

K
Y
 D

Y
 H

Y

K
Z
 D

Z
 H

Z

t
X

R
i

Major Challenge: Interference

● Effective part characterics changed by:
● Cellular context (endogenous pathways, synthetic parts)
● Expression noise

● Our approach: noise-rejection

● Digital - static discipline: V
low,out

 < V
low,in

 < V
high,in

 < V
high,out

But part variance makes a uniform standard impossible!

V
low,in

V
high,in

V
low,out

V
high,out

[In]

[Out]

Parameterized Standards Families

● Identify “standards family” parameter relation

● Create library of characterized part variants

● Adjust part choice to match on junctions

Parameterized Standards Families

● Identify “standards family” parameter relation

● Create library of characterized part variants

● Adjust part choice to match on junctions

Parameterized Standards Families

● Identify “standards family” parameter relation

● Create library of characterized part variants

● Adjust part choice to match on junctions

Parameterized Standards Families

● Identify “standards family” parameter relation

● Create library of characterized part variants

● Adjust part choice to match on junctions

Parameterized Standards Families

● Identify “standards family” parameter relation

● Create library of characterized part variants

● Adjust part choice to match on junctions

Parameterized Standards Families

● Identify “standards family” parameter relation

● Create library of characterized part variants

● Adjust part choice to match on junctions

Parameterized Standards Families

● Identify “standards family” parameter relation

● Create library of characterized part variants

● Adjust part choice to match on junctions

Parameterized Standards Families

● Identify “standards family” parameter relation

● Create library of characterized part variants

● Adjust part choice to match on junctions

Parameterized Standards Families

● Identify “standards family” parameter relation

● Create library of characterized part variants

● Adjust part choice to match on junctions

Experimental Input to Family Relation

[Basu & Weiss, '05]

Model constrained by characterization experiments...

[Karig, '07]
[Subramanian, '08]

[Weiss, '01]

Draft Simulation-Based
Standards Family Generation

Need: K,H,D,R,t,max [X]

● Choose max [X]

● Assuming large K,
amplification of 0.5K
when [X]/D ≈ 1

● H → D, static discipline
(higher H is better)

● Steady state max:
[X]=production*t/log(2)

● production ≈ K*R
Example:

max [X] = 500 nM H = 3
R = 0.193 t = 1800 s
K = 101 D = 190

V
low,out

V
high,in

V
high,out

V
low,in

Draft Simulation-Based
Standards Family Generation

Need: K,H,D,R,t,max [X]

● Choose max [X]

● Assuming large K,
amplification of 0.5K
when [X]/D ≈ 1

● H → D, static discipline
(higher H is better)

● Steady state max:
[X]=production*t/log(2)

● production ≈ K*R
Example:

max [X] = 500 nM H = 3
R = 0.193 t = 1000 s
K = 101 D = 80

V
low,out V

high,in

V
high,out

V
low,in

Draft Simulation-Based
Standards Family Generation

Need: K,H,D,R,t,max [X]

● Choose max [X]

● Assuming large K,
amplification of 0.5K
when [X]/D ≈ 1

● H → D, static discipline
(higher H is better)

● Steady state max:
[X]=production*t/log(2)

● production ≈ K*R
Example:

max [X] = 500 nM H = 3
R = 0.193 t = 1000 s
K = 101 D = 80

Driver for experimental
part creation & characterization!

V
low,out V

high,in

V
high,out

V
low,in

Outline

● Compositional Design
● Motif-Based Compilation
● Simulation Results

Motif-Based Compilation

● High-level primitives map to GRN design motifs
● e.g. logical operators:

(primitive not (boolean) boolean
 :bb-template ((P 0.193 R- arg0 RBS outputs T)))

arg0 output

Motif-Based Compilation

● High-level primitives map to GRN design motifs
● e.g. logical operators, actuators:

(primitive green (scalar) scalar :side-effect
 :bb-template ((P R+ arg0 RBS GFP outputs T)))

GFP outputarg0

Motif-Based Compilation

● High-level primitives map to GRN design motifs
● e.g. logical operators, actuators, sensors:

(primitive IPTG () scalar
 :bb-template ((P 0.193 RBS LacI T)
 (rxn LacI (IPTG 180000) -> LacI*)

 (P 0.193 R- LacI RBS outputs T)))

outputLacI

IPTG

Motif-Based Compilation

● Functional program gives dataflow computation:

● Operators translated to motifs:

● Standards family sets chemical constants
● Optimizers simplify network

(green (not (IPTG)))

LacI A

IPTG

B GFP

IPTG not green

Motif-Based Compilation

● Functional program gives dataflow computation:

(green (not (IPTG)))

Motif-Based Compilation

● Functional program gives dataflow computation:

(green (not (IPTG)))

IPTG not green

Motif-Based Compilation

● Operators translated to motifs:
● Standards family sets chemical constants

IPTG not green

Motif-Based Compilation

● Operators translated to motifs:
● Standards family sets chemical constants

not greenLacI A

IPTG

Motif-Based Compilation

● Operators translated to motifs:
● Standards family sets chemical constants

greenLacI A

IPTG

B

Motif-Based Compilation

● Operators translated to motifs:
● Standards family sets chemical constants

LacI A

IPTG

B GFP C

Motif-Based Compilation

● Optimizers simplify network

LacI A

IPTG

B GFP C

Motif-Based Compilation

● Optimizers simplify network

LacI A

IPTG

B GFP

Motif-Based Compilation

● Optimizers simplify network

LacI A

IPTG

GFP

Outline

● Compositional Design
● Motif-Based Compilation
● Simulation Results

Simulation Results

● Prototype compiler generates GRNs that
simulate correctly for a limited language subset

● Example: 2-bit adder

a1
a0

b1
b0

x1
x0

carry

Simulation Results

● Prototype compiler generates GRNs that
simulate correctly for a limited language subset

● Example: 2-bit adder

a1
a0

b1
b0

x1
x0

carry

1

true

3

2

Simulation Results

● Prototype compiler generates GRNs that
simulate correctly for a limited language subset

● Example: 2-bit adder

a1
a0

b1
b0

x1
x0

carry
2

3

1

true

1

0
0

1

1

1

1

Simulation Results

● Prototype compiler generates GRNs that
simulate correctly for a limited language subset

● Example: 2-bit adder

a1
a0

b1
b0

x1
x0

carryaTc
IPTG

C
4
HSL

3OC
12

HSL

blue

red
green

2

3

1

true

1

0
0

1

1

1

1

Simulation Results

● Prototype compiler generates GRNs that
simulate correctly for a limited language subset

● Example: 2-bit adder
(macro xor (a b)
 (muxor (muxand ,a (not ,b))

 (muxand ,b (not ,a))))

(macro 2bit-adder (a1 a0 b1 b0)
 (all
 (green (xor ,a0 ,b0)) ; x_0 low bit
 (let ((c0 (muxand ,a0 ,b0))

(x1 (xor ,a1 ,b1)))
 (red (xor x1 c0)) ; x_1 high bit
 (blue (muxor (muxand x1 c0) ; carry bit
 (muxand ,a1 ,b1))))))

(2bit-adder (aTc) (IPTG) (C4HSL) (3OC12HSL))

Simulation Results

● Compiled 2-bit adder
(unoptimized)
● 60 signal chemicals
● 52 regulatory regions

● Generated ODE
simulation in MATLAB

00+00

Bit 0
Bit 1
Carry

10+01 11+10 01+01

On to optimization...

● Adapted classical techniques can be powerful:

Band detector optimization from [Beal & Bachrach, '08]

(def band-detector
 (signal lo hi)
 (and (> signal lo)
 (< signal hi)))
(let
 ((v (diffuse
 (aTc) 0.8 0.05)))
 (green
 (band-detect v 0.2 1)))

Tool Chain Vision

Contributions

● Parameterized standards identify all chemical
parameters that can produce digital logic in
transcriptional networks.

● Prototype motif-based compiler automatically
maps high-level programs into GRNs.

● Automatically generated MATLAB ODE
simulations verify that GRNs implement
program specification.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

