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Goal: High-Level Biological Design

(def band-detector (signal lo hi) 
  (and (> signal lo) 
       (< signal hi))) 

(let ((v (diffuse (aTc) 0.8 0.05)))
  (green (band-detect v 0.2 1))) 
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● Compositional Design
● Motif-Based Compilation
● Simulation Results
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K ∈ [2,1000]

D ∈ [10,1000] nM

[X] ∈ [0,1000] nM

t > 300 s

H ∈ [1,4]

R < 10 nM/s
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Major Challenge: Interference

● Effective part characterics changed by:
● Cellular context (endogenous pathways, synthetic parts)
● Expression noise

● Our approach: noise-rejection

● Digital - static discipline: V
low,out

 < V
low,in

 < V
high,in

 < V
high,out

But part variance makes a uniform standard impossible!
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Parameterized Standards Families

● Identify “standards family” parameter relation

● Create library of characterized part variants

● Adjust part choice to match on junctions
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Parameterized Standards Families

● Identify “standards family” parameter relation

● Create library of characterized part variants

● Adjust part choice to match on junctions



  

Experimental Input to Family Relation

[Basu & Weiss, '05]

Model constrained by characterization experiments...

[Karig, '07]
[Subramanian, '08]

[Weiss, '01]



  

Draft Simulation-Based 
Standards Family Generation

Need: K,H,D,R,t,max [X] 

● Choose max [X]

● Assuming large K, 
amplification of 0.5K 
when [X]/D ≈ 1

● H → D, static discipline 
(higher H is better)

● Steady state max:  
[X]=production*t/log(2)

● production ≈ K*R
Example:

max [X] = 500 nM H = 3
R = 0.193 t = 1800 s
K = 101 D = 190

V
low,out
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low,in
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Draft Simulation-Based 
Standards Family Generation

Need: K,H,D,R,t,max [X] 

● Choose max [X]

● Assuming large K, 
amplification of 0.5K 
when [X]/D ≈ 1

● H → D, static discipline 
(higher H is better)

● Steady state max:  
[X]=production*t/log(2)

● production ≈ K*R
Example:

max [X] = 500 nM H = 3
R = 0.193 t = 1000 s
K = 101 D = 80

Driver for experimental 
part creation & characterization!
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Motif-Based Compilation

● High-level primitives map to GRN design motifs
● e.g. logical operators:

(primitive not (boolean) boolean
   :bb-template ((P 0.193 R- arg0 RBS outputs T)))

arg0 output



  

Motif-Based Compilation

● High-level primitives map to GRN design motifs
● e.g. logical operators, actuators:

(primitive green (scalar) scalar :side-effect
   :bb-template ((P R+ arg0 RBS GFP outputs T)))

GFP outputarg0



  

Motif-Based Compilation

● High-level primitives map to GRN design motifs
● e.g. logical operators, actuators, sensors:

(primitive IPTG () scalar
   :bb-template ((P 0.193 RBS LacI T) 
    (rxn LacI (IPTG 180000) -> LacI*)

 (P 0.193 R- LacI RBS outputs T)))

outputLacI

IPTG



  

Motif-Based Compilation

● Functional program gives dataflow computation:

● Operators translated to motifs:

● Standards family sets chemical constants
● Optimizers simplify network

(green (not (IPTG)))

LacI A

IPTG

B GFP

IPTG not green
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Motif-Based Compilation

● Operators translated to motifs:
● Standards family sets chemical constants
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Motif-Based Compilation
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Motif-Based Compilation

● Optimizers simplify network
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Simulation Results

● Prototype compiler generates GRNs that 
simulate correctly for a limited language subset

● Example: 2-bit adder

a1
a0

b1
b0

x1
x0

carry
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Simulation Results

● Prototype compiler generates GRNs that 
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Simulation Results

● Prototype compiler generates GRNs that 
simulate correctly for a limited language subset

● Example: 2-bit adder
(macro xor (a b) 
  (muxor (muxand ,a (not ,b)) 

 (muxand ,b (not ,a))))

(macro 2bit-adder (a1 a0 b1 b0)
  (all
  (green (xor ,a0 ,b0))  ; x_0 low bit
  (let ((c0 (muxand ,a0 ,b0))

(x1 (xor ,a1 ,b1)))
    (red (xor x1 c0))    ; x_1 high bit
    (blue (muxor (muxand x1 c0) ; carry bit 
                 (muxand ,a1 ,b1))))))

(2bit-adder (aTc) (IPTG) (C4HSL) (3OC12HSL))



  

Simulation Results

● Compiled 2-bit adder 
(unoptimized)
● 60 signal chemicals
● 52 regulatory regions

● Generated ODE 
simulation in MATLAB

00+00

Bit 0
Bit 1
Carry

10+01 11+10 01+01



  

On to optimization...

● Adapted classical techniques can be powerful:

Band detector optimization from [Beal & Bachrach, '08]

(def band-detector
   (signal lo hi) 
  (and (> signal lo) 
       (< signal hi))) 
(let 
  ((v (diffuse 
       (aTc) 0.8 0.05))) 
 (green 
  (band-detect v 0.2 1)))



  

Tool Chain Vision



  

Contributions

● Parameterized standards identify all chemical 
parameters that can produce digital logic in 
transcriptional networks.

● Prototype motif-based compiler automatically 
maps high-level programs into GRNs.

● Automatically generated MATLAB ODE 
simulations verify that GRNs implement 
program specification.
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